THE MACHINES of LEONARDO DA VINCI and FRANZ REULEAUX HISTORY of MECHANISM and MACHINE SCIENCE Vo L U M E 2

Total Page:16

File Type:pdf, Size:1020Kb

THE MACHINES of LEONARDO DA VINCI and FRANZ REULEAUX HISTORY of MECHANISM and MACHINE SCIENCE Vo L U M E 2 THE MACHINES OF LEONARDO DA VINCI AND FRANZ REULEAUX HISTORY OF MECHANISM AND MACHINE SCIENCE Vo l u m e 2 Series Editor G.M.L. CECCARELLI Aims and Scope of the Series This book series aims to establish a well defined forum for Monographs and Pro- ceedings on the History of Mechanism and Machine Science (MMS). The series publishes works that give an overview of the historical developments, from the earli- est times up to and including the recent past, of MMS in all its technical aspects. This technical approach is an essential characteristic of the series. By discussing technical details and formulations and even reformulating those in terms of modern formalisms the possibility is created not only to track the historical technical devel- opments but also to use past experiences in technical teaching and research today. In order to do so, the emphasis must be on technical aspects rather than a purely histor- ical focus, although the latter has its place too. Furthermore, the series will consider the republication of out-of-print older works with English translation and comments. The book series is intended to collect technical views on historical developments of the broad field of MMS in a unique frame that can be seen in its totality as an En- cyclopaedia of the History of MMS but with the additional purpose of archiving and teaching the History of MMS. Therefore the book series is intended not only for re- searchers of the History of Engineering but also for professionals and students who are interested in obtaining a clear perspective of the past for their future technical works. The books will be written in general by engineers but not only for engineers. Prospective authors and editors can contact the Series Editor, Professor M. Ceccarelli, about future publications within the series at: LARM: Laboratory of Robotics and Mechatronics DiMSAT – University of Cassino Via Di Biasio 43, 03043 Cassino (Fr) Italy E-mail: [email protected] For a list of related mechanics titles, see final pages. The Machines of Leonardo da Vinci and Franz Reuleaux Kinematics of Machines from the Renaissance to the 20th Century By FRANCIS C. MOON Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-5598-0 (HB) ISBN 978-1-4020-5599-7 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Cover figures: Self portrait of Leonardo da Vinci, Royal Library Turin; Leonardo’s ratchet drawing from Codex Madrid, National Library Madrid; Portrait of Franz Reuleaux and ratchet mechanism drawing from Kinematics of Machinery, Franz Reuleaux (1876) Every effort has been made to contact the copyright holders of the figures which have been reproduced from other sources. Anyone who has not been properly credited is requested to contact the publishers, so that due acknowledgements may be made in subsequent editions. Printed on acid-free paper All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. To Lee, my helpmate in this six-year project; she is the only one I know who can read Reuleaux’s handwriting. Contents Preface by the Series Editor, Professor M. Ceccarelli ............. xi Preface ...................................................... xiii Acknowledgements ........................................... xvii Notes ....................................................... xxi List of Figures ...............................................xxiii List of Tables ...............................................xxxiii PART I I Leonardo da Vinci and Franz Reuleaux: Machine Engineers .. 3 I.1 Introduction . ....................................... 3 I.2 Modern Applications of Kinematics: Leonardo in Your Toothbrush........................................... 15 I.3 Deconstructing the Machine: Constructive Elements of Design 27 I.4 Leonardo,‘IngenieurOrdinaire’......................... 37 I.5 FranzReuleaux:Engineer-Scientist...................... 47 I.6 Influence of Leonardo da Vinci on 19th C. Machine Theorists 59 I.7 KinematicsofMachines:TheGeometryofMotion......... 66 I.8 Visual and Topological Thinking: Reuleaux’s Language of Invention............................................ 76 I.9 Summary............................................ 96 viii Contents PART II II Evolution of Design of Machines ........................... 99 II.1 Introduction . ....................................... 99 II.2 VisualKinematicPerceptionofMechanisms .............. 102 II.3 AncientGreekandRomanMachines..................... 107 II.4 MachinesintheBible.................................. 116 II.5 Roger Bacon on Marvelous Machines in the 13th Century . 118 II.6 MachinesoftheMiddleAges........................... 121 II.7 Scientific and Technical Milieu in the Renaissance Machine Age................................................. 125 II.8 Francesco di Giorgio Martini: The Leonardo of Siena ....... 135 II.9 Theatre of Machines Books: Imitation or Invention? ........ 146 II.10Mathematics,MechanicsandDesignofMachines.......... 160 II.11ArtandtheMachineEngineer........................... 175 II.12 Concepts of Design and Invention by Leonardo and Reuleaux 188 II.13ModelsastheNew‘TheatreofMachines’................. 199 II.14 James Watt and the Steam Engine: Pathways of Machine Evolution............................................ 212 II.15MachineEngineersandInventorsinthe19thCentury....... 223 II.16 Berlin and the Machine Age of the 19th Century ........... 228 II.17 Lost Knowledge from the Age of Machines: Mathematical KinematicsandRotaryEngines ......................... 239 II.18 Prime Mover Machines: Thermodynamics, Kinematics and Materials............................................ 248 II.19 Flying Machines of Leonardo and Lilienthal . ........... 255 II.20KinematicsofAnimalandHumanMotion ................ 262 II.21 Leonardo in a Robot: Automata, Clocks and Controlled Machines............................................ 276 II.22LeonardoandReuleaux:ASummary..................... 289 Color Plates 293 PART III III Comparison of the Kinematic Mechanisms of Leonardo and Reuleaux ................................................ 303 The Machines of Leonardo Da Vinci and Franz Reuleaux ix PART IV IV References, Bibliography & Appendices ..................... 351 CitedReferences.......................................... 351 Books on the Life of Leonardo da Vinci and as Machine Engineer . 364 Books on the History of Machines in the Industrial Age .......... 365 Books on the History of the Renaissance in Europe . ........... 366 Books and Articles on Franz Reuleaux and the Kinematic Theory ofMachines.......................................... 366 Books and Articles on Kinematics of Human and Animal Motion . 368 History of Machines-related Books for a Teaching, Design Studio Library.............................................. 369 Appendix I: A Summary of ‘Theatre of Machines’ Books 15th–18th Centuries ................................... 372 Appendix II: On-Line Books and Papers at Cornell University LibraryonTheHistoryofMachinesandMechanisms....... 391 Appendix III: Student Exercises in the History of Machines ...... 394 Author Index ................................................ 401 Subject Index ................................................ 407 About the Author ............................................ 417 Preface by the Series Editor, Professor M. Ceccarelli This book is part of a book series on the History of Mechanism and Machine Science (HMMS). This series is novel in its concept of treating historical developments with a technical approach to illustrate the evolution of matters of Mechanical Engi- neering that are related specifically to mechanism and machine science. Thus, books in the series will describe historical developments by mainly looking at technical details with the aim to give interpretations and insights of past achievements. The attention to technical details is used not only to track the past by giving credit to past efforts and solutions but mainly to learn from the past approaches and procedures that can still be of current interest and use both for teaching and research. The intended re-interpretation and re-formulation of past studies on ma- chines and mechanisms requires technical expertise more than a merely his- torical perspective, therefore, the books of the series can be characterized by this emphasis on technical information, although historical development will not be overlooked. Furthermore, the series will offer the possibility of publishing translations of works not originally written in English, and of reprinting works of histori- cal interest that have gone out of print but are currently of interest again. I believe that the works published in this series will be of interest to a wide range of readers from professionals to students, and from historians to tech- nical researchers. They will all obtain both satisfaction from and motivation for their work by becoming aware of the historical framework which forms the background of their research. xii Preface by the Series Editor I would like to take this opportunity
Recommended publications
  • LEONARDO Da Vinci Originated in Milan, and May Both Have Belonged Vinci 15.IV.1452 – Amboise 2.V.1519 to the Arconati Family
    Neil Jeffares, Dictionary of pastellists before 1800 Online edition LEONARDO da Vinci originated in Milan, and may both have belonged Vinci 15.IV.1452 – Amboise 2.V.1519 to the Arconati family. One group, of which six One of the many tantalising puzzles about cartoons are in Strasbourg, passed through the Leonardo is the early, if not earliest, use of pastel collections of the marchese Casnedi and with which he is widely, if erroneously, credited. procuratore Zaccaria Sagredo, from whom He notes in the Ligny memorandum (Codex Robert Udny bought them in Venice in 1778. It Atlanticus, fol. 669r), around 1495 (or perhaps is now known that the drawings in the other c.1500), his intention to get the way to draw with group were in the Ambrosiana before being dry colour from Jehan de Paris (Jean Perréal, q.v.) acquired by Sir Thomas Baring c.1800; they [“piglia da gian di paris il modo de colorire a remained together in the collections successively seccho”]. This he may have done during of Sir Thomas Lawrence (there were 10 sheets in Perréal’s trip to the Milanese court with Louis the group at this stage, as is evident from an XII in 1499. A possibly earlier document anonymous 1830 print showing the artist’s (c.1493–97), the Codex Madrid I, fol. 191r, private sitting room); Samuel Woodburn, the mentions “pastelli” explicitly (apparently the first dealer who bought Lawrence’s much of use of the word in this sense), and described a collection (but only 7 of these heads); Willem II mould for making pastel sticks.
    [Show full text]
  • Vezzosi A. Sabato A. the New Genealogical Tree of the Da Vinci
    HUMAN EVOLUTION Vol. 36 - n. 1-2 (1-90) - 2021 Vezzosi A. The New Genealogical Tree of the Da Vinci Leonardo scholar, art historian Family for Leonardo’s DNA. Founder of Museo Ideale Leonardo Da Vinci Ancestors and descendants in direct male Via IV Novembre 2 line down to the present XXI generation* 50059 Vinci (FI), Italy This research demonstrates in a documented manner the con- E-mail: [email protected] tinuity in the direct male line, from father to son, of the Da Vinci family starting with Michele (XIV century) to fourteen Sabato A. living descendants through twenty-one generations and four Historian, writer different branches, which from the XV generation (Tommaso), President of Associazione in turn generate other line branches. Such results are eagerly Leonardo Da Vinci Heritage awaited from an historical viewpoint, with the correction of the E-mail: leonardodavinciheritage@ previous Da Vinci trees (especially Uzielli, 1872, and Smiraglia gmail.com Scognamiglio, 1900) which reached down to and hinted at the XVI generation (with several errors and omissions), and an up- DOI: 10.14673/HE2021121077 date on the living. Like the surname, male heredity connects the history of regis- try records with biological history along separate lineages. Be- KEY WORDS: Leonardo Da Vinci, cause of this, the present genealogy, which spans almost seven Da Vinci new genealogy, ancestors, hundred years, can be used to verify, by means of the most living descendants, XXI generations, innovative technologies of molecular biology, the unbroken Domenico di ser Piero, Y chromosome, transmission of the Y chromosome (through the living descend- Florence, Bottinaccio (Montespertoli), ants and ancient tombs, even if with some small variations due burials, Da Vinci family tomb in Vinci, to time) with a view to confirming the recovery of Leonardo’s Santa Croce church in Vinci, Ground Y marker.
    [Show full text]
  • Works Issued As Multipart Monographs Works Issued
    LC-PCC: Policy Statements for Chapter 6: Identifying Works and Expressions Policy Statements for Chapter 6: Identifying Works and Expressions LC-PCC PS FOR 6.1.3.1 WORKS ISSUED AS MULTIPART MONOGRAPHS LC practice/PCC practice: If a work embodied in a multipart monograph is identified by a creator based on the first or earliest volume received, and subsequent volumes indicate additional creators are involved, do not change the authorized access point for the work, but record additional creators when considered important. [2013-01] LC-PCC PS FOR 6.1.3.2 WORKS ISSUED AS SERIALS Expressions When Preferred Title of Work Changes LC practice/PCC practice: When there are different language expressions of a serial work and the preferred title of the work (as determined according to RDA 6.2.2 ) changes, create a new description for each different expression of that work even if the title proper of the manifestation of the specific language expression did not change. 130 0# $a Inzhenernyĭ zhurnal. Mekhanika tverdogo tela. $l English. 245 10 $a Mechanics of solids. 785 00 $a $t Izvestiíà. Mekhanika tverdogo tela. English. Mechanics of solids 130 0# $a Izvestiíà. Mekhanika tverdogo tela. $l English. 245 10 $a Mechanics of solids. 780 00 $t Inzhenernyĭ zhurnal. Mekhanika tverdogo tela. English. Mechanics of solids "Mechanics of solids" is the title proper of an English-language expression of a work in Russian. Although the English title proper did not change, a new description is necessary because the preferred title of the work in Russian changed. LC Policy & Standards Division and PCC Standing Committee on Standards LCPCC6-1 LC-PCC: Policy Statements for Chapter 6: Identifying Works and Expressions Subseries and the Omission/Addition of Main Series PCC practice: When either of the situations below occurs, create a new series authority record (SAR) and link the two authorized access points via MARC 5XX fields .
    [Show full text]
  • Preface by the Series Editor, Professor M. Ceccarelli
    THE MACHINES OF LEONARDO DA VINCI AND FRANZ REULEAUX HISTORY OF MECHANISM AND MACHINE SCIENCE Vo l u m e 2 Series Editor G.M.L. CECCARELLI Aims and Scope of the Series This book series aims to establish a well defined forum for Monographs and Pro- ceedings on the History of Mechanism and Machine Science (MMS). The series publishes works that give an overview of the historical developments, from the earli- est times up to and including the recent past, of MMS in all its technical aspects. This technical approach is an essential characteristic of the series. By discussing technical details and formulations and even reformulating those in terms of modern formalisms the possibility is created not only to track the historical technical devel- opments but also to use past experiences in technical teaching and research today. In order to do so, the emphasis must be on technical aspects rather than a purely histor- ical focus, although the latter has its place too. Furthermore, the series will consider the republication of out-of-print older works with English translation and comments. The book series is intended to collect technical views on historical developments of the broad field of MMS in a unique frame that can be seen in its totality as an En- cyclopaedia of the History of MMS but with the additional purpose of archiving and teaching the History of MMS. Therefore the book series is intended not only for re- searchers of the History of Engineering but also for professionals and students who are interested in obtaining a clear perspective of the past for their future technical works.
    [Show full text]
  • The Lost Manuscripts of Leonardo Da Vinci
    THE LOST MANUSCRIPTS OF LEONARDO DA VINCI A history of Leonardo da Vinci’s manuscripts and a calculation of how many remain lost by RICHARD SHAW POOLER Submitted in accordance with the requirements for the degree of DOCTOR OF LITERATURE AND PHILOSOPHY in the subject of ART HISTORY at the UNIVERSITY OF SOUTH AFRICA Promoter: Prof Bernadette Van Haute -------------------------------------- OCTOBER 2014 DECLARATION I declare that THE LOST MANUSCRIPTS OF LEONARDO DA VINCI is my own work and that all the sources that I have used or quoted have been indicated or acknowledged by means of complete references. ……………………………. Richard Shaw Pooler Date ………………………….. Title: THE LOST MANUSCRIPTS OF LEONARDO DA VINCI A history of Leonardo da Vinci’s manuscripts and a calculation of how many remain lost Summary: This thesis investigates the history of Leonardo da Vinci’s manuscripts, explains the recovery of some of those that were lost, and calculates what proportion of his work remains lost. It does this by researching the following four main topics: the compilation of his manuscripts; the dispersal and loss of his manuscripts; the recovery and reconstruction of some manuscripts; and an estimate of what remains lost. Most of Leonardo’s manuscripts were written in the last thirty years of his life. The first part of this thesis traces which manuscripts were written and when. After his death, his manuscripts dispersed and it is not known how many were lost. The next section details the dispersal. Recovery of some manuscripts took place followed by further dispersal and loss. Part of the recovery was due to key collectors such as Pompeo Leoni.
    [Show full text]
  • Leonardo Da Vinci's Contributions to Tribology
    Leonardo da Vinci’s studies of friction Ian M. Hutchings University of Cambridge, Department of Engineering, Institute for Manufacturing, 17 Charles Babbage Road, Cambridge CB3 0FS, UK email: [email protected] Abstract Based on a detailed study of Leonardo da Vinci’s notebooks, this review examines the development of his understanding of the laws of friction and their application. His work on friction originated in studies of the rotational resistance of axles and the mechanics of screw threads. He pursued the topic for more than 20 years, incorporating his empirical knowledge of friction into models for several mechanical systems. Diagrams which have been assumed to represent his experimental apparatus are misleading, but his work was undoubtedly based on experimental measurements and probably largely involved lubricated contacts. Although his work had no influence on the development of the subject over the succeeding centuries, Leonardo da Vinci holds a unique position as a pioneer in tribology. Keywords: sliding friction; rolling friction; history of tribology; Leonardo da Vinci Hutchings: Leonardo on friction 1 18/04/2016 1. Introduction Although the word ‘tribology’ was first coined almost 450 years after the death of Leonardo da Vinci (1452 – 1519), it is clear that Leonardo was fully familiar with the basic tribological concepts of friction, lubrication and wear. He has been widely credited with the first quantitative investigations of friction, and with the definition of the two fundamental ‘laws’ of friction some two hundred years before they were enunciated (in 1699) by Guillaume Amontons, with whose name they are now usually associated. These simple statements, which have wide applicability, are: the force of friction acting between two sliding surfaces is proportional to the load pressing the surfaces together (i.e.
    [Show full text]
  • Appendix I: Notable Personages
    Appendix I: Notable Personages Villard de Honnecourt (thirteenth century?) –– Livre de portraiture (ca. 1230) Petrus Peregrinus of Maricourt (thirteenth century?) –– Epistola Petri Peregrini de Maricourt ad Sygerum de Foucaucourt, militem, de magnete (Letter of Peter Peregrinus of Maricourt to Sygerus of Foucaucourt, Soldier, on the Magnet) (1269) Guido da Vigevano, (Pavia, ca. 1280–Paris, after 1349) –– Texaurus regis Francie (1335) –– Liber notabilium illustrissimi principis Philippi septimi, Francorum regis, a libris Galieni per me Guidonem de Papia, medicum suprascripti regis atque consortis eius inclite Iohanne regine, extractus, anno Domini 1345 (1345) Giovanni Dondi dell’Orologio (Chioggia, ca. 1330–Abbiategrasso, 1388) –– Completion of the astronomical clock Astrarium (1364) –– Tractatus astrarii (fourteenth century) Konrad Kyeser (1366–after 1405) –– Bellifortis (ca. 1405) Filippo Brunelleschi (Florence, 1377–1446) –– Cupola (Dome) of Duomo of Florence (1420–1436) Anonymous of the Hussite Wars –– Manuscript of the Anonymous of the Hussite Wars (after 1472) Mariano Daniello di Jacopo (Taccola) (Siena, 1381–ca. 1458) –– De Ingeneis (ca. 1419–1450) –– De Machinis (1449) © Springer International Publishing AG, part of Springer Nature 2019 343 P. Innocenzi, The Innovators Behind Leonardo, https://doi.org/10.1007/978-3-319-90449-8 344 Appendix I: Notable Personages –– Copy of De Machinis from Paolo Santini (colored manuscript version, second half of the fifteenth century) Ms. Lat 7239, Bibliothèque Nationale, Paris. Giovanni Fontana (Venice, 1395?–after 1454) –– Bellicorum instrumentorum liber (ca. 1430) –– Nova compositio horologi 1418) –– De horologio aqueo (ca. 1417) Leon Battista Alberti (Genoa, 1404–Rome, 1472) –– Ludi mathematici (1448) –– De re aedificatoria (1450) Roberto Valturio (Rimini, 1405–1475) –– De re militari (1472) printed version in Latin –– De re militari (1483) printed version in Italian Piero della Francesca (Borgo Sansepolcro, ca.
    [Show full text]
  • Leonardo Da Vinci's Contributions to Tribology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Leonardo da Vinci’s studies of friction Ian M. Hutchings University of Cambridge, Department of Engineering, Institute for Manufacturing, 17 Charles Babbage Road, Cambridge CB3 0FS, UK email: [email protected] Abstract Based on a detailed study of Leonardo da Vinci’s notebooks, this review examines the development of his understanding of the laws of friction and their application. His work on friction originated in studies of the rotational resistance of axles and the mechanics of screw threads. He pursued the topic for more than 20 years, incorporating his empirical knowledge of friction into models for several mechanical systems. Diagrams which have been assumed to represent his experimental apparatus are misleading, but his work was undoubtedly based on experimental measurements and probably largely involved lubricated contacts. Although his work had no influence on the development of the subject over the succeeding centuries, Leonardo da Vinci holds a unique position as a pioneer in tribology. Keywords: sliding friction; rolling friction; history of tribology; Leonardo da Vinci Hutchings: Leonardo on friction 1 18/04/2016 1. Introduction Although the word ‘tribology’ was first coined almost 450 years after the death of Leonardo da Vinci (1452 – 1519), it is clear that Leonardo was fully familiar with the basic tribological concepts of friction, lubrication and wear. He has been widely credited with the first quantitative investigations of friction, and with the definition of the two fundamental ‘laws’ of friction some two hundred years before they were enunciated (in 1699) by Guillaume Amontons, with whose name they are now usually associated.
    [Show full text]
  • Customized Book List Technik
    ABC springer.de Springer Customized Book List Technik FRANKFURT BUCHMESSE 2007 springer.com/booksellers Technik 1 A. Abbasfar, University of California, Los Angeles, CA, USA H. Abut, San Diego State University, San Diego, CA, USA; J.H.L. Hansen, University of Texas at Dallas, Richardson, TX, USA; K. Materials for Springs Takeda, University of Nagoya, Japan (Eds.) Turbo-like Codes Design for High Speed Decoding Advances for In-Vehicle and Mobile Materials for springs is basically intended for engi- Systems neers related to spring materials and technologies who graduated from metallurgical or mechanical en- Turbo-like Codes introduces turbo error correcting Challenges for International Standards gineering courses in technical high school, or in oth- concept in a simple language, including a general er higher engineering schools, as well as those who theory and the algorithms for decoding turbo-like are related to the purchase or sales of spring materi- code. It presents a unified framework for the de- Advances for In-Vehicle and Mobile Systems: Chal- als. The first chapter introduces into the fundamen- sign and analysis of turbo codes and LDPC codes lenges for International Standards is organized to tal selection processes of spring materials including and their decoding algorithms. A major focus of bring together the most active scholars working on the information sources on materials database. It is Turbo-like Codes is on high speed turbo decoding, the latest techniques, standards, and emerging de- followed by the basic mechanisms and theories of which targets applications with data rates of sever- ployment on "living in the age of wireless commu- spring failures such as fatigue fracture, creep/stress al hundred million bits per second (Mbps).
    [Show full text]
  • La Calcolatrice Di Leonardo Silvio Hénin
    La calcolatrice di Leonardo Silvio Hénin Il prossimo anno si celebrerà il cinquecentenario della morte di Leonardo da Vinci. È impossibile riassumere qui la vastità e la varietà degli interessi di questo eclettico genio del Rinascimento, che fu pittore, architetto, musicista, scenografo, anatomista, naturalista, oltre che inventore di innumerevoli meccanismi. Sappiamo infatti, dai tanti suoi appunti che ci sono pervenuti, quanto approfonditamente Leonardo si interessò a macchine di tutti i tipi, anche se ben poche di esse furono realmente costruite e molti dei suoi disegni furono più spesso studi teorici sui cinematismi, piuttosto che progetti di macchinari. Tra questi ve n’è anche uno che è stato interpretato come il progetto della prima calcolatrice meccanica, che troviamo menzionata in molte pagine web che raccontano del genio di Leonardo, ma anche in un libro [1] e nel sito dell’Oxford Math Center [2], che trattano di storia del calcolo automatico. La storia di questa presunta invenzione inizia con la riscoperta, avvenuta nel 1965, di due voluminosi codici leonardeschi nella Biblioteca nazionale di Spagna, oggi noti come Codex Madrid I e II, di cui il primo è un vero trattato di cinematica, statica e ingegneria delle fortificazioni, per un totale di 192 fogli. La riscoperta rimase però ignota all’estero fino a quando, due anni dopo, lo studente americano Jules Piccus, che li aveva visti per caso a Madrid e ne aveva ottenuto una riproduzione su microfilm, li presentò al pubblico in una conferenza all’Università del Massachusetts. L’annuncio scatenò un grande scalpore in tutto il mondo, ma anche uno scandalo in Spagna per la mancata pubblicazione della scoperta originale, che costrinse il direttore della biblioteca a dimettersi [3, 4, 5].
    [Show full text]
  • Leonardo Da Vinci: INGENIERO
    AUTOR: Miguel Ángel Contreras López http://orcid.org/0000-0002-8418-5860 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es Tesis Doctoral Título. Leonardo da Vinci: INGENIERO. Doctorando. Miguel Ángel Contreras López Departamento y Universidad. Departamento de Expresión Gráfica, Diseño y Proyectos. Escuela Técnica Superior de Ingeniería Industrial. Universidad de Málaga. Programa de doctorado: Ingeniería y Gestión de Proyectos. Director de Tesis. Doctor D. José Ramón de Andrés Díaz. Fecha. Noviembre de 2015. Leonardo da Vinci: INGENIERO I II D. JOSÉ RAMON DE ANDRÉS DÍAZ, Dr. Ingeniero Industrial, Profesor Titular de la Escuela Técnica Superior de Ingeniería Industrial de la Universidad de Málaga, en el Área de Proyectos de Ingeniería, actuando en calidad de Director de la Tesis, HACE CONSTAR: Que la tesis presentada por D. MIGUEL ÁNGEL CONTRERAS LÓPEZ, con el título “Leonardo da Vinci: INGENIERO”, se ha desarrollado bajo su dirección y reúne los requisitos necesarios para optar al grado de Doctor. Y para que así conste a los efectos oportunos, expedimos y firmamos el presente documento en Málaga, a 16 de noviembre de dos mil quince.
    [Show full text]
  • Leonardo's Lost Book on Painting and Human Movements
    CHAPTER 3 Leonardo’s Lost Book on Painting and Human Movements Matthew Landrus In his 1498 manuscript of the Divina proportione, Luca Pacioli (ca. 1447–1517) notes that Leonardo had “already with great diligence finished a worthy book on painting and human movements.”1 This book no longer survives, but related notes and drawings in Paris MS A and the Royal Library at Windsor do, enabling us to draw connec- tions between Leonardo’s autograph writings and sixteenth-century copies of lost notes and drawings that passed through the studios of practicing artists. Francesco Melzi (ca. 1491–ca. 1568/1570) pre- served some of Leonardo’s ideas on movement in his Libro di pit- tura di M. Lionardo da Vinci, pittore e scultore fiorentino; his associate Carlo Urbino da Crema (1525/1530–1585) preserved a different set of those ideas in his 1560–1580 manuscript Regole del disegno (rules of design). This latter document is currently in the form of 128 loose sheets of approximately 135 × 180 mm, marked primarily with pen and ink over black chalk, and tucked between 140 sheets of a mo- rocco leather–bound volume entitled the Codex Huygens, located at The Morgan Library in New York. Named after Constantin Huygens II (1628–1697), the original “boeckje” was unbound, arranged, num- bered, and tucked into the leather codex by him ten months after he purchased it on 3 March 1690. He wrote to his brother, the fa- mous physicist Christiaan, “I accepted here a book in quarto writ- ten and drawn by Leonardo da Vinci…. I paid 3 1/2 guineas, but I would not sell it for four times as much.”2 As a record of Milanese responses to Leonardo’s legacy in the third quarter of the sixteenth century, these Regole contributed to a dialogue among painters, sculptors, and architects about the notebooks, diagrams, theo- ries, and lessons that were most useful in their professions, their studios, and the traditions they wished to follow.
    [Show full text]