On the Proper Treatment of Connectionism

Total Page:16

File Type:pdf, Size:1020Kb

On the Proper Treatment of Connectionism BEHAVIORAL AND BRAIN SCIENCES (1988) 11, 1-74 Printed in the United Stales 01 America On the proper treatment of connectionism Paul Smolensky Department of Computer Science and Institute of Cognitive Science. University of Colorado, Boulder, Colo. 80309-0430 Abstract: A set of hypotheses i~' formulated for a connectionist approach to cognitive modeling. These hypotheses are shown to be incompatible with the hypotheses underlying traditional cognitive models. The connectionist models considered are massively parallel numerical computational systems that are a kind of continuous dynamical system. The numerical variables in the system correspond semantically to fine-grained features below the level of the concepts cons<.:iously used to describe the task domain. The level of analysis is intermediate between those of symbolic cognitive models and neural models. The explanations of behavior provided are like those traditional in the physical sciences, unlike the explanations provided by symbolic models. Higher-level analyses ofthese connectionist models reveal subtle relations to symbolic models. Parallel connectionist memory and linguistic processes are hypothesized to give rise to processes that are describable at a higher level as sequential rule appliC1.tion. At the lower level, compntation has the character of massively parallel satisfaction ofsoft numerical constraints; at the higher level, this can lead to competence charactcrizahle by hard rules. Performance will typically deviate frqm this competence since behavior is achieved not hy interpreting hard rules but by satisfYing soft constraints. The result is a picture in which traditional and connectionist theoretical constructs collaborate intimately to provide an understanding of cognition. Keywords: cognition; computation; connectionism; dynamical systems; networks; neural models; parallel distributed processing; symbolic models 1. Introduction on the input units propagates along the connections until some set ofactivation values emerges on the output units; In the past half-decade the connectionist approach to these activation values encode the output the system has cognitive modeling has grown from an obscure cult claim­ computed from the input. In hetween the input and ing a few trn.e believers to a movement so vigorol1s that output units there may he other units, often called hidden recent meetings of the Cognitive Science Society have units, that participate in representing neither the input begun to look like connectionist pep rallies. With the fise nor the OtItput. ofthe connectionist movement come a ntunber of funda­ The computation performed by the network in trans­ mental questions which are the subject of this target forming the input pattern ofactivity to the Otltput pattern article. I begin with a brief description of connectionist depends on the set ofconnection strengths; these weights models. are usually regarded as encoding the system's knowledge. In this sense, the connection strengths play the role ofthe 1.1. Connectionist models. Connectionist models are large program in a conventional comptlter. Much of the allure networks ofsimple parallel computing elements, each of of the connectionist approach is that many connectionist which carries a Illllnerical activation value which it com­ networks program themselves, that is, they have alltono­ ptltes from the valtles of neighboring elements in the mous procedllres for tnning their weights to eventually network, using some simple numerical formula. The perform some specific computation. StIch learning pro­ network elements, or units, influence each other's valtles cedtlres often depend on training in which the network is throtlgh connections that carry a numerical strength, or presented with sample input/otItptlt pairs from the func­ weight. The infltlence of lIIlit i on tIIlitj is the activation tion it is supposed to comptlte. In learning networks with valtle oftIIlit i times the strength ofthe connection fmm i hidden units, the network itself"decides" what computa­ to j. Thtls, if a unit has a positive activation value, its tions the hidden units will perform; because these tmits influence on a neighbor's value is positive ifits weight to represent neither inputs nor outputs, they are never that neighbor is positive, and negative if the weight is "told" what their values should be, even during training. negative. In an ohvious neural allusion, connections car­ In recent years connectionist models have been devel­ rying positive weights arc called excitatory and those oped for many tasks, encompassing the areas of vision, carrying negative weights are inhibitory. language processing, inference, and motor control. Ntl~ In a typical connectionist model, input to the system is merous examples can be fotmd in recent proceedings of provided by imposing activation values on the input units the meetings ofthe Cognitive Science Society; Cognitive of the network; these ntImerical values represent some Science (1985); Feldman et aJ. (1985); Hinton and Ander­ encoding, or representation, ofthe input. The activation son (1981); McClelland, Rumelhart, aud the PDP Re- © 1988 Cambridge University Press 0140-525X/8B $5.00+.00 I Smolensky: Proper treatment of connectionism search Group (1986); Rumelhart, McClelland, and the chines are, after all, "universal"), or because it cannot PDP Research Group (1986). [See also Ballard "Cortical offer the kinds of explanations that cognitive science Connections and Parallel Processing" BBS 9(1) 1986.] requires. Some di~miss connectionist models on the grounds that they are too neurally unfaithful. PTC has 1.2. Goalofthis target article. Given the rapid development been designed to withstand these attacks. in recent years ofthe connectionist approach to cognitive On the opposite side, most existing connectionist mod­ modeling, it is not yet an appropriate time for defmitive els fail to come to grips with the traditional approach ­ assessments of the power and validity of the approach. partly through a neglect intended as benign. lt is easy to The time seems right, however, for an attempt to articu­ read into the connectionist literature the claim that there late the goals of the approach, the fundamental hypoth­ is no role in cognitive science for traditional theoretical eses it is testing, and the relations presumed to link it with constructs such as rules, sequential processing, logic, the other theoretical frameworks ofcognitive science. A rationality, and conceptual schemata or frames. PTC coherent and plausible articulation ofthese fundamentals undertakes to assign these constructs their proper role in is the goal of this target article. Such an articulation is a a connectionist paradigm for cognitive modeling. PTC nontrivial task, because the term "connectionist" enCOIn­ also addresses certain foundational issues concerning passes a number of rather disparate theoretical frame­ mental states. works, all ofthem quite undeveloped. The connectionist I see no way of achieving the goals of PTC without framework I will articulate departs sufficiently radically adopting certain positions that will be regarded by a from traditional approaches in that its relations to other number of connectionists as premature or mistaken. parts of cognitive science are not simple. These are inevitable consequenccs of the fact that the For the moment, let me call the formulation of the connectionist appr9ach is still quite underdeveloped, and connectionist approach that I will offer PTe. I will not that the term "connectionist" has come to label a number argue the scientific merit of PTC; that some version of of approaches that embody significantly conflicting as­ connectionism along the lines ofPTC constitutes a "prop­ sumptions. PTC is not intended to represent a consensus er description ofprucessing" is argued ebewhere (e.g., in view ofwhat the connectionist approach is or should be. Rumelhart, McClelland & the PDP Research Group lt will perhaps enhance the clarity of the article if I 1986; McClelland, Rumelhart & the PDP Research attempt at the outset to make my position' clear on the Group 1986). Leavingaside the sdentmc merit ofconnec­ present value of connectionist models and their future tionist models, I want to argue here that PTC offers a potential. This article is not intended a"s a defense of all "Proper Treatment of Connectionism": a coherent for­ these views, though I will argue for a number of them, mulation of the connectionist approach that puts it in and the remainder have undoubtedly influenccd the contact with other theory in cognitive science in a particu­ presentation. On the one hand, I believe that: larly constructive way. PTC is intended as a formulatioll of connectionism that is at once strong enough to con­ (1) a. It is far from clear whether connectioni~t models have stitute a 1l1ajor cognitive hypothesis, comprehensive adequate computational power to perform high-Ievcl enough to face a numberofdifficult challenges, and sound cognitive tasks: There are serious ob~taclcs tbat must be enough to resist a number of objections in principle. If overcomc before connectionist L'OlUputation can offer PTC succeeds in these goals, it will facilitate the real modelers power comparable to that of symbolic business at hand: Assessing the-scientific adequacy ofthe computation, connectionist approach, that is, determiningwhether the b. It is far from dear that connectionist models offer a approach offers computational poweradequatefor human sound basis for modeling human cognitivc
Recommended publications
  • Paul Smolensky
    Vita PAUL SMOLENSKY Department of Cognitive Science 11824 Mays Chapel Road 239A Krieger Hall Timonium, MD 21093-1821 Johns Hopkins University (667) 229-9509 Baltimore, MD 21218-2685 May 5, 1955 (410) 516-5331 Citizenship: USA [email protected] cogsci.jhu.edu/directory/paul-smolensky/ DEGREES Ph.D. in mathematical physics, Indiana University, 1981. M.S. in physics, Indiana University, 1977. A.B. summa cum laude in physics, Harvard University, 1976. PROFESSIONAL POSITIONS Partner Researcher, Microsoft Research Artificial Intelligence, Redmond WA, Dec. 2016−present. Krieger-Eisenhower Professor of Cognitive Science, Johns Hopkins University, 2006–present. Full Professor, Department of Cognitive Science, Johns Hopkins University, 1994–2006. Chair, Department of Cognitive Science, Johns Hopkins University, Jan. 1997−June 1998 (Acting), July 1998−June 2000 Professor, Department of Computer Science, University of Colorado at Boulder, Full Professor, 1994–95 (on leave, 1994–95). Associate Professor, 1990–94. Assistant Professor, 1985–90. Assistant Research Cognitive Scientist (Assistant Professor – Research), Institute for Cognitive Science, University of California at San Diego, 1982–85. Visiting Scholar, Program in Cognitive Science, University of California at San Diego, 1981–82. Adjunct Professor, Department of Linguistics, University of Maryland at College Park, 1994–2010. Assistant Director, Center for Language and Speech Processing, Johns Hopkins University, 1995–2008. Director, NSF IGERT Training Program, Unifying the Science of Language, 2006−2015. Director, NSF IGERT Training Program in the Cognitive Science of Language, 1999−2006. International Chair, Inria Paris (National Institute for Research in Computer Science and Automation), 2017−2021. Visiting Scientist, Inserm-CEA Cognitive Neuroimaging Unit, NeuroSpin Center, Paris, France, 2016.
    [Show full text]
  • A View from Gradient Harmonic Grammar
    Asymmetries in Long-Distance Dependencies: A View from Gradient Harmonic Grammar constituent class membership to a degree, and presupposes that instead of standard category symbols like [X], there are weighted category symbols like [αX] (where α ranges over the real numbers in Hyunjung Lee & Gereon M¨uller (Universit¨at Leipzig) [0,1]). Rules, filters, and other syntactic building blocks are given upper and lower threshold values WorkshoponLong-DistanceDependencies,HUBerlin October 4-5, 2018 of α between which they operate. 1. Introduction Note: This way, the concept of varying strength of syntactic categories (see Chomsky (2015) for a recent Claim: reappraisal) can be formally implemented in the grammar. Gradient Harmonic Grammar (Smolensky & Goldrick (2016)) offers a new perspective on how to derive three different types of asymmetries as they can be observed with long-distance dependencies Observation: in the world’s languages: So far, most of the work on GHG has been in phonology (e.g., Zimmermann (2017), Faust & Smo- • asymmetries between movement types lensky (2017), Kushnir (2018)); but cf. Smolensky (2017), M¨uller (2017b), Lee (2018) for syntactic applications. • asymmetries between types of moved items • asymmetries between types of local domain 1.3. Harmonic Serialism Background assumptions: Note: (i) Harmonic Grammar Harmonic serialism is a strictly derivational version of optimality theory. (ii) Gradient Representations (3) Harmonic serialism (McCarthy (2008), Heck & M¨uller (2013)): (iii) Harmonic Serialism a. GivensomeinputIi, the candidate set CSi = {Oi1,Oi2, ...Oin} is generated by applying at 1.1. Harmonic Grammar most one operation to Ii. Harmonic Grammar (Smolensky & Legendre (2006), Pater (2016)): A version of optimality theory b.
    [Show full text]
  • A Distributed Computational Cognitive Model for Object Recognition
    SCIENCE CHINA xx xxxx Vol. xx No. x: 1{15 doi: A Distributed Computational Cognitive Model for Object Recognition Yong-Jin Liu1∗, Qiu-Fang Fu2, Ye Liu2 & Xiaolan Fu2 1Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China, 2State Key Lab of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China Received Month Day, Year; accepted Month Day, Year Abstract Based on cognitive functionalities in human vision processing, we propose a computational cognitive model for object recognition with detailed algorithmic descriptions. The contribution of this paper is of two folds. Firstly, we present a systematic review on psychological and neurophysiological studies, which provide collective evidence for a distributed representation of 3D objects in the human brain. Secondly, we present a computational model which simulates the distributed mechanism of object vision pathway. Experimental results show that the presented computational cognitive model outperforms five representative 3D object recognition algorithms in computer science research. Keywords distributed cognition, computational model, object recognition, human vision system 1 Introduction Object recognition is one of fundamental tasks in computer vision. Many recognition algorithms have been proposed in computer science area (e.g., [1, 2, 3, 4, 5]). While the CPU processing speed can now be reached at 109 Hz, the human brain has a limited speed of 100 Hz at which the neurons process their input. However, compared to state-of-the-art computational algorithms for object recognition, human brain has a distinct advantage in object recognition, i.e., human being can accurately recognize one from unlimited variety of objects within a fraction of a second, even if the object is partially occluded or contaminated by noises.
    [Show full text]
  • Warren Mcculloch and the British Cyberneticians
    Warren McCulloch and the British cyberneticians Article (Accepted Version) Husbands, Phil and Holland, Owen (2012) Warren McCulloch and the British cyberneticians. Interdisciplinary Science Reviews, 37 (3). pp. 237-253. ISSN 0308-0188 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/43089/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Warren McCulloch and the British Cyberneticians1 Phil Husbands and Owen Holland Dept. Informatics, University of Sussex Abstract Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him.
    [Show full text]
  • The Place of Modeling in Cognitive Science
    The place of modeling in cognitive science James L. McClelland Department of Psychology and Center for Mind, Brain, and Computation Stanford University James L. McClelland Department of Psychology Stanford University Stanford, CA 94305 650-736-4278 (v) / 650-725-5699 (f) [email protected] Running Head: Modeling in cognitive science Keywords: Modeling frameworks, computer simulation, connectionist models, Bayesian approaches, dynamical systems, symbolic models of cognition, hybrid models, cognitive architectures Abstract I consider the role of cognitive modeling in cognitive science. Modeling, and the computers that enable it, are central to the field, but the role of modeling is often misunderstood. Models are not intended to capture fully the processes they attempt to elucidate. Rather, they are explorations of ideas about the nature of cognitive processes. As explorations, simplification is essential – it is only through simplification that we can fully understand the implications of the ideas. This is not to say that simplification has no downsides; it does, and these are discussed. I then consider several contemporary frameworks for cognitive modeling, stressing the idea that each framework is useful in its own particular ways. Increases in computer power (by a factor of about 4 million) since 1958 have enabled new modeling paradigms to emerge, but these also depend on new ways of thinking. Will new paradigms emerge again with the next 1,000-fold increase? 1. Introduction With the inauguration of a new journal for cognitive science, thirty years after the first meeting of the Cognitive Science Society, it seems essential to consider the role of computational modeling in our discipline.
    [Show full text]
  • Kybernetik in Urbana
    Kybernetik in Urbana Ein Gespräch zwischen Paul Weston, Jan Müggenburg und James Andrew Hutchinson1 Paul Ernest Weston was born on February 3rd 1935 in Garland, Maine. After stu- dying physics at Wesleyan University in Middletown (Connecticut), 1952 through 1956, Paul Weston came to the University of Illinois in summer 1956, receiving his M.S. in August 1958. The following autumn, as a graduate student of physics, he attended a seminar led by Heinz von Foerster under the promising title „Cyberne- tics“.2 In June 1959 Paul joins the newly founded Biological Computer Laboratory (BCL) as a half time research assistant employed by the Electrical Engineering Department. Through roughly 1962, Weston’s primary emphasis was upon simulation of the processes of perception, with work in neuron models and pattern recognition. Together with Murray Babcock, Weston was one of the most prominent creators of prototypes built at the BCL. Already in 1961 Weston becomes widely known as the inventor of the NumaRete, a parallel operated pattern recognition machine, which played an important role in the public perception of the BCL through out the fol- lowing years.3 After 1964 Weston continues his research at BCL on the basis of a full position as a research assistant and starts to focus on information processing, particularly inte- rested in problems associated with natural-language interaction with machine. As a member of the Committee for Cognitive Studies Weston is also increasingly interes- ted in the potentials of how the new information technologies could shape society. In June 1970 Weston receives his PhD for developing a new and more efficient data structure called CYLINDER.4 After the BCL was closed in 1975 Weston continued to work as a Research Associate at the Department of Electrical Engineering and the Coordinated Science Laboratory of the University of Illinois.
    [Show full text]
  • 1011 Neurons } 1014 Synapses the Cybernetics Group
    History 329/SI 311/RCSSCI 360 Computers and the Internet: A global history Week 6: Computing and Cybernetics in the Soviet Union Today } Review } Cybernetics: minds, brains, and machines } Soviet computing and cybernetics } Soviet economic planning } Next time Review: SAGE } Origin: Whirlwind digital computer project, MIT } SAGE = Semi-Automatic Ground Environment } Computer-controlled air defense of lower 48 states } Networked over telephone lines } Duplexed (two computers for high reliability) } Tube-based central processors made by IBM } Magnetic core memory } First truly large software development } Served as a pattern for many subsequent military projects } Major factor in US and IBM dominance of commercial computer markets by late1950s Cybernetics: minds, brains, and machines Key figures } Norbert Wiener } cybernetics } Warren McCulloch & Walter Pitts } neural nets } John von Neumann } brain modeling, cellular automata, biological metaphors } Frank Rosenblatt } perceptrons The Cybernetics Group } Norbert Wiener, MIT } WWII anti-aircraft problems } Servo/organism analogies } “Behavior, Purpose, and Teleology” (1943) } Information as measurable quantity } Feedback: circular self-corrective cycles BEHAVIOR, PURPOSE AND TELEOLOGY 21 Examples of predictions of higher order are shooting with a sling or with a bow and arrow. Predictive behavior requires the discrimination of at least two coordinates, a temporal and at least one spatial axis. Prediction will be more effective and flexible, however, if the behaving object can respond to changes in more than one spatial coordinate. The sensory receptors of an organism, or the corresponding elements of a machine, may therefore limit the predictive behavior. Thus, a bloodhound follows a trail, that is, it does not show any predictive behavior in trailing, because a chemical, olfactory input reports only spatial information: distance, as indicated by intensity.
    [Show full text]
  • A Bayesian Computational Cognitive Model ∗
    A Bayesian Computational Cognitive Model ∗ Zhiwei Shi Hong Hu Zhongzhi Shi Key Laboratory of Intelligent Information Processing Institute of Computing Technology, CAS, China Kexueyuan Nanlu #6, Beijing, China 100080 {shizw, huhong, shizz}@ics.ict.ac.cn Abstract problem solving capability and provide meaningful insights into mechanisms of human intelligence. Computational cognitive modeling has recently Besides the two categories of models, recently, there emerged as one of the hottest issues in the AI area. emerges a novel approach, hybrid neural-symbolic system, Both symbolic approaches and connectionist ap- which concerns the use of problem-specific symbolic proaches present their merits and demerits. Al- knowledge within the neurocomputing paradigm [d'Avila though Bayesian method is suggested to incorporate Garcez et al., 2002]. This new approach shows that both advantages of the two kinds of approaches above, modal logics and temporal logics can be effectively repre- there is no feasible Bayesian computational model sented in artificial neural networks [d'Avila Garcez and concerning the entire cognitive process by now. In Lamb, 2004]. this paper, we propose a variation of traditional Different from the hybrid approach above, we adopt Bayesian network, namely Globally Connected and Bayesian network [Pearl, 1988] to integrate the merits of Locally Autonomic Bayesian Network (GCLABN), rule-based systems and neural networks, due to its virtues as to formally describe a plausible cognitive model. follows. On the one hand, by encoding concepts
    [Show full text]
  • Journal of Sociocybernetics
    JOURNAL OF SOCIOCYBERNETICS _________________________________________________________________ Volume 3 Number 1 Spring/Summer 2002 Official Journal of the Research Committee on Sociocybernetics (RC51) of the International Sociological Association JOURNAL OF SOCIOCYBERNETICS www.unizar.es/sociocybernetics/ Editor Richard E. Lee Newsletter Cor Van Dijkum Felix Geyer Editorial Board Mike Byron Tessaleno Devezas Jorge González Bernd R. Hornung Chaime Marcuello Vessela Misheva Philip Nikolopoulos Bernard Scott Mike Terpstra ____________________________________________________________________________ The JOURNAL OF SOCIOCYBERNETICS (ISSN 1607-8667) is an electronic journal published biannually--Spring/Summer and Fall/Winter--by the Research Committee on Sociocybernetics of the International Sociological Association. MANUSCRIPT submissions should be sent electronically (in MSWord or Rich Text File format) to each of the editors: Richard E. Lee [email protected], Felix Geyer, [email protected], and Cor van Dijkum, [email protected]. In general, please follow the Chicago Manuel of Style; citations and bibliography should follow the current journal style (APA). Normally, articles should be original texts of no more than 6000 words, although longer articles will be considered in exceptional circumstances. The Journal looks for submissions that are innovative and apply principles of General Systems Theory and Cybernetics to the social sciences, broadly conceived. COPYRIGHT remains the property of authors. Permission to reprint must be obtained from the authors and the contents of JoS cannot be copied for commercial purposes. JoS does, however, reserve the right to future reproduction of articles in hard copy, portable document format (.pdf), or HTML editions of JoS. iii SOCIOCYBERNETICS traces its intellectual roots to the rise of a panoply of new approaches to scientific inquiry beginning in the 1940's.
    [Show full text]
  • Machine Learning Techniques for Equalizing Nonlinear Distortion
    Machine Learning Techniques for Equalizing Nonlinear Distortion A Technical Paper prepared for SCTE•ISBE by Rob Thompson Director, NGAN Network Architecture Comcast 1800 Arch St., Philadelphia, PA 19103 (215) 286-7378 [email protected] Xiaohua Li Associate Professor, Dept. of Electrical and Computer Engineering State University of New York at Binghamton Binghamton, NY 13902 (607) 777-6048 [email protected] © 2020 SCTE•ISBE and NCTA. All rights reserved. 1 Table of Contents Title Page Number 1. Introduction .................................................................................................................................... 4 2. Artificial Intelligence (AI) ................................................................................................................. 4 2.1. Historical Perspective ........................................................................................................ 4 2.2. Common Solutions ............................................................................................................ 4 2.3. Popular Tools/Models ........................................................................................................ 5 2.4. Biological Inspiration .......................................................................................................... 5 2.5. DOCSIS Transmit Pre-Equalization ................................................................................... 6 3. Power Amplifier (PA) Efficiency Problem .......................................................................................
    [Show full text]
  • Harmonic Grammar with Linear Programming
    To appear in Phonology 27(1):1–41 February 18, 2010 Harmonic grammar with linear programming: From linear systems to linguistic typology∗ Christopher Potts Joe Pater Stanford University UMass Amherst Karen Jesney Rajesh Bhatt UMass Amherst UMass Amherst Michael Becker Harvard University Abstract Harmonic Grammar (HG) is a model of linguistic constraint interac- tion in which well-formedness is calculated in terms of the sum of weighted constraint violations. We show how linear programming algorithms can be used to determine whether there is a weighting for a set of constraints that fits a set of linguistic data. The associated software package OT-Help provides a practical tool for studying large and complex linguistic systems in the HG framework and comparing the results with those of OT. We first describe the translation from harmonic grammars to systems solvable by linear programming algorithms. We then develop an HG analysis of ATR harmony in Lango that is, we argue, superior to the existing OT and rule-based treatments. We further highlight the usefulness of OT-Help, and the analytic power of HG, with a set of studies of the predictions HG makes for phonological typology. Keywords: Harmonic Grammar, Optimality Theory, linear programming, typology, Lango, ATR harmony, positional markedness, positional faithfulness 1 Introduction We examine a model of grammar that is identical to the standard version of Optimality Theory (OT: Prince & Smolensky 1993/2004), except that the optimal Our thanks to Ash Asudeh, Tim Beechey, Maitine Bergonioux, Paul Boersma, John Colby, Kathryn ∗ Flack, Edward Flemming, Bob Frank, John Goldmsith, Maria Gouskova, Bruce Hayes, René Kager, Shigeto Kawahara, John Kingston, John McCarthy, Andrew McKenzie, Ramgopal Mettu, Alan Prince, Kathryn Pruitt, Jason Riggle, Jim Smith, and Paul Smolensky, and other participants in conferences and courses where this material was presented.
    [Show full text]
  • A Defense of Pure Connectionism
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 A Defense of Pure Connectionism Alex B. Kiefer The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3036 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] A DEFENSE OF PURE CONNECTIONISM by ALEXANDER B. KIEFER A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 © 2019 ALEXANDER B. KIEFER All Rights Reserved ii A Defense of Pure Connectionism By Alexander B. Kiefer This manuscript has been read and accepted by the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. _________________________ _________________________________________ 1/22/2019 Eric Mandelbaum Chair of Examining Committee _________________________ _________________________________________ 1/22/2019 Nickolas Pappas Executive Officer Supervisory Committee: David Rosenthal Jakob Hohwy Eric Mandelbaum THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT A Defense of Pure Connectionism by Alexander B. Kiefer Advisor: David M. Rosenthal Connectionism is an approach to neural-networks-based cognitive modeling that encompasses the recent deep learning movement in artificial intelligence. It came of age in the 1980s, with its roots in cybernetics and earlier attempts to model the brain as a system of simple parallel processors.
    [Show full text]