Fvu at the MASSACHUSETTS INSTITUTE of TECHNOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

Fvu at the MASSACHUSETTS INSTITUTE of TECHNOLOGY An Experimental Study of OH Uptake by Surfaces of Tropospheric Importance under Dry and Wet Conditions by Jong-Ho Park MASSACHUSETTS INSTITU OFTEOHNOLOGY M.S. Chemistry, Korea University, 2001 JUN 1 0 2008 Submitted to the Department of Chemistry LIBRARIES In partial fulfillment of the requirements for the degree of DOCTOR of PHILOSOPHY in CHEMISTRY p4-~fVU at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY January 2008 © Massachusetts Institute of Technology 2008. All rights reserved. Author... ....... ................ Department of Chemistry January 14, 2008 Certified by ..................... ............................. ............................ Mario J. Molina Institute Professor Thesis Supervisor Accepted by Robert W. Field Chairman, Department Committee on Graduate Students This doctoral thesis has been examined by a Committee of the Department of Chemistry as follows: Professor Jeffrey I. Steinfeld........................... h(• is Chairman Professor Mario J. Molina... ............ .......... ................ Research Advisor Professor William H. Green ................... Department ifhemical Engineering An Experimental Study of OH Uptake by Surfaces of Tropospheric Importance under Dry and Wet Conditions by Jong-Ho Park Submitted to the Department of Chemistry on January 14, 2008 in Partial Fulfillment of the Requirements for the Degree of DOCTOR of PHILOSOPHY in CHEMISTRY ABSTRACT The effect of relative humidity (RH) on OH uptake by surfaces of tropospheric importance was investigated. Due to diffusion limitation conditions, experiments were performed with parallel reactors packed with beads and using a surface dilution technique. A virtual cylindrical reactor approximation was developed to further quantify and confirm the reaction probability of OH for the surfaces of interest. While OH exposure of hydrophobic organic surfaces (paraffin wax, pyrene, and methane soot) did not result in measurable change in their relative hydrophilic properties, the presence of water vapor enhanced the OH reactivity on a hydrophilic organic surface (glutaric acid). The RH effect on OH uptake by sea salt and its components was dependent on the nature of the cations. Redistribution of surface ions under humid environments caused changes in pH on the inorganic surfaces, thereby influencing the rate- determining step in the reaction mechanism of heterogeneous OH uptake. This segregation effect explains why the RH effect on OH uptake by sea salt is determined by MgCl 2 rather than NaC1. Experimental evidence suggests that adsorbed water on the surfaces of SiO2 and A120 3 is responsible for enhancement in OH reactivity with mineral dust surfaces under high humidity conditions. Mass spectra of the gas-phase species produced from the heterogeneous reaction of OH with NaCl were obtained in order to characterize the reaction products and the kinetic mechanism. Evidence for gas-phase HC1, supplemented with kinetics modeling and experiments on heterogeneous 03 reactivity strongly suggest that C12, sole product of the heterogeneous reaction, transforms to HCI in the presence of H radicals. The C12 yields per OH collision were determined to be 0.020 and 0.022 at 0% and 6% of RH, respectively. Enhancement in C12 production was observed under wet conditions, consistent with a measured chlorine deficit on the NaCl surface. Two alternate reaction mechanisms are proposed to describe the heterogeneous OH uptake by NaC1. Thesis Supervisor : Mario J. Molina Title : Institute Professor To Eunsook, June, and Sean Acknowledgements I would not say that the last five years were easy for me. However, I could keep moving forward thanks to many people, and finally did a wonderful job. First, I want to thank my advisor, professor Mario Molina, for his invaluable advice, guidance, and encouragement. It was a great experience to work in his group. Even though he is one of the busiest scientists in the world, he has never been reluctant to share his time with me whenever I need him. I also admire his humble attitude. I remember that he delivered us mails in person going up and down the stairs in the Green Building. He is the only delivery man who won the Nobel prize. I appreciate the advices and helps from my former advisor, professor Jong-Ho Choi in Korea University. He is the person who initiated my enthusiasm for the physical chemistry. Working at the Molina group let me have many best friends. Thanks to my best Russian friend, Andrey Ivanov. He always welcomed and gave invaluable advices to solve the problems that I had. He also told me many Russian proverbs to encourage me when I was depressed. Kirsten Johnson, my best American friend, shared a lot of things including her experience about science and even her cookies. Thank you so much for your kindness, Kirsten. Ingrid Kohl is my best Austrian friend that I have to emphasize her helps. She was willing to do the experiment with me when I just joined the group. Even though it was not so long before she left for Austria, she made me familiar with the experiment by sharing her precious experience. Thanks to the other best friends: Rainer Volkamer, Jun Noda, Miguel Zavala, Elizabeth Fitzgerald, Edward Dunlea, Gregory Poskrebyshev, Philip Sheehy, and Van Tran. I also express my thanks to Luisa Molina. Thanks to my Korean friends: Hohjai Lee and his wife, Li Zhang, Keehyun Choi, Changsik Song, Jeongkwon Kim, Jae-Gook Lee, Byungkwon Min, Chankyu Joo and Mi Hee Lim. I could not have survived from the tough five years without you all. My best thanks to my parents and my brother. I can not imagine how much I owe from them in my life. My dad and mom always trust me to give the best supports. I have been learning from them almost everything that I must know to live as a good citizen, a good son, and a good parent. They also provided me Jong-Sung. He is not only my brother, but also my friend and supporter. It is wonderful to be your son and brother. I also give my appreciation to Jeong-Eun Hong, my sister-in-law. Finally, no words can be enough for my wife, Eunsook, and my two sons, June and Sean. This is for you. Contents 1. Introduction 14 1.1. OH Radicals in the Troposphere ................................. .................... 15 1.2. Discrepancy between Models and Field Measurements of OH Concentrations in the Troposphere ......................... ...................................... 17 1.3. Heterogeneous Losses of OH as Additional Missing Sinks .................... 18 1.4. Reaction Probabilities of OH on Aerosol Surfaces ....................... ... 19 1.5. Tropospheric Aerosols .................... .... ........... .................... 21 1.5.1. Organic Aerosols......................... .................... 21 1.5.2. Sea Salt ...................................... .. .. ...................... 23 1.5.3. M ineral Dust Particles ......................................................... 25 1.6. Heterogeneous Reactions under High Humidity Conditions ................... 26 1.6.1. Molecular Water Bonding to Surfaces ...................................... 27 1.6.2. Technical problems in experiments with water vapor ................... 27 1.7. Chemical Ionization Mass Spectrometry (CIMS)................................28 1.8. Thesis O utline ........................ ............. ... ................................. 29 References for Chapter 1 ................. ........................ ...................... 31 2. Experimental 38 2.1. The Flow Tube System ................................................. .. 39 2.2. OH Production and Calibration............... ............................... .........42 2.3. Water Bubbler ................ ..... ... .... .......................... 45 2.4. Parallel Reactor Tubes . ....... ......... ................ .. ................... 47 2.5. Flow Rates and Velocities ................................................ .......... 49 2.6. Pressure Reduction ................... ............................ 50 2.7. Detection Method ............................. .......................... 50 2.7.1. CI region .................................... ........ 51 2.7.2. Mass Spectrometer ........................................................... 54 References for Chapter 2 ........................ ....................... 56 3. The Effects of Relative Humidity on OH Uptake by Surfaces of Tropospheric Importance 58 3. 1. Introduction........ ....................................... 59 3. 2. Experimental ................................................................... .. 60 3.2.1. Radical Production ................ ... ........................... 60 3.2.2. Experimental Procedure ................................. ............. 61 3.2.3. Surface Preparation ................... ..................... 61 3.2.4. Theoretical Method ..................... ................ 66 3. 3. Results and Discussion .................................................................. 67 3.3.1. Reaction Probability, y ........................ ..........................67 3.3.2. The Relative Intensity of OH, Rsurface .................. ................... 68 3.3.3. The Virtual Cylindrical Reactor (VCR) Approximation ........... 70 3.3.3.1. The Validity of the VCR Approximation ..................... 72 3.3.3.2. Beads-Packing Technique (Revisited) ....................... 74 3.3.3.3. Technique of Dilution for Better Sensitivity................ 74 3.3.3.4. Determination of YOH from Rsurfce ........................... 75 3.3.4. OH-H 20 Complexes .............. .. ............ ............ 75 3.3.4.1. Energy State of the Complexes
Recommended publications
  • The Kinetics of Elementary Thermal Reactions in Heterogene- Ous Catalysis
    1 The kinetics of elementary thermal reactions in heterogene- 2 ous catalysis 3 G. Barratt Park1,2, Theofanis Kitsopoulos2,5,6, Dmitriy Borodin1, Kai Golibrzuch2, Jannis 4 Neugebohren1, Daniel J. Auerbach2, Charles T. Campbell4 & Alec M. Wodtke1,2,3* 5 1Institute for Physical Chemistry, Georg-August University of Goettingen, Tammannstraße 6, 6 37077 Göttingen, Germany. 7 2Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am 8 Faßberg 11, 37077 Göttingen, Germany. 9 3International Center for Advanced Studies of Energy Conversion, Georg-August University 10 of Goettingen, Tammannstraße 6, 37077 Göttingen, Germany. 11 4 Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA 12 5 Department of Chemistry, University of Crete, Heraklion, Greece 13 6 Institute of Electronic Structure and Laser – FORTH, Heraklion, Greece 14 15 *email: [email protected] 16 17 KEYWORDS: Ion-imaging, velocity-resolved kinetics, CO oxidation, heterogeneous catalysis, 18 slice ion-imaging, molecular beams, surface chemistry. 19 20 1 21 Abstract 22 The kinetics of elementary reactions is fundamental to our understanding of catalysis. Just as 23 micro-kinetic models of atmospheric chemistry provided the predictive power that led to the 24 Montreal protocol reversing loss of stratospheric ozone, pursuing a micro-kinetic approach to 25 heterogeneous catalysis has tremendous potential for societal impact. However, developing this 26 approach for catalysis faces great challenges. Methods for measuring rate constants are quite 27 limited and present predictive theoretical methods remain largely un-validated. This paper pre- 28 sents a short perspective on recent experimental advances in our ability to measure the rates of 29 elementary reactions at surfaces that rely on a stroboscopic pump-probe concept for neutral 30 matter.
    [Show full text]
  • I IMPROVING PALLADIUM CATALYSIS with SELF
    IMPROVING PALLADIUM CATALYSIS WITH SELF-ASSEMBLED MONOLAYERS by STEPHEN T. MARSHALL B.S., Carnegie Mellon University, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemical and Biological Engineering 2010 i This thesis entitled: Improving Palladium Catalysis with Self-Assembled Monolayers written by Stephen T. Marshall has been approved for the Department of Chemical and Biological Engineering J. William Medlin John L. Falconer Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. ii ABSTRACT Marshall, Stephen T. (Ph.D., Chemical and Biological Engineering) Improving Palladium Catalysis with Self-Assembled Monolayers Thesis directed by Associate Professor J. William Medlin Improving selectivity in catalytic systems is of primary interest to a number of fields. One means of achieving selectivity is through the use of promoters, or deposited materials that improve catalytic properties. Here, we present the modification of palladium surfaces with self- assembled monolayers (SAMs) formed from thiols. SAM coatings are employed in two systems: metal-insulator-semiconductor (MIS) sensors and supported palladium catalysts. On MIS sensors, modification with alkanethiol SAMs results in enhanced sensitivity to acetylene. Excellent selectivity for acetylene over ethylene is also observed. The functionalized sensors would serve as excellent acetylene detectors in a variety of applications including the detection of fault gases in transformers and detecting trace acetylene in ethylene production plants.
    [Show full text]
  • N76-21508 Introduction
    PHOTOCATALYTIC GENERATION OF HYDROGEN FROM WATER W.R. Bottoms and R.B. Miles Princeton University N76-21508 INTRODUCTION The dissociation of simple molecules provides a potentially efficient method of storing energy in a transportable form. Among the numerous chemical systems that have been proposed for energy conversion are the following: hv 2NOC1 ™ C\2 + 2NO hi> 2H20 ^ 2H2 + 02 2CO2 ^ 2CO + O2 Hydrogen offers the advantages of being a clean burning fuel, easily stored in gas, liquid, or hydride form, and efficiently transferable. It may be used as a fuel for a variety of energy conversion processes including fuel cells and rocket engines as well as conventional heat engines. In conjunction with a water dissociation process, it holds forth the promise of providing a closed cycle, photon powered, energy system where photon energy may be efficiently stored for future use and converted to thermal or electrical energy on demand. In this paper we will discuss a new concept which is designed to overcome the problems encountered when using photodissociation for the generation of hydrogen. Two fundamental problems limiting the efficiency of photodissociation of water are the separation of the photolysis products and the high energy photons necessary for the reaction. Although there has not been a great deal of work with metal-water systems, it has been shown that the dissociation energy of a large number of molecules is catalytically reduced when these molecules are in intimate contact with a surface of certain metals (ref. 1). The spontaneous dissociation of water has been demonstrated for Cu (ref. 2), Fe (ref.
    [Show full text]
  • Frontiers at the Interface of Homogeneous and Heterogeneous Catalysis
    FRONTIERS AT THE INTERFACE OF HOMOGENEOUS AND HETEROGENEOUS CATALYSIS Meeting of the Catalysis Science Program Chemical Sciences, Geosciences and Biosciences Division Office of Basic Energy Sciences U.S. Department of Energy Westin Annapolis Annapolis, Maryland June 30 – July 2, 2013 This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. FOREWORD The 2013 Catalysis Science Program Meeting is sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), U.S. Department of Energy. It is being held on June 30 through July 2, 2013, at the Westin Annapolis Hotel, Annapolis, Maryland. The purposes of this meeting are to discuss the recent advances in the chemical, physical, and biological bases of catalysis science, to foster exchange of ideas and cooperation among participants, and to discuss the new challenges and opportunities recently emerging in energy technologies. Catalysis activities within BES emphasize fundamental research aimed at initially understanding and finally controlling the chemical conversion of natural and artificial feedstocks. The long-term goal of this research is to discover fundamental principles and produce ever more insightful approaches to predict structure-reactivity behavior. Such knowledge, integrated with advances in chemical and materials synthesis, in situ and operando analytical instrumentation, and chemical kinetics and quantum chemistry methods, will allow the control of chemical reactions along desired pathways. Ultimately, this new knowledge should impact the efficiency of conversion of natural resources into fuels, chemicals, materials, or other forms of energy, while minimizing the impact to the environment. This year’s meeting is focused on three topical areas: (i) the interface of homogeneous and heterogeneous catalysis, (ii) catalysis for biomass or solar energy conversion, and (iii) molecular catalysis, with an emphasis on organic synthesis.
    [Show full text]
  • Scanned by Camscanner Scanned by Camscanner Scanned by Camscanner Scanned by Camscanner Scanned by Camscanner Scanned by Camscanner
    Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Module 8 : Surface Chemistry Lecture 36 : Adsorption Objectives After studying this lecture, you will be able to Distinguish between physisorption and chemisorption. Distinguish between monolayer adsorption and multiplayer adsorption. Outline the main ingredients of the major isotherms. Distinguish quantitatively between the adsorption isotherms of Gibbs, Freundlich and Langmuir. Characterize a multiplayer adsorption through the BET isotherm. Determine the heat of reaction using an adsorption isotherm. Distinguish between the characteristics of bulk reactions and reactions at surfaces. Outline the mechanisms of unimolecular and bimolecular reactions at surfaces. List the applications of adsorption. 36.1 Adsorption The molecules at a surface of a material experience imbalanced forces of intermolecular interaction which contribute to the surface energy.
    [Show full text]
  • IRVING LANGMUIR January 31, 1881-August 16, 1957
    NATIONAL ACADEMY OF SCIENCES I R V I N G L ANGMUIR 1881—1957 A Biographical Memoir by C. GU Y S U I T S A N D M I L E S J . M ARTIN Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1974 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. J). IRVING LANGMUIR January 31, 1881-August 16, 1957 BY C. GUY SUITS AND MILES J. MARTIN EW SCIENTISTS, in either university or industry, have made F as many, and as significant, contributions to scientific progress as did Dr. Irving Langmuir, the 1932 Nobel Prize winner in chemistry. It was on July 19, 1909, that Langmuir joined the General Electric Research Laboratory in which he was to become, first, assistant director and then associate direc- tor and which was to be the scene of his greatest achievements. One of Langmuir's first achievements was in the field of lighting. After Dr. William D. Coolidge, also of the Research Laboratory, developed the drawn tungsten-filament incandes- cent lamp, it fell to Langmuir to further develop an improved lamp—a gas-filled one instead of the vacuum type—and thereby make a great gain in lighting efficiency. The gas-filled lamp soon began driving arc lamps from the street lights, greatly increasing the use of electric lighting by increasing efficiency. With the lower cost of lighting came a large increase in the amount of light used, so that electric utility revenues from lighting were soon higher than ever before.
    [Show full text]
  • How Coverage Influences Thermodynamic and Kinetic Isotope Effects for H2/D2 Dissociative Adsorption on Transition Metals
    Catalysis Science & Technology How Coverage Influences Thermodynamic and Kinetic Isotope Effects for H2/D2 Dissociative Adsorption on Transition Metals Journal: Catalysis Science & Technology Manuscript ID CY-ART-11-2019-002338.R1 Article Type: Paper Date Submitted by the 08-Dec-2019 Author: Complete List of Authors: Chen, Benjamin; University fo Wisconsin - Madison, Chemical & Biological Engineering Mavrikakis, Manos; University of Wisconsin Madison, Chemical and Biological Engineering Page 1 of 51 Catalysis Science & Technology How Coverage Influences Thermodynamic and Kinetic Isotope Effects for H2/D2 Dissociative Adsorption on Transition Metals Benjamin W. J. Chen, Manos Mavrikakis* Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI 53706 *corresponding author [email protected] Keywords: density functional theory, coverage effects, H2 dissociative adsorption, D2 dissociative adsorption, transition metals, thermodynamic isotope effect, kinetic isotope effect ABSTRACT Isotope effects greatly enhance our understanding of chemical reactions in heterogeneous catalysis. Despite their widespread use, there is limited understanding about how realistic reaction conditions, such as the coverage of surface adsorbates, affect them. Here, we study the influence of hydrogen (H) coverage on the thermodynamic and kinetic isotope effects of H2/D2 dissociative adsorption on the close-packed, open, and stepped surfaces of 12 transition metals: Ag, Au, Co, Cu, Fe, Ir, Ni, Re, Pd, Pt, Rh, and Ru, over a catalytically relevant temperature range. Through first-principles density functional theory calculations, we show that increasing coverage has two effects: i) it may change preferred adsorption sites and transition state geometries, and ii) it increases the vibrational frequencies of adsorbed H due to the interactions between H atoms.
    [Show full text]
  • Principles of Adsorption and Reaction on Solid Surfaces
    PRINCIPLES OF ADSORPTION AND REACTION ON SOLID SURFACES Richard I. Masel Department of Chemical Engineering University of Illinois at Urbana-Champaign Urbana, Illinois A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York • Chichester • Brisbane • Toronto • Singapore CONTENTS Preface xiii 1 Introduction 1 1.1 Historical Introduction 1 1.2 Overview of the Approach Taken in This Book 4 1.3 Techniques of Surface Analysis 5 2 The Structure of Solid Surfaces and Adsorbate Overlayers 15 2.1 Historical Introduction 15 2.2 Qualitative Description of Surface Structure 17 2.3 Quantitative Description of the Structure of Solids and Surfaces 20 2.3.1 Two-Dimensional Bravais Lattices 20 2.3.2 Extension to Slabs and Surfaces 26 2.3.3 Three-Dimensional Bravais Lattices 27 2.4 Miller Indices 33 2.5 The Structure of Solid Surfaces 37 2.5.1 Models of Ideal Single-Crystal Surfaces 37 2.5.2 The Stereographic Triangle 39 2.5.3 The Structure of Stepped Metal Surfaces 42 2.5.4 The Surface Structure of Semiconductor Crystals 46 2.6 Relaxations and Surface Reconstructions 48 2.6.1 Rare Gas Crystals 51 2.6.2 Metals 53 2.6.3 Elemental Semiconductor Surfaces 57 2.6.4 Ionic Crystal 59 2.6.5 Compound Semiconductors 62 2.7 Descriptive Notation for Surface Reconstructions 64 2.8 Site Notation 66 2.9 Roughening and Surface Melting 67 2.10 Solved Examples 68 2.11 Supplemental Material 89 2.11.1 Proof That There Can Only Be Two-, Three-, Four-, and Sixfold Axes in an Infinite Periodic Two- Dimensional Lattice 89 2.11.2 The Reciprocal Lattice 93 2.11.3 Somorjai
    [Show full text]
  • 12. Introduction to First-Principles Modeling of Catalysis at Surfaces
    Introduction to first-principles modeling of catalysis at surfaces Bryan R. Goldsmith Fritz-Haber-Institut der Max-Planck-Gesellschaft Theory Department Catalysis is a multibillion-dollar industry and has a profound influence in everyday life Catalysts lower the activation barrier of a reaction without being consumed Images from presentation of Prof. Martin Wolf Early Nobel prizes for catalysis Paul Sabatier Wilhelm Ostwald “ for discoveries that confer the “for his method of hydrogenating "investigations into the fundamental greatest benefit on mankind” principles governing chemical organic compounds in the presence of equilibria and rates of reaction”, 1909 finely disintegrated metals", 1912 Irving Langmuir “for his discoveries and investigations Cyril Hinshelwood Fritz Haber, Berlin-Dahlem in surface chemistry”, 1932 "for researches into the mechanism “for the synthesis of ammonia of chemical reactions”, 1956 from its elements”, 1918 Some 21st-century Nobel prizes for catalysis What contributions can ab initio modeling provide to the catalysis field? Yves Chauvin, Lyon, France, 2005 Gerhard Ertl Fritz-Haber-Institut, Berlin “for his studies of chemical processes on solid surfaces”, 2007 CO + ½ O2 CO2 Pt Robert Grubbs, Richard Schrock Pasadena, CA, 2005 Boston, MA, 2005 → "for the development of the metathesis method in organic synthesis” Outline of this block course 1) Introduction to computational catalysis and first-principles modeling 2) Cluster models, slab models, ab initio thermodynamics and its applications 3) Transition state theory and potential energy surfaces --- 10 minute break 4) Computational screening of catalysts and the use of ‘descriptors’ 5) Topical Examples • Disintegration and redispersion of noble metal nanoparticles • Modeling isolated catalyst sites on amorphous supports Computational modeling can assist in understanding catalysis CO oxidation at RuO2 [1] K.
    [Show full text]
  • Catalysis-Hub.Org, an Open Electronic Structure Database for Surface
    www.nature.com/scientificdata OPEN Catalysis-Hub.org, an open ARTICLE electronic structure database for surface reactions Received: 1 February 2019 Kirsten T. Winther 1,2, Max J. Hofmann1,2, Jacob R. Boes1,2, Osman Mamun1,2, Accepted: 17 April 2019 Michal Bajdich1 & Thomas Bligaard1 Published: xx xx xxxx We present a new open repository for chemical reactions on catalytic surfaces, available at https:// www.catalysis-hub.org. The featured database for surface reactions contains more than 100,000 chemisorption and reaction energies obtained from electronic structure calculations, and is continuously being updated with new datasets. In addition to providing quantum-mechanical results for a broad range of reactions and surfaces from diferent publications, the database features a systematic, large-scale study of chemical adsorption and hydrogenation on bimetallic alloy surfaces. The database contains reaction specifc information, such as the surface composition and reaction energy for each reaction, as well as the surface geometries and calculational parameters, essential for data reproducibility. By providing direct access via the web-interface as well as a Python API, we seek to accelerate the discovery of catalytic materials for sustainable energy applications by enabling researchers to efciently use the data as a basis for new calculations and model generation. Introduction Electronic structure methods based on density functional theory (DFT) hold the promise to enable a deeper understanding of reaction mechanisms and reactivity trends for surface catalyzed chemical and electrochem- ical processes and eventually to accelerate discovery of new catalysts. As the access to large-scale supercom- puter resources continue to increase, the generated data from electronic structure calculations is also expected to increase1.
    [Show full text]
  • Dynamic Processes on Gold-Based Catalysts Followed by Environmental Microscopies
    catalysts Review Dynamic Processes on Gold-Based Catalysts Followed by Environmental Microscopies Eric Genty 1,*, Luc Jacobs 1, Thierry Visart de Bocarmé 1,2,* and Cédric Barroo 1,2 1 Chemical Physics of Materials and Catalysis, Université libre de Bruxelles, CP243, 1050 Brussels, Belgium; [email protected] (L.J.); [email protected] (C.B.) 2 Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Université libre de Bruxelles, 1050 Brussels, Belgium * Correspondence: [email protected] (E.G.); [email protected] (T.V.d.B.); Tel.: +32-2-650-5711 (E.G.); +32-2-650-5724 (T.V.d.B.) Academic Editors: Leonarda F. Liotta and Salvatore Scirè Received: 30 March 2017; Accepted: 20 April 2017; Published: 1 May 2017 Abstract: Since the early discovery of the catalytic activity of gold at low temperature, there has been a growing interest in Au and Au-based catalysis for a new class of applications. The complexity of the catalysts currently used ranges from single crystal to 3D structured materials. To improve the efficiency of such catalysts, a better understanding of the catalytic process is required, from both the kinetic and material viewpoints. The understanding of such processes can be achieved using environmental imaging techniques allowing the observation of catalytic processes under reaction conditions, so as to study the systems in conditions as close as possible to industrial conditions. This review focuses on the description of catalytic processes occurring on Au-based catalysts with selected in situ imaging techniques, i.e., PEEM/LEEM, FIM/FEM and E-TEM, allowing a wide range of pressure and material complexity to be covered.
    [Show full text]
  • Principles of Adsorption and Reaction on Solid Surfaces
    PRINCIPLES OF ADSORPTION AND REACTION ON SOLID SURFACES Richard I. Masel Department of Chemical Engineering University of Illinois at Urbana-Champaign Urbana, Illinois A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York • Chichester • Brisbane • Toronto • Singapore CONTENTS Preface xiü 1 Introduction 1 1.1 Historical Introduction 1 1.2 Overview of die Approach Taken in This Book 4 1.3 Techniques of Surface Analysis 5 2 The Structure of Solid Surfaces and Adsorbate Overlayers 15 2.1 Historical Introduction 15 2.2 Qualitative Description of Surface Structure 17 2.3 Quantitative Description of the Structure of Solids and Surfaces 20 2.3.1 Two-Dimensional Bravais Lattices 20 2.3.2 Extension to Slabs and Surfaces 26 2.3.3 Three-Dimensional Bravais Lattices 27 2.4 Miller Indices 33 2.5 The Structure of Solid Surfaces 37 2.5.1 Models of Ideal Single-Crystal Surfaces 37 2.5.2 The Stereographic Triangle 39 2.5.3 The Structure of Stepped Metal Surfaces 42 2.5.4 The Surface Structure of Semiconductor Crystals 46 2.6 Relaxations and Surface Reconstructions 48 2.6.1 Rare Gas Crystals 51 2.6.2 Metals 53 2.6.3 Elemental Semiconductor Surfaces 57 2.6.4 Ionic Crystal 59 2.6.5 Compound Semiconductors 62 2.7 Descriptive Notation for Surface Reconstructions 64 2.8 Site Notation 66 2.9 Roughening and Surface Melting 67 2.10 Solved Examples 68 2.11 Supplemental Material 89 2.11.1 Proof That There Can Only Be Two-, Three-, Four-, and Sixfold Axes in an Infinite Periodic Two- Dimensional Lattice 89 2.11.2 The Reciprocal Lattice 93 2.11.3 Somorjai
    [Show full text]