Roles of Wrky Proteins in Mediating the Crosstalk of Hormone Signaling Pathways: an Approach Integrating Bioinformatics and Experimental Biology

Total Page:16

File Type:pdf, Size:1020Kb

Roles of Wrky Proteins in Mediating the Crosstalk of Hormone Signaling Pathways: an Approach Integrating Bioinformatics and Experimental Biology UNLV Retrospective Theses & Dissertations 1-1-2006 Roles of Wrky proteins in mediating the crosstalk of hormone signaling pathways: An approach integrating bioinformatics and experimental biology Zhen Xie University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Xie, Zhen, "Roles of Wrky proteins in mediating the crosstalk of hormone signaling pathways: An approach integrating bioinformatics and experimental biology" (2006). UNLV Retrospective Theses & Dissertations. 2711. http://dx.doi.org/10.25669/0cw1-sipg This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. ROLES OF WRKY PROTEINS IN MEDIATING THE CROSSTALK OF HORMONE SIGNALING PATHWAYS: AN APPROACH INTEGRATING BIOINFORMATICS AND EXPERIMENTAL BIOLOGY by Zhen Xie Bachelor of Sciences Shandong Agricultural University 1998 Master of Sciences Shandong Agricultural University 2001 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biological Sciences Department of Biological Sciences College of Sciences Graduate College University of Nevada, Las Vegas December 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3256298 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3256298 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Dissertation Approval The Graduate College University of Nevada, Las Vegas September 26______, 20 06 The Dissertation prepared by Zhen X ie Entitled Roles of WRKY Proteins in Mediating the Crosstalk of Hormone Signaling Pathways: an Approach Integrating Bioinformatics and Experimental Biology _____________________________________________________ is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy ___________________________________ Examination Committee Chair duate College Examination Committee Member __ ExaminatioifCommittee Member Gmduate College Faculty Reprêsèfïtative Examin^Mm Committee Member 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Roles of WRKY Proteins in Mediating the Crosstalk of Hormone Signaling Pathways: an Approach Integrating Bioinformatics and Experimental Biology by Zhen Xie Dr. Jeffery Qingxi Shen, Examination Committee Chair Associate Professor of Biological Sciences University of Nevada, Las Vegas The goal of my research is to understand the molecular mechanism by which hormones control seed germination. Gibberellins (GA) promote, while abscisic acid (ABA) and salicylic acid (SA) inhibit seed germination. Key moleeules in these signaling pathways include receptors, secondary messengers, protein kinases and phosphatases, and transcription factors. My study focuses on how WRKY transcription factors modulate the expression of an a-amylase gene {Amy32b), which is up-regulated by GA, but down- regulated by ABA and SA in the aleurone eells of germinating seeds. Chapter 2 started with the annotation and phylogenetic analyses of the WRKY gene superfamily, followed by functional studies of WRKY proteins in mediating ABA responses. Eighty-one WRKY genes were identified in the riee genome through computational analyses. Phylogenetie analyses based on WRKY domain sequences suggest that extensive duplications and losses of the WRKY domain occurred during evolution of this gene family. Transient expression studies suggest that among four WRKY genes that are ABA-inducible in aleurone cells, OsWRKY72 and OsWRKY77 111 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. function as transcription activators while OsWRKY24 and OsWRKY45 are repressors of the ABA-inducible HVA22 gene. Chapter 3 presents cellular and biochemical data to support a novel model that two transcription repressors OsWRKYSl and OsWRKYVl mediate the crosstalk of GA and ABA signaling. Both genes are ABA-inducible, but GA-repressible in the embryos and aleurone cells of germinating rice seeds. The interaction of OsWRKY51 and OsWRKYVl synergistically represses the GA-induced Amy32b expression, likely by functionally interfering with the GA-inducible transactivator, GAMYB. The mechanism underlying the crosstalk of SA, ABA and GA is reported in Chapter 4. Similar to ABA, SA blocks seed germination likely through repressing the expression of a-amylase genes such as Amy32b. Over-expression of the SA-inducible and GA- repressible HvWRKY38 in aleurone eells bloeks GA-induced Amy32b expression. Therefore, HvWRKY38 might mediate the crosstalk of SA, ABA and GA signaling in regulating a-amylase expression and seed germination. My research demonstrates the high efficiency of the approach integrating bioinformaties and experimental biology in addressing the cell-biological signaling network. The finding derived from this research helps advance towards aehieving our long-term goal: to improve the yield and quality of rice and other eereals. IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ABSTRACT..................................................................................................................................ni LIST OF FIGURES....................................................................................................................vii LIST OF TABLES....................................................................................................................... ix ABBREVIATIONS...................................................................................................................... x ACKNOWLEDGMENTS........................................... xiii CHAPTER 1 GENERAL INTRODUCTION..........................................................................1 Gibberellic acid ...................................................................................................................... 4 The crosstalk of gibberellin and abscisic acid ...................................................................9 The crosstalk of gibberellin and salicylic acid ................................................................. 12 WRKY transcription factors ...............................................................................................13 The transient expression assay using barley aleurone cells ........................................... 14 The scope of the dissertation ...............................................................................................16 References............................................................................................................................. 17 CHAPTER 2 ANNOTATIONS AND FUNCTIONAL ANALYSES OF THE RICE PFRKTGENE SUPERFAMILY REVEAL POSITIVE AND NEGATIVE REGULATORS OF ABSCISIC ACID SIGNALING IN ALEURONE CELLS........................................................27 Abstract.................................................................................................................................27 Introduction.......................................................................................................................... 28 Results................................................................................................................................... 31 Discussion.............................................................................................................................52 Materials and methods ........................................................................................................ 59 Acknowledgements ............................................................................................................. 63 References.............................................................................................................................64 CHAPTER 3 E9TERACTI0NS OF TWO ABSCISIC-ACID INDUCED WRKY GENES IN REPRESSING GIBBERELLIN SIGNALING IN ALEURONE CELLS.......................................................................................71 Summary ......................................................................................................................
Recommended publications
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of tftis reproduction is dependent upon the quality of the copy sutHnitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with smal overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9* black and white photographic prints are available for any photographs or Uustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road, Atm Arbor, Ml 48106-1346 USA 800-521-0600 UMT MOLECULAR ANALYSIS OF L7/PCP-2 MESSENGER RNA AND ITS INTERACTING PROTEINS DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in Ohio State Biochemistry Program of The Ohio State University By Xulun Zhang, M.S. ***** The Ohio State University 2001 Dissertation Committee: Approved by Professor John D.
    [Show full text]
  • Document Downloaded From: This Paper Must Be Cited As: the Final
    Document downloaded from: http://hdl.handle.net/10251/83362 This paper must be cited as: Fourquin ., C.; Ferrandiz Maestre, C. (2014). The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist. 202(3):1001- 1013. doi:10.1111/nph.12703. The final publication is available at http://doi.org/10.1111/nph.12703 Copyright Wiley Additional Information 1 The essential role of NGATHA genes in style and stigma specification is widely 2 conserved across eudicots 3 Chloé Fourquin and Cristina Ferrándiz1 4 Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, 46022 Valencia, Spain 5 6 1 For correspondence : 7 Cristina Ferrándiz 8 Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, 46022 Valencia, Spain 9 Tel. +34 963877892; Fax +34 963877859; e-mail: [email protected] 10 11 Total word count for the main body of the text: 5721 12 13 Word count for individual sections are as follows: 14 • Introduction, 947 15 • Materials and Methods, 765 16 • Results, 2035 17 • Discussion, 1868 18 • Acknowledgements, 106 19 20 The manuscript contains 6 figures (5 in color) and 1 table. 21 Supplementary material consists of 4 figures and 1 table. 22 23 SUMMARY 24 • Carpel development and evolution is a central issue for plant biology. The 25 conservation of genetic functions conferring carpel identity has been widely studied 26 in higher plants. However, although genetic networks directing the development of 27 characteristic features of angiosperm carpels such as stigma and style are 28 increasingly known in Arabidopsis thaliana, little information is available on the 29 conservation and diversification of these networks in other species.
    [Show full text]
  • Other Roles of Euap2 Genes in Plant Development Charles U
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2019 doi:10.20944/preprints201901.0035.v3 Review Besides and Beyond Flowering: Other roles of euAP2 genes in plant development Charles U. Solomon1, 2* and Sinead Drea1 1Department of Genetics and Genome Biology, University of Leicester, UK; [email protected]; [email protected] 2Department of Plant Science and Biotechnology, Abia State University, Uturu, Nigeria *Correspondence: [email protected] Abstract: EuAP2 genes are famous for their role in flower development. A legacy of the founding member of this subfamily of transcription factors, whose mutants lacked petals in Arabidopsis. However, studies of euAP2 genes in several species have accumulated evidence highlighting the diverse roles of euAP2 genes in other aspects of plant development. Here, we emphasize other developmental roles of euAP2 genes in various species and suggest a shift from regarding euAP2 genes as just flowering genes to consider the global role they may be playing in plant development. We hypothesize that their almost universal expression profile and pleiotropic effects of their mutation suggest their involvement in fundamental plant development processes. Keywords: EuAP2 genes; Flowering; Plant Development Introduction APETALA 2 (AP2) genes are named after a series of Arabidopsis mutants characterized by homeotic transformations of their sepals to leaves and petals to staminoid petals. Analysis of the ap2 mutants along with other floral mutants gave birth to the ABC model of flower development where AP2 is classified as an A-class gene [1, 2]. The forerunner AP2 protein was cloned and characterized in Arabidopsis [3]. The Arabidopsis AP2 protein comprising 432 amino acids (aa) is mainly characterized by the possession of two AP2 domains, each made up of 68-aa with an 18-aa core conserved section that forms an amphipathic -훼–helix .
    [Show full text]
  • Hypothetical Cytokinin-Binding Riboswitches in Arabidopsis Thaliana Jeremy Grojean1, Brian Downes2*
    Grojean and Downes Biology Direct 2010, 5:60 http://www.biology-direct.com/content/5/1/60 HYPOTHESIS Open Access Riboswitches as hormone receptors: hypothetical cytokinin-binding riboswitches in Arabidopsis thaliana Jeremy Grojean1, Brian Downes2* Abstract Background: Riboswitches are mRNA elements that change conformation when bound to small molecules. They are known to be key regulators of biosynthetic pathways in both prokaryotes and eukaryotes. Presentation of the Hypothesis: The hypothesis presented here is that riboswitches function as receptors in hormone perception. We propose that riboswitches initiate or integrate signaling cascades upon binding to classic signaling molecules. The molecular interactions for ligand binding and gene expression control would be the same as for biosynthetic pathways, but the context and the cadre of ligands to consider is dramatically different. The hypothesis arose from the observation that a compound used to identify adenine binding RNA sequences is chemically similar to the classic plant hormone, or growth regulator, cytokinin. A general tenet of the hypothesis is that riboswitch-binding metabolites can be used to make predictions about chemically related signaling molecules. In fact, all cell permeable signaling compounds can be considered as potential riboswitch ligands. The hypothesis is plausible, as demonstrated by a cursory review of the transcriptome and genome of the model plant Arabidopsis thaliana for transcripts that i) contain an adenine aptamer motif, and ii) are also predicted to be cytokinin- regulated. Here, one gene, CRK10 (for Cysteine-rich Receptor-like Kinase 10, At4g23180), contains an adenine aptamer-related sequence and is down-regulated by cytokinin approximately three-fold in public gene expression data.
    [Show full text]
  • The WRKY Transcription Factor Family in Model Plants and Crops
    Critical Reviews in Plant Sciences ISSN: 0735-2689 (Print) 1549-7836 (Online) Journal homepage: http://www.tandfonline.com/loi/bpts20 The WRKY Transcription Factor Family in Model Plants and Crops Fei Chen, Yue Hu, Alessandro Vannozzi, Kangcheng Wu, Hanyang Cai, Yuan Qin, Alison Mullis, Zhenguo Lin & Liangsheng Zhang To cite this article: Fei Chen, Yue Hu, Alessandro Vannozzi, Kangcheng Wu, Hanyang Cai, Yuan Qin, Alison Mullis, Zhenguo Lin & Liangsheng Zhang (2018): The WRKY Transcription Factor Family in Model Plants and Crops, Critical Reviews in Plant Sciences, DOI: 10.1080/07352689.2018.1441103 To link to this article: https://doi.org/10.1080/07352689.2018.1441103 Published online: 05 Mar 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bpts20 CRITICAL REVIEWS IN PLANT SCIENCES https://doi.org/10.1080/07352689.2018.1441103 The WRKY Transcription Factor Family in Model Plants and Crops Fei Chena, Yue Hua, Alessandro Vannozzib, Kangcheng Wua, Hanyang Caia, Yuan Qina, Alison Mullisc, Zhenguo Linc, and Liangsheng Zhanga aState Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou, China; bDepartment of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro, Italy; cDepartment of Biology, Saint Louis University, St Louis, Missouri, USA ABSTRACT KEYWORDS The WRKY gene family in flowering plants encodes a large group of transcription factors (TFs) that environmental stress; gene play essential roles in diverse stress responses, developmental, and physiological processes.
    [Show full text]
  • DM Domain Proteins in Sexual Regulation 875 Transformation Marker Prf4 (Containing the Mutant Rol-6 Allele Green fluorescent Protein (GFP) Coding Region
    Development 126, 873-881 (1999) 873 Printed in Great Britain © The Company of Biologists Limited 1999 DEV5283 Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans MAB-3 and Drosophila melanogaster DSX suggests conservation of sex determining mechanisms Woelsung Yi1 and David Zarkower1,2,* 1Biochemistry, Molecular Biology and Biophysics Graduate Program, and 2Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA *Author for correspondence (e-mail: [email protected]) Accepted 17 December 1998; published on WWW 2 February 1999 SUMMARY Although most animals occur in two sexes, the molecular transcription, resulting in expression in both sexes, and the pathways they employ to control sexual development vary vitellogenin genes have potential MAB-3 binding sites considerably. The only known molecular similarity upstream of their transcriptional start sites. MAB-3 binds between phyla in sex determination is between two genes, to a site in the vit-2 promoter in vitro, and this site is mab-3 from C. elegans, and doublesex (dsx) from required in vivo to prevent transcription of a vit-2 reporter Drosophila. Both genes contain a DNA binding motif called construct in males, suggesting that MAB-3 is a direct a DM domain and they regulate similar aspects of sexual repressor of vitellogenin transcription. This is the first development, including yolk protein synthesis and direct link between the sex determination regulatory peripheral nervous system differentiation. Here we show pathway and sex-specific structural genes in C. elegans, and that MAB-3, like the DSX proteins, is a direct regulator of it suggests that nematodes and insects use at least some of yolk protein gene transcription.
    [Show full text]
  • Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis Vinifera L.): Insights Into the Roles in the Pollen Development Regulation
    G C A T T A C G G C A T genes Article Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation Oscar Arrey-Salas 1,* , José Carlos Caris-Maldonado 2, Bairon Hernández-Rojas 3 and Enrique Gonzalez 1 1 Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile; [email protected] 2 Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, 3550000 Pencahue, Chile; [email protected] 3 Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile; [email protected] * Correspondence: [email protected] Abstract: Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine Citation: Arrey-Salas, O.; remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte Caris-Maldonado, J.C.; development, we performed a genome-wide identification and characterization of genes encoding Hernández-Rojas, B.; Gonzalez, E. ZFP (VviZFP family).
    [Show full text]
  • A W-Linked DM-Domain Gene, DM-W, Participates in Primary Ovary Development in Xenopus Laevis
    A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis Shin Yoshimoto*, Ema Okada*, Hirohito Umemoto*, Kei Tamura*, Yoshinobu Uno†, Chizuko Nishida-Umehara†, Yoichi Matsuda†, Nobuhiko Takamatsu*, Tadayoshi Shiba*, and Michihiko Ito*‡ *Department of Bioscience, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan; and †Division of Genome Dynamics, Creative Research Initiative ‘‘Sousei,’’ Hokkaido University, North10 West8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan Communicated by Satoshi Omura,¯ The Kitasato Institute, Tokyo, Japan, December 27, 2007 (received for review September 11, 2007) In the XX/XY sex-determining system, the Y-linked SRY genes of In some species of amphibians, sex determination is controlled most mammals and the DMY/Dmrt1bY genes of the teleost fish genetically (13), even though the animals’ sex chromosomes are medaka have been characterized as sex-determining genes that morphologically indistinguishable from the autosomes. The trigger formation of the testis. However, the molecular mechanism South African clawed frog Xenopus laevis uses the ZZ/ZW of the ZZ/ZW-type system in vertebrates, including the clawed frog system, which was demonstrated by backcrosses between sex- Xenopus laevis, is unknown. Here, we isolated an X. laevis female reversed and normal individuals (14), but its sex chromosomes genome-specific DM-domain gene, DM-W, and obtained molecular have not yet been identified. Moreover, as with other animals evidence of a W-chromosome in this species. The DNA-binding that use the ZZ/ZW system, no sex-determining gene(s) has domain of DM-W showed a strikingly high identity (89%) with that been identified.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Genome-Wide Analysis of the AP2/ERF Superfamily in Apple and Transcriptional Evidence of ERF Involvement in Scab Pathogenesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ- toulouse.fr/ Eprints ID: 11480 To link to this article : DOI:10.1016/j.scienta.2012.12.017 URL: http://dx.doi.org/10.1016/j.scienta.2012.12.017 To cite this version: Girardi, Cesar Luis and Rombaldi, César Valmor and Dal Cero, Joceani and Nobile, Paula M. and Laurent, François and Bouzayen, Mondher and Quecini, Vera Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis. (2013) Scientia Horticulturae, vol. 151. pp. 112-121. ISSN 0304-4238 Any correspondence concerning this service should be sent to the repository administrator: [email protected] ! Genome•wide analysis of the AP2 /ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis a b b c c César Luís Girardi , César Valmor Rombaldi , Joceani Dal Cero , Paula M. Nobile , Franc¸ ois Laurens , d a,∗ Mondher Bouzayen , Vera Quecini a Embrapa Uva e Vinho, Caixa Postal 130, 95700•000 Bento Gonc¸ alves, RS, Brazil b ◦ Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Departamento de Ciência e Tecnologia Agroindustrial, s/n caixa postal 354, 96010•900 Pelotas, RS, Brazil c UMR 1259 Génétique et Horticulture (GenHort), Angers, France d UMR 990, Génomique et Biotechnologie des Fruits, INP, ENSAT, INRA, F•31320 Castanet Tolosan, France a b s t r a c t The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) superfamily of transcriptional regulators is involved in several growth, development and stress responses processes in higher plants.
    [Show full text]
  • Ubiquitin-Dependent Regulation of a Conserved DMRT Protein Controls
    RESEARCH ARTICLE Ubiquitin-dependent regulation of a conserved DMRT protein controls sexually dimorphic synaptic connectivity and behavior Emily A Bayer1, Rebecca C Stecky1, Lauren Neal1, Phinikoula S Katsamba2, Goran Ahlsen2, Vishnu Balaji3, Thorsten Hoppe3,4, Lawrence Shapiro2, Meital Oren-Suissa5, Oliver Hobert1,2* 1Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States; 2Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, United States; 3Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; 4Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; 5Weizmann Institute of Science, Department of Neurobiology, Rehovot, Israel Abstract Sex-specific synaptic connectivity is beginning to emerge as a remarkable, but little explored feature of animal brains. We describe here a novel mechanism that promotes sexually dimorphic neuronal function and synaptic connectivity in the nervous system of the nematode Caenorhabditis elegans. We demonstrate that a phylogenetically conserved, but previously uncharacterized Doublesex/Mab-3 related transcription factor (DMRT), dmd-4, is expressed in two classes of sex-shared phasmid neurons specifically in hermaphrodites but not in males. We find dmd-4 to promote hermaphrodite-specific synaptic connectivity and neuronal function of phasmid sensory neurons. Sex-specificity of DMD-4 function is conferred by a novel mode of *For correspondence: posttranslational regulation that involves sex-specific protein stabilization through ubiquitin binding [email protected] to a phylogenetically conserved but previously unstudied protein domain, the DMA domain. A Competing interest: See human DMRT homolog of DMD-4 is controlled in a similar manner, indicating that our findings may page 25 have implications for the control of sexual differentiation in other animals as well.
    [Show full text]
  • Gene Family in Panax Ginseng CA Meyer
    bioRxiv preprint doi: https://doi.org/10.1101/850164; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Structural variation, functional differentiation and 2 expression characteristics of the AP2/ERF gene family and 3 its response to cold stress and methyl jasmonate in Panax 4 ginseng C.A. Meyer 5 Short title: Structural and functional Analysis of AP2/ERF 6 gene family in Panax ginseng C.A. Meyer 1,2 1 1 1 1,2 1,2 7 Jing Chen ☯,Yuanhang Zhou ☯, Qi Zhang , Li Li , Chunyu Sun , Kangyu Wang , 8 Yanfang Wang2,3, Mingzhu Zhao1,2, Hongjie Li1, Yilai Han1, Ping Chen1, Ruiqi Li1, 9 Jun Lei1, Meiping Zhang 1,2*, and Yi Wang 1,2* 10 1 College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 11 Changchun, Jilin 130118, China. 12 2 Research Center for Ginseng Genetic Resources Development and Utilization, 13 2888 Xincheng Street, Changchun, Jilin 130118, China. 14 3 College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 15 Xincheng Street, Changchun 130118, Jilin, China. 16 17 ☯These authors contributed equally to this work. 18 Correspondence should be addressed to [email protected] and 19 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/850164; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]