Arches National Park Geologic Resource Evaluation Report

Total Page:16

File Type:pdf, Size:1020Kb

Arches National Park Geologic Resource Evaluation Report National Park Service U.S. Department of the Interior Natural Resource Program Center Arches National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2004/005 THIS PAGE: Canyon, Arches NP. ON THE COVER: Delicate Arch, Arches NP NPS Photo’s Arches National Park Geologic Resource Evaluation Report Natural Resource Report NPS/NRPC/GRD/NRR—2004/005 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 November 2004 U.S. Department of the Interior Washington, D.C. The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters. Views and conclusions in this report are those of the authors and do not necessarily reflect policies of the National Park Service. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Printed copies of reports in these series may be produced in a limited quantity and they are only available as long as the supply lasts. This report is also available from the Geologic Resource Evaluation Program website (http://www2.nature.nps.gov/geology/inventory/ gre_publications) on the internet, or by sending a request to the address on the back cover. Please cite this publication as: Graham, J. 2004. Arches National Park Geologic Resource Evaluation Report. Natural Resource Report NPS/NRPC/GRD/NRR—2004/005. National Park Service, Denver, Colorado. NPS D-197, November 2004 Table of Contents List of Figures .............................................................................................................. iv Executive Summary ...................................................................................................... 1 Introduction ................................................................................................................... 2 Purpose of the Geologic Resource Evaluation Program ............................................................................................2 Regional Information ..................................................................................................................................................2 Park History................................................................................................................................................................2 Geologic Setting .........................................................................................................................................................3 Geologic Issues............................................................................................................. 5 Hydrocarbon Development.........................................................................................................................................5 Uranium Mining ..........................................................................................................................................................5 Water Quality and Flash Flooding ..............................................................................................................................6 Preservation of Fossils ...............................................................................................................................................6 Other Geological Issues .............................................................................................................................................6 Research Projects ......................................................................................................................................................7 Interpretive Needs ......................................................................................................................................................7 Geologic Features and Processes............................................................................... 8 Formation Properties.................................................................................................. 16 Geologic History.......................................................................................................... 28 Depositional and Tectonic History ............................................................................................................................28 References Cited......................................................................................................... 41 Appendix A: Geologic Map and Cross Section ........................................................ 45 Appendix B: Scoping Summary................................................................................. 47 Attachment 1: Digital Geologic Map CD ARCH Geologic Resource Evaluation Report iii List of Figures Figure 1: Location Map for Arches NP ...........................................................................................................................4 Figure 2: Entrada Sandstone Fins................................................................................................................................11 Figure 3: Schematic Diagram of Arch Formation. ........................................................................................................11 Figure 4: Schematic Diagram of Salt Anticline and Dissolution Structures ..................................................................12 Figure 5: Landscape Arch. ...........................................................................................................................................13 Figure 6: Balanced Rock..............................................................................................................................................13 Figure 7: Skyline Arch. .................................................................................................................................................14 Figure 8: Fiery Furnace................................................................................................................................................15 Figure 9: Stratigraphic Column.....................................................................................................................................25 Figure 10: Correlation Chart of Jurassic Period ...........................................................................................................27 Figure 11: Pangaea......................................................................................................................................................34 Figure 12: Lower Triassic Paleogeographic Map .........................................................................................................35 Figure 13: Upper Triassic.Paleogeographic Map .........................................................................................................36 Figure 14: Middle Jurassic Paleogeographic Map........................................................................................................37 Figure 15: Map of the Cretaceous Seaway. .................................................................................................................38 Figure 16: Upper Cretaceous Paleogeographic Map ...................................................................................................39 Figure 17: Geologic Time Scale...................................................................................................................................40 iv NPS Geologic Resources Division Executive Summary This report has been developed to accompany the digital geologic map produced by Geologic Resource Evaluation staff for Arches National Park in Utah. It contains information relevant to resource management and scientific research. The 76,359 acres of Arches National Park (ARCH) in • Livestock grazing effects on soils east- central Utah preserves the greatest concentration of • Proposed toxic waste incinerator impact on geologic rock arches in the world. In addition to the arches, features Arches National Park is home to an extraordinary • Viewshed issues (dust, oil/gas development) collection of balanced rocks, salt dissolution structures, • Acid rain impacts folds resulting from salt tectonics, petrified dune fields, • Preservation of Cryptobiotic soils and a maze of deep narrow canyons. Mesozoic sedimentary rocks are the primary strata Scientific research projects suggested for
Recommended publications
  • UMNP Mountains Manual 2017
    Mountain Adventures Manual utahmasternaturalist.org June 2017 UMN/Manual/2017-03pr Welcome to Utah Master Naturalist! Utah Master Naturalist was developed to help you initiate or continue your own personal journey to increase your understanding of, and appreciation for, Utah’s amazing natural world. We will explore and learn aBout the major ecosystems of Utah, the plant and animal communities that depend upon those systems, and our role in shaping our past, in determining our future, and as stewards of the land. Utah Master Naturalist is a certification program developed By Utah State University Extension with the partnership of more than 25 other organizations in Utah. The mission of Utah Master Naturalist is to develop well-informed volunteers and professionals who provide education, outreach, and service promoting stewardship of natural resources within their communities. Our goal, then, is to assist you in assisting others to develop a greater appreciation and respect for Utah’s Beautiful natural world. “When we see the land as a community to which we belong, we may begin to use it with love and respect.” - Aldo Leopold Participating in a Utah Master Naturalist course provides each of us opportunities to learn not only from the instructors and guest speaKers, But also from each other. We each arrive at a Utah Master Naturalist course with our own rich collection of knowledge and experiences, and we have a unique opportunity to share that Knowledge with each other. This helps us learn and grow not just as individuals, but together as a group with the understanding that there is always more to learn, and more to share.
    [Show full text]
  • Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
    THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much.
    [Show full text]
  • 2014 Utah State Comprehensive Outdoor Recreation Plan 2014 Utah
    2014 Utah State Comprehensive Outdoor Recreation Plan UTAH STATE PARKS Division of Utah State Parks and Recreation Planning Section 1594 West North Temple, Ste. 116 P.O. Box 146001 Salt Lake City, UT 84116-6001 (877) UT-PARKS stateparks.utah.gov State of Utah Figure 1. Public land ownership in Utah. ii 2014 SCORP ACKNOWLEDGEMENTS The research and publication of the 2014 Utah State Comprehensive Outdoor Recreation Plan (SCORP) is a product of a team effort. The Utah Department of Natural Resources, Division of Utah State Parks and Recreation, Utah Division of Wildlife Resources, Utah Department of Transportation, Utah Division of Water Resources, Governor’s Office of Planning and Budget, National Park Service (Omaha Regional Office), U.S. Department of Agriculture Forest Service, U.S. Department of the Interior Bureau of Land Management, U.S. Department of the Interior Bureau of Reclamation, Utah League of Cities and Towns, Utah Association of Counties, Utah Recreation and Parks Association, and others provided data, information, advice, recommendations, and encouragement. The 2014 Utah SCORP was completed under contract by BIO-WEST, Inc. (BIO-WEST), with survey work completed by Dan Jones & Associates. Key project contributors include Gary Armstrong, project manager for BIO-WEST, and David Howard, lead survey research associate for Dan Jones & Associates. Susan Zarekarizi of the Division of Utah State Parks and Recreation served as the overall project manager and provided contractor oversight. Additional staff contributing to the project include Sean Keenan of BIO-WEST, and Tyson Chapman and Kjersten Adams of Dan Jones & Associates. The 2014 Utah SCORP represents demand for future recreation facilities as identified in a series of public opinion surveys, special reports, park surveys, federal and local plans, technical reports, and other data.
    [Show full text]
  • DPSC Hogback Parking Facility
    Diamond Pro Stone Cut® RETAINING wAll sysTEm project profile the design used a multipiece system to mimic area rock outcroppings. four custom colors were used in the wall to show a sweeping motion near the top, which blends seamlessly with the surrounding scenery. Hogback Parking Facility GoldEN, coloRAdo ProDUcT insTallEr ThE challEngE Diamond Pro Stone Cut® HTM Construction Expand parking, upgrade drainage, add landscaping, meet high retaining wall system Lakewood, Colorado aesthetic standards and construct the project without closing the nearby Interstate highway exits were just a few of the manUFACTUrEr ProjEcT sizE challenges faced by the team that led the improvement of a Pavestone Company 28,000 square feet “park and ride” facility outside Denver, just off Interstate 70 and Henderson, Colorado U.S. Highway 40. The area known as the Dakota Hogback in the Rocky Mountain foothills had been a popular parking place for WALL DEsignEr Denver commuters and mountain-bound outdoor enthusiasts J.F. Sato and Associates for years before the Colorado Department of Transportation Denver, Colorado and Jefferson County decided to update the facility. anchorwall.com Diamond Pro Stone Cut® RETAINING wAll sysTEm project profile ThE solUTion Designed by Denver engineering firm J.F. Sato and Associates, the Hogback retaining wall was engineered to be both functional and aesthetically pleasing. Colorado DOT Project Manager Martin Herbaugh described the choice of the Diamond Pro Stone Cut® retaining wall system for the wall as the perfect solution that best met the requirements of the project. The designer chose the product because of its multiple pieces and rough-looking appearance that complement the Rocky Mountain landscape.
    [Show full text]
  • Ron Blakey, Publications (Does Not Include Abstracts)
    Ron Blakey, Publications (does not include abstracts) The publications listed below were mainly produced during my tenure as a member of the Geology Department at Northern Arizona University. Those after 2009 represent ongoing research as Professor Emeritus. (PDF) – A PDF is available for this paper. Send me an email and I'll attach to return email Blakey, R.C., 1973, Stratigraphy and origin of the Moenkopi Formation of southeastern Utah: Mountain Geologist, vol. 10, no. 1, p. 1 17. Blakey, R.C., 1974, Stratigraphic and depositional analysis of the Moenkopi Formation, Southeastern Utah: Utah Geological Survey Bulletin 104, 81 p. Blakey, R.C., 1977, Petroliferous lithosomes in the Moenkopi Formation, Southern Utah: Utah Geology, vol. 4, no. 2, p. 67 84. Blakey, R.C., 1979, Oil impregnated carbonate rocks of the Timpoweap Member Moenkopi Formation, Hurricane Cliffs area, Utah and Arizona: Utah Geology, vol. 6, no. 1, p. 45 54. Blakey, R.C., 1979, Stratigraphy of the Supai Group (Pennsylvanian Permian), Mogollon Rim, Arizona: in Carboniferous Stratigraphy of the Grand Canyon Country, northern Arizona and southern Nevada, Field Trip No. 13, Ninth International Congress of Carboniferous Stratigraphy and Geology, p. 89 109. Blakey, R.C., 1979, Lower Permian stratigraphy of the southern Colorado Plateau: in Four Corners Geological Society, Guidebook to the Permian of the Colorado Plateau, p. 115 129. (PDF) Blakey, R.C., 1980, Pennsylvanian and Early Permian paleogeography, southern Colorado Plateau and vicinity: in Paleozoic Paleogeography of west central United States, Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, p. 239 258. Blakey, R.C., Peterson, F., Caputo, M.V., Geesaman, R., and Voorhees, B., 1983, Paleogeography of Middle Jurassic continental, shoreline, and shallow marine sedimentation, southern Utah: Mesozoic PaleogeogÂraphy of west central United States, Rocky Mountain Section of Society of Economic Paleontologists and Mineralogists (Symposium), p.
    [Show full text]
  • Geology and Mineral Resources of Sierra Nacimiento and Vicinity, New
    iv Contents ABSTRACT 7 TERTIARY-QUATERNARY 47 INTRODUCTION 7 QUATERNARY 48 LOCATION 7 Bandelier Tuff 48 PHYSIOGRAPHY 9 Surficial deposits 48 PREVIOUS WORK 9 PALEOTECTONIC SETTING 48 ROCKS AND FORMATIONS 9 REGIONAL TECTONIC SETTING 49 PRECAMBRIAN 9 STRUCTURE 49 Northern Nacimiento area 9 NACIMIENTO UPLIFT 49 Southern Nacimiento area 15 Nacimiento fault 51 CAMBRIAN-ORDOVICIAN (?) 20 Pajarito fault 52 MISSISSIPPIAN 20 Synthetic reverse faults 52 Arroyo Peñasco Formation 20 Eastward-trending faults 53 Log Springs Formation 21 Trail Creek fault 53 PENNSYLVANIAN 21 Antithetic reverse faults 53 Osha Canyon Formation 23 Normal faults 53 Sandia Formation 23 Folds 54 Madera Formation 23 SAN JUAN BASIN 55 Paleotectonic interpretation 25 En echelon folds 55 PERMIAN 25 Northeast-trending faults 55 Abo Formation 25 Synclinal bend 56 Yeso Formation 27 Northerly trending normal faults 56 Glorieta Sandstone 30 Antithetic reverse faults 56 Bernal Formation 30 GALLINA-ARCHULETA ARCH 56 TRIASSIC 30 CHAMA BASIN 57 Chinle Formation 30 RIΟ GRANDE RIFT 57 JURASSIC 34 JEMEZ VOLCANIC FIELD 59 Entrada Sandstone 34 TECTONIC EVOLUTION 60 Todilto Formation 34 MINERAL AND ENERGY RESOURCES 63 Morrison Formation 34 COPPER 63 Depositional environments 37 Mineralization 63 CRETACEOUS 37 Origin 67 Dakota Formation 37 AGGREGATE 69 Mancos Shale 39 TRAVERTINE 70 Mesaverde Group 40 GYPSUM 70 Lewis Shale 41 COAL 70 Pictured Cliffs Sandstone 41 ΗUMΑTE 70 Fruitland Formation and Kirtland Shale URANIUM 70 undivided 42 GEOTHERMAL ENERGY 72 TERTIARY 42 OIL AND GAS 72 Ojo Alamo Sandstone
    [Show full text]
  • Antelope Island State Park International Dark Sky Park Designation Application Packet
    1 Antelope Island State Park International Dark Sky Park Designation Application Packet January 2017 Antelope Island State Park Night Sky Looking South by Dan Ransom Wendy A Wilson, Assistant Park Manager Antelope Island State Park 2 Table of Contents International Dark Sky Park Summary 3 Nomination Letter from Janet Muir, North Fork Park 5 Park Map 6 Park Resources 8 Ecology 8 Geological Resources 9 Human History 9 Natural Darkness Resources 10 Climate 13 Light Pollution 16 Night Sky Resources 18 Public Leadership Project 20 Visitor Experiences (Interpretive Programs and Outreach) 22 Exterior Light Management Plan 26 Exterior Lighting Inventory 32 Letters of Support Fred Hayes - Director, Division of Parks and Recreation 41 Jeremy Shaw - Manager, Antelope Island State Park 42 Steven Bates - Wildlife Biologist, Antelope Island State Park 43 Justina Parsons-Bernstein - Heritage , Interpretive and ADA Resources Manager 44 Davis County Commission 45 Syracuse City, Resolution 46 Ogden Astronomical Society 48 Friends of Antelope Island 49 Antelope Island State Park 3 Antelope Island State Park International Dark Sky Park Summary Antelope Island State Park seeks designation as an IDA Dark Sky Park and aims to show within this document that the land base, while flanked on the east side by the heavily populated Wasatch Front, meets the criteria for designation as a dark sky resource. Antelope Island State Park’s visitation in 2015 was over 320,000. The opportunity for public nighttime access is available on a regular basis, with entrance gates staying open until 10:00 pm during spring, summer and fall months, and until 7:00 pm during winter months.
    [Show full text]
  • HIKING TRAILS SOUTH SUNSHINE COAST Sunshinecoastcanada.Com
    HIKING TRAILS SOUTH SUNSHINE COAST sunshinecoastcanada.com Local Favourites ROBERTS CREEK heritage graveyard on the Sechelt First Nations band land at the east end. CLIFF GILKER PARK TRAILS ACCESS: From Highway 101 in Sechelt, access the walk- LENGTH & DIFFICULTY: 7 km of trails | 15 min to 2.5 hrs | way from Shorncliffe, Ocean, Trail, Inlet, or Wharf Avenues. GIBSONS Moderate Trails are colour coded and easy to follow and all loop back BURNETT FALLS GIBSONS SEAWALL to the parking lot. The park is a largely advanced second LENGTH & DIFFICULTY: 10-15 min one way | Very Easy LENGTH & DIFFICULTY: 20-30 min one way | Easy growth Douglas Fir forest. Roberts Creek and Clack Creek A short walk with a bit of an incline that ends at a spectacular Paved waterfront walkway with views of Gibsons Marina, flow through this park. The trails cross them at various view of the waterfall. points on rustic wooden bridges and the waterfall is a high- Gibsons Harbour, Keats Island and North Shore moun- ACCESS: 5396 Burnett Rd. From Sechelt, go north on light (especially in the winter time). Wheelchair accessible tains. Just steps away from shops and restaurants in Lower Wharf Ave. At the 4-way stop, turn right onto East Porpoise viewing platform. Gibsons. Bay Rd. Take a right turn on Burnett Rd. and park at the end. ACCESS: There are access points along Marine Drive and ACCESS: Follow Hwy 101 west from Gibsons for 10 km or Trailhead will be visible. Gower Point Road in Gibsons, including Armours Beach, drive east on Hwy 101 from Sechelt.
    [Show full text]
  • Utah's Mighty Five from Salt Lake City
    Utah’s Mighty Five from Salt Lake City Utah’s Mighty Five from Salt Lake City (8 days) Explore five breathtaking national parks: Arches, Canyonlands, Capitol Reef, Bryce Canyon & Zion, also known as Utah's Mighty 5. You’ll get a chance to explore them all on this 8-day guided tour in southern Utah. Join a small group of no more than 14 guests and a private guide on this adventure. Hiking, scenic viewpoints, local eateries, hidden gems, and other fantastic experiences await! Dates October 03 - October 10, 2021 October 10 - October 17, 2021 October 17 - October 24, 2021 October 24 - October 31, 2021 October 31 - November 07, 2021 November 07 - November 14, 2021 November 14 - November 21, 2021 November 21 - November 28, 2021 November 28 - December 05, 2021 December 05 - December 12, 2021 December 12 - December 19, 2021 December 19 - December 26, 2021 December 26 - January 02, 2022 Highlights Small Group Tour 5 National Parks Salt Lake City Hiking Photography Beautiful Scenery Professional Tour Guide Comfortable Transportation 7 Nights Hotel Accommodations 7 Breakfasts, 6 Lunches, 2 Dinners Park Entrance Fees Taxes & Fees Itinerary Day 1: Arrival in Salt Lake City, Utah 1 / 3 Utah’s Mighty Five from Salt Lake City Arrive at the Salt Lake Airport and transfer to the hotel on own by hotel shuttle. The rest of the day is free to explore on your own. Day 2: Canyonlands National Park Depart Salt Lake City, UT at 7:00 am and travel to Canyonlands National Park. Hike to Mesa Arch for an up-close view of one of the most photographed arches in the Southwestern US.
    [Show full text]
  • North-Central Montana
    Petrology of the Eagle Sandstone, Bearpaw Mountains Area, North-Central Montana By DONALD L. GAUTIER INVESTIGATIONS OF SHALLOW GAS RESERVOIRS IN THE NORTHERN GREAT PLAINS GEOLOGICAL SURVEY BULLETIN 1521 Prepared in cooperation with the U. S. Depart1Tl£nt of Energy Composition and burial history of an important conventional shallow methane reservoir in the northern Great Plains UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1981 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data . Gautier, Donald L. Petrology of the Eagle Sandstone, Bearpaw Mountains area, north-central Montana. (Investigations of shallow gas reservoirs in the northern Great Plains) (Geological Survey Bulletin 1521) Bibliography: p. 52 1. Sandstone-Montana-Bearpaw Mountains region. 2. Gas, Natural-Geology­ Montana-Bearpaw Mountains region. I. Title. II. Series. III. Series: Geological Survey Bulletin 1521. QE75.B9 no. 1521 [QE471.15.S25] 557.3s 81-607963 [552'.5] AACR2 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Absuact:---------------------------------------------------- 1 In~uction------------------------------------------------- 2 ~~un~--------------------------------------------- 4 Acknowledgments-------------------------------------- 5 Geologic Setting----------------------------------- 6 Hydrocarbons in the Eagle Sandstone------------------------ 8 Lithology----------------------------------------
    [Show full text]
  • Denis Julien Inscription ____ STRUCTURE NUMBER (JHO 7) LOCATION of STRUCTURE Jones Hole CO-UT 7.5' PARK LOCATION CODEPG
    REGION RMR PARK/AREA NAME Dinosaur Nil_______PARK NUMBEIJ^QO STRUCTURE NAME Denis Julien Inscription ____ STRUCTURE NUMBER (JHO 7) LOCATION OF STRUCTURE Jones Hole CO-UT 7.5' PARK LOCATION CODEPG NATIONAL REGISTER____________DATE: / / MANAGEMENT CATEGORY: (A) (B) (C) (D) NPS LEGAL INTEREST_____FER (life) ^ ______MANAGEMENT AGREEMENT; NO________ Check all of the following categories for which tfPS has treatment responsibility: Stabilization^ Cyclic Maintenance ®X Routine Maintenance &k Approved Ultimate Treatment C (ROCKY MOUNTAIN REGION USE ONLY) APPROVED ULTIMATE TREATMENT OR RESOURCE MANAGEMENT PLAN, CULTURAL COMPONENT DESIGNATION Preservation (PP) Restoration (RR) Reconstruction (CC) Adaptive Preservation (AP) Adaptive Restoration (AR) Adaptive Reconstruction (AC) Neglect (NG) Remove (RM) No Approved Treatment (NO) Approval Document,______________________m( )Document Date: / / Estimated Treatment Costs Level of Stabilization: $________Date: / / Estimate: (A) (B) (C) Approved Treatment: $________Date: / / Estimator: (Region) (DSC) (A&E) STATEMENT OF SIGNIFICANCE: Date of Construction: / / 1838 Date of Alterations: / / Nnng Architect/Designer: Denis Julien____Historical Theme(s): EyplnraMnn/Fn-r TT-«<WVT 34) History Of Structure: Inscription of initials "PJ" and year 1838 left; on ranynn wall in Whirlpool Canyon, possibly evidence of temporary campsite of Jullen's___ while trapping in the area. Julian worked for Antnlne Rob-:^rmy at- Ft- TT-?nfaV. T and had a long career as a fcrarmey and mrmnfflin man. Latest information indicates 1841 as the latest Julien inscription._________________________________ Evaluation of Structure: Historic Theme Contributing -v . - Non-Contributing __ National Register Criteria: A^B— C_ D_ (Include integrity statement) j.ntegyif'y of agt*fr*fng anH 1or> flt"inr> p-roconf-ly -f •h -^<^ f-Vio ^•^']^Tr j^g'j feature names from PoweH'a rrtp——Ha falti aimilar inooriptiona on tha Colorado raver Bibliography: P.P.
    [Show full text]
  • Coastal Land Loss and Wktlanb Restoration
    COASTAL LAND LOSS AND WKTLANB RESTORATION tSI R. E. Turner estuaryare causallyrelated to the landlosses this sealevel ri se,climate change~, soil type,geomorphic century." I then comparethe strengthof this frameworkand age, subsidence or tnanagement. hypothesisto someof theother hypothesized causes of land loss on this coast, There are laboratoryand Four Hypotheses small-scale field trials that support various hypotheses,It seemsto me thatthe mostreliable Four hypothesesabout the causes of indirect interpretationsare basedon what happensin the wetlandlosses in BaratariaBay will be addressed field, andnot on the resultsof computermodels, here adapted from Turner 1997!: laboratorystudies or conceptualdiagrams. H l. i ct n ences of The test results discussed herein are derived t !tin oil banks v d solelyfrom data derived at a landscapescale. The 'ori of 1 loss sin h data set is restricted to a discussion of the Barataria watershed. This watershed is a significant H2. componentof theLouisiana coastal zorie 14,000 lv ha!and there are a varietyof habitatdata available i tl on it. Its easternboundary is the MississippiRiver from whichoccasional overflowing waters are v n.vi hypothesizedto deliver enoughsediinents and on 1 v tno I freshwaterto significantlyinfluence the balanceof rit f i land lossor gain in the receivingwatershed, and whosere-introduction would restore the estuary's wetlands. Improvingour understandingof the H4. w rin si ecologicalprocesses operating in this watershed h ' ' of mightassist in the managementof others. The effect of geologicalsubsidence and sea DIrect and Indirect Causes of Wetland Loss level rise are not included in this list because both factorshave remained relatively stablethis century Wetlandloss is essentiallythe same as land loss when the land-loss rates rose and fell, Local on thiscoast Baurnann and Turner 1990!.
    [Show full text]