Origin of Cultivated Citrus (Rutaceae) Documented by the Contents of Internal Transcribed Spacer Sequences (ITS) in Nuclear Ribosomal DNA

Total Page:16

File Type:pdf, Size:1020Kb

Origin of Cultivated Citrus (Rutaceae) Documented by the Contents of Internal Transcribed Spacer Sequences (ITS) in Nuclear Ribosomal DNA J. Jpn. Bot. 88: 222–238 (2013) Origin of Cultivated Citrus (Rutaceae) Documented by the Contents of Internal Transcribed Spacer Sequences (ITS) in Nuclear Ribosomal DNA a, a b c Hiroki YAMAJI *, Kenji KONDO , Takeshi KUNIGA , Hirohisa NESUMI , b a a Toshio YOSHIDA , Kazunori HASHIMOTO and Osami TAKEDA aBotanical Raw Materials Research Department, Botanical Raw Materials Division, Tsumura & Co., 3586, Yoshiwara, Ami-machi, Ibaraki, 300-1192 JAPAN; bCitrus Research Station, National Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 485-6, Nakamachi, Okitsu, Shimizu-ku, Shizuoka, 424-0292 JAPAN; cShikoku Research Center, Nation Agricultural Research Center for Western Region, Senyû, Zentsûji, Kagawa, 765-8508 JAPAN *Corresponding author: [email protected] (Accepted on May 23, 2013) In Citrus cultivars, mandarins, pummelos, citrons, and kumquat/papeda groups were estimated to contribute as parental species for almost Citrus cultivars in precedent studies. In order to verify the hypothesis and to estimate the parental wild species of each Citrus cultivar, this study documented variation of the internal transcribed spacer (ITS) ribotypes of nuclear ribosomal DNA in 61 accessions of 33 species two varieties belonging to major Citrus cultivars, wild Citrus, and related genera. Six species and one variety, e.g., C. deliciosa, C. medica, C. maxima, had non-additive or almost non-additive sequences, probably consisting of a single ribotype. They were thought to have developed not through hybridization but by selection, and were probably putative parental wild species of Citrus cultivars or their direct descendants. In contrast, most Citrus cultivars, e.g., C. limon, C. sinensis, C. aurantium, showed additive states in a number of sites, and consisted of 2–4 major phylogenetically distinct ribotypes. They were estimated as hybrid origin. In the Citrus species examined in this study, 18 ribotypes were recognized, and were classified into nine phylogenetically distinct groups. Among them, four groups were regarded as correspondent to mandarins, pummelos, citrons, and kumquat/papeda groups as well as precedent hypotheses. To the contrary, the rest five groups were probably not included in any putative parental species estimated in precedent studies. Therefore, in addition to foregoing four parental species, at most five putative parental species are presumably existent or were probably existent in the past, and participated in the development of cultivars of Citrus. Origins of major Citrus cultivars were discussed based on ribotype combinations. Key words: Citrus cultivar, hybrid origin, internal transcribed spacer (ITS) of nuclear ribosomal DNA. Species belonging to Citrus L. (Rutaceae) and Poncirus Raf.) are the most popular fruits and its allied genera (e.g., Fortunella Swingle of the world (Iwamasa 1976, 1999), and many —222— August 2013 The Journal of Japanese Botany Vol. 88 No. 4 223 kinds are cultivated for various purposes. et al. 1993) suggested the basic, true species The taxonomy of these species has been a hypothesis proposed by Scora (1975) and challenge for botanists because the number of Barrett and Rhodes (1976). Moreover, Torres et species recognized in Citrus s. str. differs among al. (1978) have estimated parental combinations systems. Swingle (1946) and Swingle and Reece using isozyme patterns; C. aurantifolia (1967) recognized 16 species that are wild or (Christm.) Swing. and C. limon have been naturally hybridized. They did not recognize suggested to be a hybrid of species belonging to almost all artificially created cultivars as taxa. subgenus Papeda and C. medica, C. sinensis and In contrast, Tanaka (1954, 1977) has treated C. aurantifolia, respectively. Also, C. aurantium artificially created cultivars as species equally has been estimated to be a hybrid between C. with the wild ones, and recognized as many as maxima and C. reticulata (Scora 1975, Torres 162 species. Such discrepancies between the et al. 1978). These findings are also supported previous taxonomic systems are due to whether by chemical variations in polymethoxyflavones they recognize cultivars as taxa. Furthermore (Mizuno et al. 1991). as causative role for confusion, Swingle (1946) Federici et al. (1998) have estimated the and Swingle and Reece (1967) assigned species phylogenetic relationships of Citrus and its names to representative cultivated species from related genera using RFLP and RAPD analyses, ancient days such as Citrus aurantium L., C. and showed that most species described as sinensis (L.) Osb., and C. limon (L.) Burm. f. hybrids in the preceding reports had no unique as in wild species while the other cultivars were fragments but high heterozygosity indices. described without taxonomic position. Such However, this study is difficult to interpret imbalanced treatments are due to lack of clarity because they postulated hybridism of each over of hybridism. If they are hybrid origin, species in advance. Araújo et al. (2003) showed which wild species participated as parent of each a phylogenetic relationship of subfamily cultivar? based on noncoding sequences of chloroplast Thus, the number and identities of parental DNA. In their results, Citrus did not compose wild species that have contributed to the a monophyletic clade but instead a clade development of Citrus cultivars is the center of with Poncirus, Fortunella, and Microcitrus. controversy. Chemotaxonomic (Scora 1975) and Bayer et al. (2009) also reported Citrus was numerical taxonomic (Barrett and Rhodes 1976) paraphyletic with seven related genera based examinations have indicated that three species, on three noncoding region of chloroplast DNA. citron (C. medica L.), pummelo (C. maxima However, this study did not document reticulate (Burm.) Merr.), and mandarin (C. reticulata evolution of Citrus including a putative artificial Blanco), are the parental species, which are hybridization event because chloroplast genomes defined by Swingle and Reece (1967). Other are commonly inherited only maternally. cultivated Citrus species in subgenus Citrus Among the precedent studies, Barkley et are believed to be hybrids derived from these al. (2006) is the most comprehensive both parental species , belonging to subgenus Papeda, in sample size and in number of molecular or the other related genera (Barkley et al. 2006). markers. They used 24 simple sequence repeat Recent molecular analyses can reveal (SSR) markers on as many as 370 Citrus the processes of crossbreeding and reticulate accessions. In this study, a Model-based evolution of plants more explicitly (Arnold clustering approach identified five populations; 1997). For Citrus cultivars, the results of mandarins, pummelos, citrons, trifoliates, fraction I protein analysis (Handa et al. 1986) and kumquat/papeda group. Among the five and mitochondrial DNA analysis (Yamamoto populations, trifoliates (Poncirus) were supposed 224 植物研究雑誌 第 88 巻 第 4 号 2013 年 8 月 not to contribute to many Citrus cultivars. These estimated through classification of the ribotypes. basic species coincide with those of Scora Li et al. (2010) conducted cloning analysis (1975) and Barrett and Rhodes (1976). Both for ITS region for 30 accessions in addition to the phylogenetic and model-based clustering AFLP, three intergenic region sequence analysis analyses supported the hypothesis that there are of cpDNA. This study showed that five old only a few naturally occurring species of Citrus, cultivars; C. aurantifolia, C. limon, C. paradisi, and most of these Citrus cultivars arose through C. sinensis and C. aurantium were hybrid origin, various hybridization events between the and as with Barkley et al. (2006), four parental naturally occurring species. However, Barkley et species; mandarin, citron, papeda and pummelo alʼs (2006) study seems predetermined because participated to generate these cultivars. However, it selected putative non-hybrid strains to estimate Li et al. (2010) did not consider phylogenetically phylogenetic relationships. distinct ribotypes from the putative four species. Therefore, we searched for hidden, preserved Moreover, as only Poncirus was accepted as molecular traits of original species from putative outgroup; it probably misled phylogenetic hybrids, cultivated Citrus species. Among relationships of ribotypes because six other the many molecular markers, the internal genera formed a monophyletic clade with a part transcribed spacer (ITS) regions of nuclear of Citrus based on cpDNA sequences (Araújo et ribosomal DNA (nrDNA) can in many cases al. 2003, Bayer et al. 2009). provide direct evidence of hybridization, Our goals in the present study are (1) to reticulate evolution, and putative parental document variation of ribotypes in major Citrus species (Baldwin et al. 1995, Sang et al. 1995, cultivars in the world and in Japan in comparison Wendel et al. 1995, Soltis et al. 1998, Yamaji et with an evident hybrid cultivar, wild species and al. 2005, 2007). This information is available related genera, (2) to estimate nature and number because the ITS sequences exist in nrDNA as of parental species that have participated in a tandem multicopy array, maintaining more the development of Citrus cultivars based on than two different ribotypes and traces of past phylogenetic relationship of their ribotypes, (3) hybridization as heterozygosity of different to verify effectivity of ITS analysis for parental ribotypes. Therefore, even in diploid hybrids like estimation of diploid hybrids between
Recommended publications
  • Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
    Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang
    [Show full text]
  • Tropical Horticulture: Lecture 32 1
    Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g.
    [Show full text]
  • Classification and Cultivars
    1 Classification and Cultivars 2 Two Tribes • Clauseneae • Citreae has 3 Subtribes –Triphasiinae –Balsamocitrineae –Citrinae 3 Fortunella • Four species - Small trees and shrubs. • Flowers later than Citrus. • Freeze - hardy • Small fruit –‘Meiwa’ and ‘Marumi’ - round –‘Nagami’ ovate 4 Poncirus • Two trifoliate spp. –trifoliata ‘Flying Dragon’ –poyandra • Deciduous • Thorny, Cold hardy, long thorns • Makes great hedges , rootstocks 5 Microcitrus • Northeastern rainforest Australia • Moderate-sized trees. • Leaves are unifoliate dimorphic • Microcitrus australasica –Resistant to burrowing nematode and phytophthora • Micro leaves, flowers, and fruit 6 Clymenia • Unifoliate acuminate leaves tapering into very short petiole. • Branches are thornless. • Style shorter than other true Citrus and stigma is larger and flattened • Fruit - ovoid, thin peeled, many oil glands, many small seeds. 7 Eremocitrus • Xerophytic native of Australia • Spreading long drooping branches • Leaves unifoliate, greyish green, thick, leatherly, and lanceolate. • Sunken stomata, freeze hardy • Ideal xeroscape plant. 8 Citrus - Subgenus Eucitrus • Vesicles - no acrid or bitter oil • C. medica (Citrons) –Uses - candied peel, • Jewish ceremony • Exocortis indicator 9 Citrus limon (Lemons) • Commerce –‘Lisbon’ and ‘Eureka’ • Dooryard –Meyer (Lemon hybrid) • Rough Lemon –Rootstock 10 Lemon Hybrids • Lemonage (lemon x sweet orange) • Lemonime (lemon x lime) • Lemandrin (lemon x mandarin) • Eremolemon (Eremocitrus x lemon) - Australian Desert Lemon 11 Citrus aurantifolia (Limes) • ‘Key’ or ‘Mexican’ limes • ‘Tahiti’ or ‘Persian’ limes some are triploids and seedless • C. macrophylla (lime-like fruit) –Rootstock in California • Lemonimes (lime x lemon) • Limequats (lime x kumquat) 12 • Not grown either in Tahiti or Persian (Iran) • Seedless and marketed when still dark green 13 C. aurantium - Sour Orange • ‘Seville’ in Southern Europe –Orange marmalade • ‘Bouquet’ & ‘Bergamot’ • - Italy –Essential oil • Many forms like ‘Bittersweet’ –Rootstock - High quality fruit.
    [Show full text]
  • Effect of Temperature on Germination of Citrus Macroptera, Citrus Latipes and Citrus Indica Seeds *Anamika Upadhaya, Shiva S
    ISSN. 0972 - 8406 The NEHU Journal Vol. XVII, No. 1 (January - June) and No. 2 (July - December) 2019, pp. 12-20 Effect of temperature on germination of Citrus macroptera, Citrus latipes and Citrus indica seeds *Anamika Upadhaya, Shiva S. Chaturvedi, Brajesh K. Tiwari and Dibyendu Paul Department of Environmental Studies, North Eastern Hill University Umshing, Meghalaya, India – 793022 *Corresponding author : [email protected] Abstract Seeds are an important means of propagation of Citrus species. Seeds of three wild Citrus namely; Citrus macroptera Montrouz., Citrus latipes (Swingle) Tanaka and Citrus indica Tanaka were germinated at 20°C, 25°C, 30°C and 35°C temperature to observe the effect of temperature on germination. Mean germination time and percentage seed germinated were recorded and used to determine optimum temperature for germination. Viability of seeds determined using chemical and germination tests yielded similar results. Optimum temperature for germination was found to be 28°C for C. macroptera and C. latipes and 26°C for C. indica. Keywords: Germination, wild, C. macroptera, C. latipes, C. indica, Meghalaya Introduction Citrus has been domesticated since ancient times, and where ‘natural’ populations are located, it is often difficult to determine whether they represent wild ancestors or are derived from naturalized forms of introduced varieties. Though relatively rare in wild, Citrus are mostly found as scattered trees in primary forests in remote areas rather than as pure stands. In India, a vast reservoir of Citrus diversity exists both in wild and in cultivated forms. North-eastern India is considered as natural home of many Citrus species with wide occurrence of indigenous species like C.
    [Show full text]
  • Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Relatives
    Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives Clémentine Baccati, Marc Gibernau, Mathieu Paoli, Patrick Ollitrault, Félix Tomi, François Luro To cite this version: Clémentine Baccati, Marc Gibernau, Mathieu Paoli, Patrick Ollitrault, Félix Tomi, et al.. Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives. Plants, MDPI, 2021, 10 (6), pp.1117. 10.3390/plants10061117. hal-03262123 HAL Id: hal-03262123 https://hal.archives-ouvertes.fr/hal-03262123 Submitted on 16 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives Clémentine Baccati 1, Marc Gibernau 1, Mathieu Paoli 1, Patrick Ollitrault 2,3, Félix Tomi 1, * and François Luro 2 1 Université de Corse-CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (C.B.) ; [email protected] (M.G.) ; [email protected] (M.P.) ; [email protected] (F.T.) 2 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro – 20230, San Giuliano, France 3 CIRAD, UMR AGAP, F-20230 San Giuliano, France * Correspondence: [email protected]; tel.:+33-495-52-4122.
    [Show full text]
  • Citrus Trifoliata (Rutaceae): Review of Biology and Distribution in the USA
    Nesom, G.L. 2014. Citrus trifoliata (Rutaceae): Review of biology and distribution in the USA. Phytoneuron 2014-46: 1–14. Published 1 May 2014. ISSN 2153 733X CITRUS TRIFOLIATA (RUTACEAE): REVIEW OF BIOLOGY AND DISTRIBUTION IN THE USA GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com ABSTRACT Citrus trifoliata (aka Poncirus trifoliata , trifoliate orange) has become an aggressive colonizer in the southeastern USA, spreading from plantings as a horticultural novelty and use as a hedge. Its currently known naturalized distribution apparently has resulted from many independent introductions from widely dispersed plantings. Seed set is primarily apomictic and the plants are successful in a variety of habitats, in ruderal habits and disturbed communities as well as in intact natural communities from closed canopy bottomlands to open, upland woods. Trifoliate orange is native to southeastern China and Korea. It was introduced into the USA in the early 1800's but apparently was not widely planted until the late 1800's and early 1900's and was not documented as naturalizing until about 1910. Citrus trifoliata L. (trifoliate orange, hardy orange, Chinese bitter orange, mock orange, winter hardy bitter lemon, Japanese bitter lemon) is a deciduous shrub or small tree relatively common in the southeastern USA. The species is native to eastern Asia and has become naturalized in the USA in many habitats, including ruderal sites as well as intact natural commmunities. It has often been grown as a dense hedge and as a horticultural curiosity because of its green stems and stout green thorns (stipular spines), large, white, fragrant flowers, and often prolific production of persistent, golf-ball sized orange fruits that mature in September and October.
    [Show full text]
  • Citrus Aurantium Hybrid. Ponciros Trifoliata (Tri22 [1431 Australian Strain), Cirros Sinensis and (Cirrus Sinensis X P
    Citrus aurantium hybrid. Ponciros trifoliata (Tri22 [1431 Australian strain), Cirros sinensis and (Cirrus sinensis x P. Recent Advances in Aurantioideae Taxonomy tri/oUata) were used as Australian standard rootstocks for KruegerRR comparisoD purposes. The trial was established in October USDA-ARS National Clonai Gennplasm Repository for 1999 to evaluate the horticultural perfonnance of new Citrus & Dates, 1060 Martin Luther King Blvd, Riverside, rootstocks grafted from single-node cuttings to Navelina Califomia 92501 USA. [email protected] oranges. Five years of data (2002-2007) were collected on More than 60 years have passed since Swingle (1943) tree growth, fruit yie1d and quality to identify superior reviewed Aurantioideae taxonomy and more than 40 sinee rootstocks for the next phase of semi commercial plantings. the minor revision of Swingle and Reece (1967). In this Chinese Poncirus tri/olita types, Donghai and Houpi time period, various genera within the Aurantioideae have produced higher yield efficiencies of 2.8 and 2.9 kg.cm2 been revised or new species publisbed. Revised genera respectively at this site and both rootstocks had smaller include Clymenia, Poncirus, Luvugna, Wenzelia, truck circumference of 20 and 22 cm respectively. While Monanthocitrus, Oxanthera, Clausena, and Murraya. ln one of the erythrosa types, Anjiang HODgju also showed sorne cases, it has been proposed to split genera and.in promise in terms of yield, quality and fruit size. Data on others to consolidate genera. New species have been tree growth, fruit quality and fruit size distribution are described and published within specific genera. This paper presented for ail the otber rootstocks.
    [Show full text]
  • Canker Resistance: Lesson from Kumquat by Naveen Kumar, Bob Ebel the Development of Asiatic Citrus Throughout Their Evolution, Plants and P.D
    Canker resistance: lesson from kumquat By Naveen Kumar, Bob Ebel The development of Asiatic citrus Throughout their evolution, plants and P.D. Roberts canker in kumquat leaves produced have developed many defense mecha- anthomonas citri pv. citri (Xcc) localized yellowing (5 DAI) or necro- nisms against pathogens. One of the is the causal agent of one of sis (9-12 DAI) that was restricted to most characteristic features associated the most serious citrus diseases the actual site of inoculation 7-12 DAI with disease resistance against entry X (Fig. 2). of a pathogen is the production of worldwide, Asiatic citrus canker. In the United States, Florida experienced In contrast, grapefruit epidermis hydrogen peroxide (H2O2). Hydrogen three major outbreaks of Asiatic citrus became raised (5 DAI), spongy (5 peroxide is toxic to both plant and canker in 1910, 1984 and 1995, and it DAI) and ruptured from 7 to 8 DAI. pathogen and thus restricts the spread is a constant threat to the $9 billion On 12 DAI, the epidermis of grape- by directly killing the pathogen and citrus industry. fruit was thickened, corky, and turned the infected plant tissue. Hydrogen Citrus genotypes can be classified brown on the upper side of the leaves. peroxide concentrations in Xcc-in- into four broad classes based on sus- Disease development and popula- fected kumquat and grapefruit leaves ceptibility to canker. First, the highly- tion dynamics studies have shown that were different. Kumquat produces susceptible commercial genotypes are kumquat demonstrated both disease more than three times the amount of Key lime, grapefruit and sweet lime.
    [Show full text]
  • PRUNING GUIDELINES Tools: Loppers, Saw, Clippers 10% Bleach and Water Solution
    Varieties - choose one that you will want to eat often, as you will have them much of the year (Four Winds Citrus Variety Chart link in your Resources list) - certain citrus mature earlier than others (see early ripening handout) - Unique varieties: - Blood orange: red flesh is antioxidant rich. Often sweeter than other oranges - Yuzu: very little, but very flavorful juice used by chefs. Believed to be a cross between a sour mandarin and ichang papeda - Keiffir lime: regular lime with bumpy skin. Attractive tree with segmented leaves that are extremely fragrant and prized by chefs. - Buddhas hand: not much juice, but very fragrant pith and rind. Odd shaped and often used as an ornamental - Australian finger lime: oblong green lime with many small lime-flavored orbs inside. Called "citrus caviar" Standard varieties of citrus trees often grow to a height of 20 to 30 feet and the canopy -- or width of a tree -- can spread to 18 to 30 feet depending on the variety. Dwarf citrus trees are significantly shorter and narrower, which provides greater flexibility in planting location. Most varieties top out at 8 feet in height with a proportionally smaller canopy. Despite the differences in height and width, regular, semi-dwarf and dwarf citrus varieties produce the same size fruit. -First off DO NOT PRUNE! Those damaged leaves can actually provide protection for the plant until the air warms up. The plant needs to rally and recover. Pruning might just put it over the edge. Sometimes the plants must remain with that ‘raggedy’ appearance until as late as June and in some cases a full year.
    [Show full text]
  • Limau Purut. the Story of Lime-Leaves (Citrus Hystrix DC, Rutaceae)?
    Gardens' Bulletin Singapore 54 (2002) 185-197. Limau Hantu and Limau Purut. the Story of Lime-Leaves (Citrus hystrix DC, Rutaceae)? D. J. MABBERLEY Nationaal Herbarium Nederland, University of Leiden, The Netherlands; Royal Botanic Gardens Sydney, Mrs Macquaries Road, Sydney 2000, Australia* Abstract Limau purut (Citrus hystrix DC), cultivated throughout SE Asia, appears to be a selected form of the wild limau hantu (C. macroptera Montr., i.e. C. auraria Michel), though its earliest scientific name may be C. fusca Lour. Complete synonymy with types is presented in a provisional arrangement of 'wild' plants and cultivars. Suggestions for further work on C. hystrix and its relations with other cultivated citrus are made. X Citroncirus is formally reduced to Citrus and a new name proposed for the citrange root-stock, Citrus x insitorum Mabb. A diagram of the relationships through hybridity of cultivated citrus is presented. Introduction Characteristic of Thai cooking, worldwide, are lime-leaves (limau purut, Citrus hystrix DC), chopped fine better to release their oils. The fruits are not used for food, because, unlike those of species and hybrids placed in 'subg. Citrus', those of C. hystrix and other species placed in 'subgen. Papeda (Hassk.) Swingle' are almost inedible due to the acrid oil in the vesicles surrounding the seeds (Mabberley, 1997). They have been used medicinally, and in Sri Lanka the English name is leech-lime because they are used as a leech-repellent. In the Malay Peninsula the fruits were a soap substitute and sold for this purpose (Burkill, 1931), a practice still prevalent in Cambodia (Boeun Sok, Royal Botanic Gardens Sydney, pers.
    [Show full text]
  • Citrus from Seed?
    Which citrus fruits will come true to type Orogrande, Tomatera, Fina, Nour, Hernandina, Clementard.) from seed? Ellendale Tom McClendon writes in Hardy Citrus Encore for the South East: Fortune Fremont (50% monoembryonic) “Most common citrus such as oranges, Temple grapefruit, lemons and most mandarins Ugli Umatilla are polyembryonic and will come true to Wilking type. Because most citrus have this trait, Highly polyembryonic citrus types : will mostly hybridization can be very difficult to produce nucellar polyembryonic seeds that will grow true to type. achieve…. This unique characteristic Citrus × aurantiifolia Mexican lime (Key lime, West allows amateurs to grow citrus from seed, Indian lime) something you can’t do with, say, Citrus × insitorum (×Citroncirus webberii) Citranges, such as Rusk, Troyer etc. apples.” [12*] Citrus × jambhiri ‘Rough lemon’, ‘Rangpur’ lime, ‘Otaheite’ lime Monoembryonic (don’t come true) Citrus × limettioides Palestine lime (Indian sweet lime) Citrus × microcarpa ‘Calamondin’ Meyer Lemon Citrus × paradisi Grapefruit (Marsh, Star Ruby, Nagami Kumquat Redblush, Chironja, Smooth Flat Seville) Marumi Kumquat Citrus × sinensis Sweet oranges (Blonde, navel and Pummelos blood oranges) Temple Tangor Citrus amblycarpa 'Nasnaran' mandarin Clementine Mandarin Citrus depressa ‘Shekwasha’ mandarin Citrus karna ‘Karna’, ‘Khatta’ Poncirus Trifoliata Citrus kinokuni ‘Kishu mandarin’ Citrus lycopersicaeformis ‘Kokni’ or ‘Monkey mandarin’ Polyembryonic (come true) Citrus macrophylla ‘Alemow’ Most Oranges Citrus reshni ‘Cleopatra’ mandarin Changshou Kumquat Citrus sunki (Citrus reticulata var. austera) Sour mandarin Meiwa Kumquat (mostly polyembryonic) Citrus trifoliata (Poncirus trifoliata) Trifoliate orange Most Satsumas and Tangerines The following mandarin varieties are polyembryonic: Most Lemons Dancy Most Limes Emperor Grapefruits Empress Tangelos Fairchild Kinnow Highly monoembryonic citrus types: Mediterranean (Avana, Tardivo di Ciaculli) Will produce zygotic monoembryonic seeds that will not Naartje come true to type.
    [Show full text]
  • Somatic Hybrid Plantlets Regeneration Between Citrus and Its Wild Relative, Murraya Paniculata Via Protoplast Electrofusion
    Plant Cell Reports (1998) 18: 297–300 © Springer-Verlag 1998 W. W. Guo · X. X. Deng Somatic hybrid plantlets regeneration between Citrus and its wild relative, Murraya paniculata via protoplast electrofusion Received: 17 January 1998 / Revision received: 12 June 1998 / Accepted: 14 July 1998 Abstract Protoplasts isolated from ‘Page’ tangelo (Min- identified as a Liberobacter (Jagoueix et al. 1994), and al- neola tangelo × clementine) cell suspension cultures were most all citrus cultivars are susceptible to it. Orange jes- electrically fused with mesophyll protoplasts of orange jes- samine [Murraya paniculata (L.) Jack], a remote relative samine [Murraya paniculata (L.) Jack]. Shoots were re- of citrus belonging to another tribe, Clauseneae, is an at- generated after 6 – 10 months of culture, but they were ex- tractive ornamental plant because of its fragrant white tremely recalcitrant to producing roots in root-induction flowers and small red fruits (Swingle and Reece 1967). medium. Complete plantlets were formed via micrograft- Orange jessamine is immune to citrus huanglongbin (Chen ing. Chromosome counting of shoot tips revealed they were and Liao 1982), and is resistant to citrus nematode (Sykes tetraploids (2n = 4x = 36). Glutamateoxaloacetate transam- 1987) and citrus tristeza virus (Yoshida 1996). It grows inase isozyme and randomly amplified polymorphic DNA well in alkaline conditions (Sykes 1987). Efforts to create analysis confirmed their hybridity. Orange jessamine is im- sexual progeny and grafted plants between orange jessa- mune to citrus huanglongbin, a severe disease of citrus, but mine and Citrus have failed due to sexual incompatibility sexual incompatibility and limited graft compatibility ex- and limited graft compatibility (Swingle and Reece 1967).
    [Show full text]