Type I and II Interferon Are Associated with High Expression of the Hippo Pathway Family Members
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dysfunctional Mechanotransduction Through the YAP/TAZ/Hippo Pathway As a Feature of Chronic Disease
cells Review Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease 1, 2, 2,3, 4 Mathias Cobbaut y, Simge Karagil y, Lucrezia Bruno y, Maria Del Carmen Diaz de la Loza , Francesca E Mackenzie 3, Michael Stolinski 2 and Ahmed Elbediwy 2,* 1 Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] 2 Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (S.K.); [email protected] (L.B.); [email protected] (M.S.) 3 Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] 4 Epithelial Biology Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] * Correspondence: [email protected] These authors contribute equally to this work. y Received: 30 November 2019; Accepted: 4 January 2020; Published: 8 January 2020 Abstract: In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Legionella Kinase Legk7 Exploits the Hippo Pathway Scaffold Protein MOB1A for Allostery and Substrate Phosphorylation
The Legionella kinase LegK7 exploits the Hippo pathway scaffold protein MOB1A for allostery and substrate phosphorylation Pei-Chung Leea,b,1, Ksenia Beyrakhovac,1, Caishuang Xuc, Michal T. Bonieckic, Mitchell H. Leea, Chisom J. Onub, Andrey M. Grishinc, Matthias P. Machnera,2, and Miroslaw Cyglerc,2 aDivision of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892; bDepartment of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202; and cDepartment of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved May 1, 2020 (received for review January 12, 2020) During infection, the bacterial pathogen Legionella pneumophila Active LATS1/2 phosphorylate the cotranscriptional regulator manipulates a variety of host cell signaling pathways, including YAP1 (yes-associated protein 1) and its homolog TAZ (tran- the Hippo pathway which controls cell proliferation and differen- scriptional coactivator with PDZ-binding motif). Phosphorylated tiation in eukaryotes. Our previous studies revealed that L. pneu- YAP1 and TAZ are prevented from entering the nucleus by being mophila encodes the effector kinase LegK7 which phosphorylates either sequestered in the cytosol through binding to 14-3-3 pro- MOB1A, a highly conserved scaffold protein of the Hippo path- teins or targeted for proteolytic degradation (6, 8). Consequently, way. Here, we show that MOB1A, in addition to being a substrate the main outcome of signal transduction along the Hippo pathway of LegK7, also functions as an allosteric activator of its kinase is changes in gene expression (6). -
The Hippo Pathway Component Wwc2 Is a Key Regulator of Embryonic Development and Angiogenesis in Mice Anke Hermann1,Guangmingwu2, Pavel I
Hermann et al. Cell Death and Disease (2021) 12:117 https://doi.org/10.1038/s41419-021-03409-0 Cell Death & Disease ARTICLE Open Access The Hippo pathway component Wwc2 is a key regulator of embryonic development and angiogenesis in mice Anke Hermann1,GuangmingWu2, Pavel I. Nedvetsky1,ViktoriaC.Brücher3, Charlotte Egbring3, Jakob Bonse1, Verena Höffken1, Dirk Oliver Wennmann1, Matthias Marks4,MichaelP.Krahn 1,HansSchöler5,PeterHeiduschka3, Hermann Pavenstädt1 and Joachim Kremerskothen1 Abstract The WW-and-C2-domain-containing (WWC) protein family is involved in the regulation of cell differentiation, cell proliferation, and organ growth control. As upstream components of the Hippo signaling pathway, WWC proteins activate the Large tumor suppressor (LATS) kinase that in turn phosphorylates Yes-associated protein (YAP) and its paralog Transcriptional coactivator-with-PDZ-binding motif (TAZ) preventing their nuclear import and transcriptional activity. Inhibition of WWC expression leads to downregulation of the Hippo pathway, increased expression of YAP/ TAZ target genes and enhanced organ growth. In mice, a ubiquitous Wwc1 knockout (KO) induces a mild neurological phenotype with no impact on embryogenesis or organ growth. In contrast, we could show here that ubiquitous deletion of Wwc2 in mice leads to early embryonic lethality. Wwc2 KO embryos display growth retardation, a disturbed placenta development, impaired vascularization, and finally embryonic death. A whole-transcriptome analysis of embryos lacking Wwc2 revealed a massive deregulation of gene expression with impact on cell fate determination, 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; cell metabolism, and angiogenesis. Consequently, a perinatal, endothelial-specific Wwc2 KO in mice led to disturbed vessel formation and vascular hypersprouting in the retina. -
Structural Basis for Autoinhibition and Its Relief of MOB1 in the Hippo
www.nature.com/scientificreports OPEN Structural basis for autoinhibition and its relief of MOB1 in the Hippo pathway Received: 10 February 2016 Sun-Yong Kim, Yuka Tachioka, Tomoyuki Mori & Toshio Hakoshima Accepted: 03 June 2016 MOB1 protein is a key regulator of large tumor suppressor 1/2 (LATS1/2) kinases in the Hippo pathway. Published: 23 June 2016 MOB1 is present in an autoinhibited form and is activated by MST1/2-mediated phosphorylation, although the precise mechanisms responsible for autoinhibition and activation are unknown due to lack of an autoinhibited MOB1 structure. Here, we report on the crystal structure of full-length MOB1B in the autoinhibited form and a complex between the MOB1B core domain and the N-terminal regulation (NTR) domain of LATS1. The structure of full-length MOB1B shows that the N-terminal extension forms a short β-strand, the SN strand, followed by a long conformationally flexible positively-charged linker and α-helix, the Switch helix, which blocks the LATS1 binding surface of MOB1B. The Switch helix is stabilized by β-sheet formation of the SN strand with the S2 strand of the MOB1 core domain. Phosphorylation of Thr12 and Thr35 residues structurally accelerates dissociation of the Switch helix from the LATS1-binding surface by the “pull-the-string” mechanism, thereby enabling LATS1 binding. The Hippo pathway is a key signaling cascade that ensures organ size and normal tissue growth by coordinating cell proliferation and differentiation, and has now been recognized as an essential tumor suppressor cascade1–6. In mammals, the core pathway components comprise two Ser/Thr protein kinases, mammalian Ste20-like 1 and 2 (MST1/2) kinases, members of the Ste20 group in the germinal center kinase II (GCK-II) subgroup, and large tumor suppressor 1 and 2 (LATS1/2) kinases, members of the AGC protein kinase family, in addition to transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). -
Hippo Signaling Regulates Drosophila Intestine Stem Cell Proliferation Through Multiple Pathways
Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways Fangfang Rena, Bing Wanga, Tao Yuea, Eun-Young Yunb,1, Y. Tony Ipb, and Jin Jianga,c,2 aDepartment of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; bProgram in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and cDepartment of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 Edited* by Michael Levine, University of California, Berkeley, CA, and approved October 6, 2010 (received for review August 27, 2010) Intestinal stem cells (ISCs) in the Drosophila adult midgut are essen- investigated. In this study, we demonstrate that the Hpo pathway tial for maintaining tissue homeostasis and replenishing lost cells in restricts ISC proliferation in the adult midgut. We uncover response to tissue damage. Here we demonstrate that the Hippo a non–cell-autonomous mechanism by which the Hpo pathway (Hpo) signaling pathway, an evolutionarily conserved pathway im- negatively regulates stem cell proliferation by restricting the plicated in organ size control and tumorigenesis, plays an essential production of cytokines and mitogens that activate the JAK- role in regulating ISC proliferation. Loss of Hpo signaling in either STAT and EGFR pathways. In addition, we demonstrate that midgut precursor cells or epithelial cells stimulates ISC proliferation. Yki is required in the precursor cells for dextran sulfate sodium We provide evidence that loss of Hpo signaling in epithelial cells (DSS)-induced ISC proliferation. increases the production of cytokines of the Upd family and multiple EGFR ligands that activate JAK-STAT and EGFR signaling pathways Results in ISCs to stimulate their proliferation, thus revealing a unique non– Loss of Hpo Signaling in Precursor Cells Stimulates ISC Proliferation. -
Alternative Splicing Generates an Isoform of the Human Sef Gene with Altered Subcellular Localization and Specificity
Alternative splicing generates an isoform of the human Sef gene with altered subcellular localization and specificity Ella Preger*, Inbal Ziv*, Ariel Shabtay*, Ifat Sher*, Michael Tsang†, Igor B. Dawid†, Yael Altuvia‡, and Dina Ron*§ *Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel; †Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and ‡Department of Molecular Genetics and Biotechnology, Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel Contributed by Igor B. Dawid, December 1, 2003 Receptor tyrosine kinases (RTKs) control a multitude of biological FGFs comprise a family of 22 structurally related polypeptide processes and are therefore subjected to multiple levels of regu- mitogens that control cell proliferation, differentiation, survival, lation. Negative feedback is one of the mechanisms that provide an and migration and play a key role in embryonic patterning effective means to control RTK-mediated signaling. Sef has re- (14–16). They signal via binding and activation of a family of cently been identified as a specific antagonist of fibroblast growth cell-surface tyrosine kinase receptors designated FGF receptors factor (FGF) signaling in zebrafish and subsequently in mouse and 1–4 (FGFR1–FGFR4) (17–20). Activated receptors trigger sev- human. Sef encodes a putative type I transmembrane protein that eral signal transduction cascades including the Ras͞MAPK and antagonizes the Ras͞mitogen-activated protein kinase pathway in the PI3-kinase pathway (15, 21). Depending on the cell type, all three species. Mouse Sef was also shown to inhibit the phos- FGF can also activate other MAPK pathways, such that leading phatidylinositol 3-kinase pathway. -
TABLE S1 Complete Overview of Protocols for Induction of Pscs Into
TABLE S1 Complete overview of protocols for induction of PSCs into renal lineages Ref 2D/ Cell type Protocol Days Growth factors Outcome Other analyses # 3D hiPSC, hESC, Collagen type I tx murine epidydymal fat pads,ex vivo 54 2D 8 Y27632, AA, CHIR, BMP7 IM miPSC, mESC Matrigel with murine fetal kidney hiPSC, hESC, Suspension,han tx murine epidydymal fat pads,ex vivo 54 2D 20 AA, CHIR, BMP7 IM miPSC, mESC ging drop with murine fetal kidney tx murine epidydymal fat pads,ex vivo 55 hiPSC, hESC Matrigel 2D 14 CHIR, TTNPB/AM580, Y27632 IM with murine fetal kidney Injury, tx murine epidydymal fat 57 hiPSC Suspension 2D 28 AA, CHIR, BMP7, TGF-β1, TTNPB, DMH1 NP pads,spinal cord assay Matrigel,membr 58 mNPC, hESC 3D 7 BPM7, FGF9, Heparin, Y27632, CHIR, LDN, BMP4, IGF1, IGF2 NP Clonal expansion ane filter iMatrix,spinal 59 hiPSC 3D 10 LIF, Y27632, FGF2/FGF9, TGF-α, DAPT, CHIR, BMP7 NP Clonal expansion cord assay iMatrix,spinal 59 murine NP 3D 8-19 LIF, Y27632, FGF2/FGF9, TGF- α, DAPT, CHIR, BMP7 NP Clonal expansion cord assay murine NP, Suspension, 60 3D 7-19 BMP7, FGF2, Heparin, Y27632, LIF NP Nephrotoxicity, injury model human NP membrane filter Suspension, Contractility and permeability assay, ex 61 hiPSC 2D 10 AA, BMP7, RA Pod gelatin vivo with murine fetal kidney Matrigel. 62 hiPSC, hESC fibronectin, 2D < 50 FGF2, AA, WNT3A, BMP4, BMP7, RA, FGF2, HGF or RA + VITD3 Pod collagen type I Matrigel, Contractility and uptake assay,ex vivo 63 hiPSC 2D 13 Y27632, CP21R7, BMP4, RA, BMP7, FGF9, VITD3 Pod collagen type I with murine fetal kidney Collagen -
A Novel Fibroblast Growth Factor 1 Variant Reverses Nonalcoholic Fatty Liver Disease in Type 2 Diabetes
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2018 A novel fibroblast growth factor 1 variant reverses nonalcoholic fatty liver disease in type 2 diabetes. Qian Lin University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Endocrine System Diseases Commons, and the Pharmacology Commons Recommended Citation Lin, Qian, "A novel fibroblast growth factor 1 variant reverses nonalcoholic fatty liver disease in type 2 diabetes." (2018). Electronic Theses and Dissertations. Paper 3016. https://doi.org/10.18297/etd/3016 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. A NOVEL FIBROBLAST GROWTH FACTOR 1 VARIANT REVERSES NONALCOHOLIC FATTY LIVER DISEASE IN TYPE 2 DIABETES BY Qian Lin M.S. at Wenzhou Medical University, 2016 A Dissertation Submitted to the Faculty of the School of Medicine of the University of Louisville for the Degree of Doctor of Philosophy in Pharmacology and Toxicology Department of Pharmacology and Toxicology University of Louisville Louisville, Kentucky August 2018 A NOVEL FIBROBLAST GROWTH FACTOR 1 VARIANT REVERSES NONALCOHOLIC FATTY LIVER DISEASE IN TYPE 2 DIABETES BY Qian Lin Dissertation Approved on August 2, 2018 Dissertation Committee: Dr. Yi Tan Dr. Paul Epstein Dr. -
The Roles of Fgfs in the Early Development of Vertebrate Limbs
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The roles of FGFs in the early development of vertebrate limbs Gail R. Martin1 Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94143–0452 USA ‘‘Fibroblast growth factor’’ (FGF) was first identified 25 tion of two closely related proteins—acidic FGF and ba- years ago as a mitogenic activity in pituitary extracts sic FGF (now designated FGF1 and FGF2, respectively). (Armelin 1973; Gospodarowicz 1974). This modest ob- With the advent of gene isolation techniques it became servation subsequently led to the identification of a large apparent that the Fgf1 and Fgf2 genes are members of a family of proteins that affect cell proliferation, differen- large family, now known to be comprised of at least 17 tiation, survival, and motility (for review, see Basilico genes, Fgf1–Fgf17, in mammals (see Coulier et al. 1997; and Moscatelli 1992; Baird 1994). Recently, evidence has McWhirter et al. 1997; Hoshikawa et al. 1998; Miyake been accumulating that specific members of the FGF 1998). At least five of these genes are expressed in the family function as key intercellular signaling molecules developing limb (see Table 1). The proteins encoded by in embryogenesis (for review, see Goldfarb 1996). Indeed, the 17 different FGF genes range from 155 to 268 amino it may be no exaggeration to say that, in conjunction acid residues in length, and each contains a conserved with the members of a small number of other signaling ‘‘core’’ sequence of ∼120 amino acids that confers a com- molecule families [including WNT (Parr and McMahon mon tertiary structure and the ability to bind heparin or 1994), Hedgehog (HH) (Hammerschmidt et al. -
Upregulated Expression of FGF13/FHF2 Mediates Resistance To
OPEN Upregulated expression of FGF13/FHF2 SUBJECT AREAS: mediates resistance to platinum drugs in CANCER THERAPEUTIC RESISTANCE cervical cancer cells CANCER PREVENTION Tomoko Okada1, Kazuhiro Murata1,2, Ryoma Hirose1,3, Chie Matsuda1, Tsunehiko Komatsu2, STRESS SIGNALLING Masahiko Ikekita3, Miyako Nakawatari4, Fumiaki Nakayama4, Masaru Wakatsuki5, Tatsuya Ohno5,6, CHEMOTHERAPY Shingo Kato5,7, Takashi Imai4 & Toru Imamura1,3 Received 1Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and 27 June 2013 2 Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan, Division of Hematology, 3rd Department of Internal Medicine, Teikyo 3 Accepted University Chiba Medical Center, Ichihara, Chiba 299-0111, Japan, Department of Applied Biological Science, Faculty of Science 4 18 September 2013 and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan, Advanced Radiation Biology Research Program, National Institute of Radiological Sciences, Chiba, Chiba 263-8555, Japan, 5Research Center Hospital for Charged Particle Published Therapy, National Institute of Radiological Sciences, Chiba, Chiba 263-8555, Japan, 6Gunma University Graduate School of 11 October 2013 Medicine, Maebashi, Gunma 371-8511, Japan, 7Saitama Medical University International Medical Center, Hidaka, Saitama 350- 1298, Japan. Correspondence and Cancer cells often develop drug resistance. In cisplatin-resistant HeLa cisR cells, fibroblast growth factor 13 requests for materials (FGF13/FHF2) gene and protein expression was strongly upregulated, and intracellular platinum should be addressed to concentrations were kept low. When the FGF13 expression was suppressed, both the cells’ resistance to T.Imamura (imamura- platinum drugs and their ability to keep intracellular platinum low were abolished. Overexpression of [email protected]) FGF13 in parent cells led to greater resistance to cisplatin and reductions in the intracellular platinum concentration. -
Hippo Signaling Pathway As a New Potential Target in Non-Melanoma Skin Cancers: a Narrative Review
life Review Hippo Signaling Pathway as a New Potential Target in Non-Melanoma Skin Cancers: A Narrative Review Igor Aleksander Bednarski 1,*, Magdalena Ci ˛azy˙ ´nska 2 , Karolina Wódz 3, Izabela Drózd˙ z˙ 4 , Małgorzata Skibi ´nska 1, Joanna Narbutt 1 and Aleksandra Lesiak 1 1 Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, 91-347 Lodz, Poland; [email protected] (M.S.); [email protected] (J.N.); [email protected] (A.L.) 2 Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland; [email protected] 3 Laboratory of Molecular Biology, VET-LAB Brudzew, 62-720 Brudzew, Poland; [email protected] 4 Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: Non-melanoma skin cancers (NMSCs), including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), are the most frequently diagnosed cancers in humans, however, their exact pathogenesis is not fully understood. In recent years, it has been hypothesized that the recently discovered Hippo pathway could play a detrimental role in cutaneous carcinogenesis, but no direct connections have been made. The Hippo pathway and its effector, YAP, are responsible for tissue growth by accelerating cell proliferation, however, YAP upregulation and overexpression have also been reported in numerous types of tumors. There is also evidence that disrupted YAP/Hippo Citation: Bednarski, I.A.; Ci ˛azy´nska,˙ signaling is responsible for cancer growth, invasion, and metastasis.