Identification of Balanced Chromosomal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Family: Gene Duplication and Retrotransposon Insertion
21 Bucentaur (Bcnt)1 Gene Family: Gene Duplication and Retrotransposon Insertion Shintaro Iwashita and Naoki Osada Iwaki Meisei University / National Institute of Genetics Japan 1. Introduction Members of multiple gene families in higher organisms allow for more refined cellular signaling networks and structural organization toward more stable physiological homeostasis. Gene duplication is one the most powerful ways of providing an opportunity to create a novel gene(s) because a novel function might be acquired without the loss of the original gene function (Ohno, 1970). Gene duplication can result from unequal crossing over by recombination, retroposition of cDNA, or whole-genome duplication. Furthermore, a replication-based mechanism of change in gene copy number has been proposed recently (Hastings et al., 2009). Gene duplication generated by retroposition is frequently accompanied by deleterious effects because the insertion of cDNA into the genome is nearly random or unlinks the original gene location resulting in an alteration of the original vital functions of the target genes. Thus retroelements such as transposable elements and endogenous retroviruses have been thought of as “selfish”. On the other hand, gene duplication caused by unequal crossing over generally results in tandem alignment, which less frequently disrupts the functions of other genes. Recent genome-wide studies have demonstrated that retroelements can definitely contribute to the creation of individual novel genes and the modulation of gene expression, which allows for the dynamic diversity of biological systems, such as placental evolution (Rawn & Cross, 2008). It is now recognized that tandem duplication and retroposition are among the key factors that initiate the creation of novel gene family members (Brosius, 2005; Sorek, 2007; Kaessmann, 2010). -
Replace This with the Actual Title Using All Caps
UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified. -
An Investigation Into the Genetic Architecture of Multiple System Atrophy and Familial Parkinson's Disease
An investigation into the genetic architecture of multiple system atrophy and familial Parkinson’s disease By Monica Federoff A thesis submitted to University College London for the degree of Doctor of Philosophy Laboratory of Neurogenetics, Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL) 2 I, Monica Federoff, confirm that the work presented in this thesis is my own. Information derived from other sources and collaborative work have been indicated appropriately. Signature: Date: 09/06/2016 3 Acknowledgements: When I first joined the Laboratory of Neurogenetics (LNG), NIA, NIH as a summer intern in 2008, I had minimal experience working in a laboratory and was both excited and anxious at the prospect of it. From my very first day, Dr. Andrew Singleton was incredibly welcoming and introduced me to my first mentor, Dr. Javier Simon- Sanchez. Within just ten weeks working in the lab, both Dr. Singleton and Dr. Simon- Sanchez taught me the fundamental skills in an encouraging and supportive environment. I quickly got to know others in the lab, some of whom are still here today, and I sincerely appreciate their help with my assimilation into the LNG. After returning for an additional summer and one year as an IRTA postbac, I was honored to pursue a PhD in such an intellectually stimulating and comfortable environment. I am so grateful that Dr. Singleton has been such a wonderful mentor, as he is not only a brilliant scientist, but also extremely personable and approachable. If I inquire about meeting with him, he always manages to make time in his busy schedule and provides excellent guidance and mentorship. -
Reconstruction and Analysis of Gene Networks of Human
G C A T T A C G G C A T genes Article Reconstruction and Analysis of Gene Networks of Human Neurotransmitter Systems Reveal Genes with Contentious Manifestation for Anxiety, Depression, and Intellectual Disabilities Roman Ivanov 1,2,*, Vladimir Zamyatin 1,2, Alexandra Klimenko 1,2 , Yury Matushkin 1,2, Alexander Savostyanov 1,2,3 and Sergey Lashin 1,2 1 Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; [email protected] (V.Z.); [email protected] (A.K.); [email protected] (Y.M.); [email protected] (A.S.); [email protected] (S.L.) 2 Novosibirsk State University, 630090 Novosibirsk, Russia 3 Institute of Physiology and Basic Medicine SB RAMS, 630117 Novosibirsk, Russia * Correspondence: [email protected] Received: 12 August 2019; Accepted: 9 September 2019; Published: 11 September 2019 Abstract: Background: The study of the biological basis of anxiety, depression, and intellectual disabilities in humans is one of the most actual problems of modern neurophysiology. Of particular interest is the study of complex interactions between molecular genetic factors, electrophysiological properties of the nervous system, and the behavioral characteristics of people. The neurobiological understanding of neuropsychiatric disorders requires not only the identification of genes that play a role in the molecular mechanisms of the occurrence and course of diseases, but also the understanding of complex interactions that occur between these genes. A systematic study of such interactions obviously contributes to the development of new methods of diagnosis, prevention, and treatment of disorders, as the orientation to allele variants of individual loci is not reliable enough, because the literature describes a number of genes, the same alleles of which can be associated with different, sometimes extremely different variants of phenotypic traits, depending on the genetic background, of their carriers, habitat, and other factors. -
Multiple System Atrophy: Genetic Or Epigenetic?
http://dx.doi.org/10.5607/en.2014.23.4.277 Exp Neurobiol. 2014 Dec;23(4):277-291. pISSN 1226-2560 • eISSN 2093-8144 Review Article A featured article of the special issue on Parkinsonian Syndrome Multiple System Atrophy: Genetic or Epigenetic? Edith Sturm and Nadia Stefanova* Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria Multiple system atrophy (MSA) is a rare, late-onset and fatal neurodegenerative disease including multisystem neurodegeneration and the formation of α-synuclein containing oligodendroglial cytoplasmic inclusions (GCIs), which present the hallmark of the disease. MSA is considered to be a sporadic disease; however certain genetic aspects have been studied during the last years in order to shed light on the largely unknown etiology and pathogenesis of the disease. Epidemiological studies focused on the possible impact of environmental factors on MSA disease development. This article gives an overview on the findings from genetic and epigenetic studies on MSA and discusses the role of genetic or epigenetic factors in disease pathogenesis. Key words: Multiple system atrophy, α-synuclein, neurodegeneration, genetics, epigenetics INTRODUCTION is characterized by selective wide spread neuronal cell loss, gliosis and oligodendroglial cytoplasmic inclusions (GCIs) affecting In 1969 Graham and Oppenheimer suggested the term several structures of the central nervous system [3, 6, 7]. “multiple system atrophy” (MSA) to describe and combine Neuronal loss in MSA affects the striatum, substantia nigra a set of different disorders, including olivopontocerebellar pars compacta (SNpc), cerebellum, pons, inferior olives, central atrophy (OPCA), striatonigral degeneration (SND) and Shy- autonomic nuclei and the intermediolateral column of the spinal Drager syndrome [1]. -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. -
Identifying Genetic Risk Factors for Coronary Artery Angiographic Stenosis in a Genetically Diverse Population
Please do not remove this page Identifying Genetic Risk Factors for Coronary Artery Angiographic Stenosis in a Genetically Diverse Population Liu, Zhi https://scholarship.miami.edu/discovery/delivery/01UOML_INST:ResearchRepository/12355224170002976?l#13355497430002976 Liu, Z. (2016). Identifying Genetic Risk Factors for Coronary Artery Angiographic Stenosis in a Genetically Diverse Population [University of Miami]. https://scholarship.miami.edu/discovery/fulldisplay/alma991031447280502976/01UOML_INST:ResearchR epository Embargo Downloaded On 2021/09/26 20:05:11 -0400 Please do not remove this page UNIVERSITY OF MIAMI IDENTIFYING GENETIC RISK FACTORS FOR CORONARY ARTERY ANGIOGRAPHIC STENOSIS IN A GENETICALLY DIVERSE POPULATION By Zhi Liu A DISSERTATION Submitted to the Faculty of the University of Miami in partial fulfillment of the requirements for the degree of Doctor of Philosophy Coral Gables, Florida August 2016 ©2016 Zhi Liu All Rights Reserved UNIVERSITY OF MIAMI A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy IDENTIFYING GENETIC RISK FACTORS FOR CORONARY ARTERY ANGIOGRAPHIC STENOSIS IN A GENETICALLY DIVERSE POPULATION Zhi Liu Approved: ________________ _________________ Gary W. Beecham, Ph.D. Liyong Wang, Ph.D. Assistant Professor of Human Associate Professor of Human Genetics Genetics ________________ _________________ Eden R. Martin, Ph.D. Guillermo Prado, Ph.D. Professor of Human Genetics Dean of the Graduate School ________________ Tatjana Rundek, M.D., Ph.D. Professor of Neurology LIU, ZHI (Ph.D., Human Genetics and Genomics) Identifying Genetic Risk Factors for Coronary Artery (August 2016) Angiographic Stenosis in a Genetically Diverse Population Abstract of a dissertation at the University of Miami. Dissertation supervised by Professor Gary W. -
Enhancement of RNA Splicing by the Nutrient-Regulated Splicing Factor SRSF3
Graduate Theses, Dissertations, and Problem Reports 2015 Enhancement of RNA Splicing by the Nutrient-Regulated Splicing Factor SRSF3 Amanda L. Suchanek Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Suchanek, Amanda L., "Enhancement of RNA Splicing by the Nutrient-Regulated Splicing Factor SRSF3" (2015). Graduate Theses, Dissertations, and Problem Reports. 6740. https://researchrepository.wvu.edu/etd/6740 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Enhancement of RNA Splicing by the Nutrient-Regulated Splicing Factor SRSF3. Amanda L. Suchanek Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry & Molecular Biology Committee Members Lisa Salati, Ph.D., Chair John Hollander, Ph.D. J. Michael Ruppert, M.D., Ph.D. Maxim Sokolov, Ph.D. Yehenew Agazie, Ph.D. Graduate Program in Biochemistry West Virginia University School of Medicine Morgantown, West Virginia 2015 Keywords: SRSF3, G6PD, RNA splicing, hepatocytes, adenovirus, intron retention © 2015 Amanda Suchanek ABSTRACT Enhancement of RNA Splicing by the Nutrient Regulated Splicing Factor, SRSF3 Amanda L. -
Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root Ganglia: an RNA-Seq-Based Resource for Pain and Sensory Neuroscience Research
bioRxiv preprint doi: https://doi.org/10.1101/165431; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research Short Title: Human and mouse DRG comparative transcriptomics Pradipta Ray 1, 2 #, Andrew Torck 1 , Lilyana Quigley 1, Andi Wangzhou 1, Matthew Neiman 1, Chandranshu Rao 1, Tiffany Lam 1, Ji-Young Kim 1, Tae Hoon Kim 2, Michael Q. Zhang 2, Gregory Dussor 1 and Theodore J. Price 1, # 1 The University of Texas at Dallas, School of Behavioral and Brain Sciences 2 The University of Texas at Dallas, Department of Biological Sciences # Corresponding authors Theodore J Price Pradipta Ray School of Behavioral and Brain Sciences School of Behavioral and Brain Sciences The University of Texas at Dallas The University of Texas at Dallas BSB 14.102G BSB 10.608 800 W Campbell Rd 800 W Campbell Rd Richardson TX 75080 Richardson TX 75080 972-883-4311 972-883-7262 [email protected] [email protected] Number of pages: 27 Number of figures: 9 Number of tables: 8 Supplementary Figures: 4 Supplementary Files: 6 Word count: Abstract = 219; Introduction = 457; Discussion = 1094 Conflict of interest: The authors declare no conflicts of interest Patient anonymity and informed consent: Informed consent for human tissue sources were obtained by Anabios, Inc. (San Diego, CA). Human studies: This work was approved by The University of Texas at Dallas Institutional Review Board (MR 15-237). -
Population-Haplotype Models for Mapping and Tagging Structural Variation Using Whole Genome Sequencing
Population-haplotype models for mapping and tagging structural variation using whole genome sequencing Eleni Loizidou Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy Section of Genomics of Common Disease Department of Medicine Imperial College London, 2018 1 Declaration of originality I hereby declare that the thesis submitted for a Doctor of Philosophy degree is based on my own work. Proper referencing is given to the organisations/cohorts I collaborated with during the project. 2 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work 3 Abstract The scientific interest in copy number variation (CNV) is rapidly increasing, mainly due to the evidence of phenotypic effects and its contribution to disease susceptibility. Single nucleotide polymorphisms (SNPs) which are abundant in the human genome have been widely investigated in genome-wide association studies (GWAS). Despite the notable genomic effects both CNVs and SNPs have, the correlation between them has been relatively understudied. In the past decade, next generation sequencing (NGS) has been the leading high-throughput technology for investigating CNVs and offers mapping at a high-quality resolution. We created a map of NGS-defined CNVs tagged by SNPs using the 1000 Genomes Project phase 3 (1000G) sequencing data to examine patterns between the two types of variation in protein-coding genes. -
Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root
Research Paper Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq–based resource for pain and sensory neuroscience research a,b a a a a a 07/20/2018 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== by https://journals.lww.com/pain from Downloaded Pradipta Ray , Andrew Torck , Lilyana Quigley , Andi Wangzhou , Matthew Neiman , Chandranshu Rao , Downloaded Tiffany Lama, Ji-Young Kima, Tae Hoon Kimb, Michael Q. Zhangb, Gregory Dussora, Theodore J. Pricea,* from https://journals.lww.com/pain Abstract Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA- sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (;140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug–gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. -
Ejhg2009157.Pdf
European Journal of Human Genetics (2010) 18, 342–347 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 $32.00 www.nature.com/ejhg ARTICLE Fine mapping and association studies of a high-density lipoprotein cholesterol linkage region on chromosome 16 in French-Canadian subjects Zari Dastani1,2,Pa¨ivi Pajukanta3, Michel Marcil1, Nicholas Rudzicz4, Isabelle Ruel1, Swneke D Bailey2, Jenny C Lee3, Mathieu Lemire5,9, Janet Faith5, Jill Platko6,10, John Rioux6,11, Thomas J Hudson2,5,7,9, Daniel Gaudet8, James C Engert*,2,7, Jacques Genest1,2,7 Low levels of high-density lipoprotein cholesterol (HDL-C) are an independent risk factor for cardiovascular disease. To identify novel genetic variants that contribute to HDL-C, we performed genome-wide scans and quantitative association studies in two study samples: a Quebec-wide study consisting of 11 multigenerational families and a study of 61 families from the Saguenay– Lac St-Jean (SLSJ) region of Quebec. The heritability of HDL-C in these study samples was 0.73 and 0.49, respectively. Variance components linkage methods identified a LOD score of 2.61 at 98 cM near the marker D16S515 in Quebec-wide families and an LOD score of 2.96 at 86 cM near the marker D16S2624 in SLSJ families. In the Quebec-wide sample, four families showed segregation over a 25.5-cM (18 Mb) region, which was further reduced to 6.6 Mb with additional markers. The coding regions of all genes within this region were sequenced. A missense variant in CHST6 segregated in four families and, with additional families, we observed a P value of 0.015 for this variant.