ADAR1 Promotes Malignant Progenitor Reprogramming in Chronic Myeloid Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

ADAR1 Promotes Malignant Progenitor Reprogramming in Chronic Myeloid Leukemia ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia Qingfei Jianga,b,c, Leslie A. Crewsa,b,c, Christian L. Barrettd, Hye-Jung Chune, Angela C. Courta,b,c, Jane M. Isquitha,b,c,f, Maria A. Zipetoa,b,c,g, Daniel J. Goffa,b,c, Mark Mindenh, Anil Sadarangania,b,c, Jessica M. Rusertc,i, Kim-Hien T. Daoj, Sheldon R. Morrisa,b, Lawrence S. B. Goldsteinc,i,k, Marco A. Marrae, Kelly A. Frazerd, and Catriona H. M. Jamiesona,b,c,1 aStem Cell Program, Department of Medicine, bMoores Cancer Center, dDivision of Genome Information Sciences, Department of Pediatrics, iDepartment of Cellular and Molecular Medicine, and kHoward Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093; eCanada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3; fDepartment of Animal Science, California Polytechnic State University, San Luis Obispo, CA 93405; gDepartment of Health Sciences, University of Milano-Bicocca, 20052 Milan, Italy; hPrincess Margaret Hospital, Toronto, ON, Canada M5T 2M9; jCenter for Hematologic Malignancies, Oregon Health and Science University Knight Cancer Institute, Portland, OR 97239; and cSanford Consortium for Regenerative Medicine, La Jolla, CA 92037 Edited* by Irving L. Weissman, Stanford University, Stanford, CA, and approved November 30, 2012 (received for review July 30, 2012) The molecular etiology of human progenitor reprogramming into ADAR2 are active in embryonic cell types (18), and ADAR3 self-renewing leukemia stem cells (LSC) has remained elusive. Al- may play a nonenzymatic regulatory role in RNA editing activity though DNA sequencing has uncovered spliceosome gene muta- (22). ADAR enzymes regulate fetal and adult hematopoietic stem tions that promote alternative splicing and portend leukemic cell (HSC) maintenance and stem cell responses to inflammation transformation, isoform diversity also may be generated by RNA (23–26). ADAR-mediated adenosine-to-inosine (A-to-I) RNA editing mediated by adenosine deaminase acting on RNA (ADAR) editing in an Alu sequence containing dsRNA hairpin structures enzymes that regulate stem cell maintenance. In this study, whole- (14, 20) can generate alternative donor or acceptor splice sites transcriptome sequencing of normal, chronic phase, and serially (27, 28), alter RNA structure (21), modulate regulatory RNAs transplantable blast crisis chronic myeloid leukemia (CML) progen- and gene silencing activities (29), and introduce codon sequence itors revealed increased IFN-γ pathway gene expression in concert alterations (29). Interestingly, ADAR deregulation has been im- with BCR-ABL amplification, enhanced expression of the IFN-re- plicated in a variety of malignant cell types (30, 31). However, the sponsive ADAR1 p150 isoform, and a propensity for increased functional effects of RNA editing in leukemia have not been adenosine-to-inosine RNA editing during CML progression. Lenti- elucidated. Here we examined the role of ADAR1-mediated RNA editing in malignant reprogramming of myeloid progenitors viral overexpression experiments demonstrate that ADAR1 p150 into LSC that drive BC transformation in CML. promotes expression of the myeloid transcription factor PU.1 and Whole-transcriptome sequencing coupled with quantitative induces malignant reprogramming of myeloid progenitors. More- RT-PCR (qRT-PCR) analysis demonstrated increased IFN-re- over, enforced ADAR1 p150 expression was associated with produc- sponsive ADAR1 expression in LSC from primary BC CML pa- β tion of a misspliced form of GSK3 implicated in LSC self-renewal. tient samples as compared with CP CML and normal cord blood Finally, functional serial transplantation and shRNA studies dem- progenitors. This increase coincided with enhanced expression of MEDICAL SCIENCES onstrate that ADAR1 knockdown impaired in vivo self-renewal inflammatory pathway genes during the progression from CP to capacity of blast crisis CML progenitors. Together these data pro- BC. Moreover, ADAR1 p150 mRNA expression correlated with vide a compelling rationale for developing ADAR1-based LSC de- BCR-ABL amplification and increased A-to-I editing with dif- tection and eradication strategies. ferential expression of ADAR target genes in BC CML. Lentiviral ADAR1 p150 expression induced PU.1 expression that promotes lthough advanced malignancies are diverse in phenotype, expansion of myeloid progenitors and was associated with pro- Athey often exhibit stem-cell properties including enhanced duction of a misspliced form of glycogen synthase kinase (GSK)- survival, differentiation, quiescence, and self-renewal potential 3β that has been implicated in LSC self-renewal (7). Lentiviral ADAR1 knockdown also reduced BC LSC self-renewal capacity (1, 2). Early insights into the molecular pathogenesis of cancer − − − − stemmed from the discovery of the Philadelphia chromosome in RAG2 / γc / mice. These data shed light on the contribution + (Ph ) and its constitutively active BCR-ABL1 tyrosine kinase in of ADAR1-mediated RNA editing to malignant progenitor chronic myeloid leukemia (CML) (3–5). Tyrosine kinase inhibitor reprogramming driving leukemic progression. (TKI) therapy targeting BCR-ABL1 suppresses CML during the chronic phase (CP) of the disease in most patients able to tolerate Results long-term therapy (6). Although the CP stage of CML often can Inflammatory Mediator-Driven RNA Editing Portends Blastic Trans- be controlled for long periods of time with standard TKI thera- formation. To investigate the mechanisms driving malignant pies, subsequent genetic and epigenetic alterations promote pro- reprogramming of myeloid progenitors into LSC, we performed genitor expansion and the generation of self-renewing leukemia whole-transcriptome sequencing (RNA-seq) on FACS-purified + + − stem cells (LSC) that fuel disease progression and blast crisis (BC) CD34 CD38 Lin progenitor cells isolated from primary CML transformation along with TKI resistance (7, 8). Furthermore, TKI discontinuation usually results in CML resurgence, suggesting – that quiescent progenitors persist despite therapy (9 12). Author contributions: Q.J., M.A.M., K.A.F., and C.H.M.J. designed research; Q.J., C.L.B., Mutations in spliceosome genes and alternative splicing of H.-J.C., A.C.C., J.M.I., M.A.Z., D.J.G., A.S., and J.M.R. performed research; M.M., A.S., K.-H.T.D., coding and noncoding RNAs are emerging as important drivers L.S.B.G., M.A.M., and K.A.F. contributed new reagents/analytic tools; Q.J., L.A.C., C.L.B., of transcriptomic diversity that fuel leukemic progression and H.-J.C., A.C.C., J.M.I., M.A.Z., D.J.G., S.R.M., and C.H.M.J. analyzed data; and Q.J., L.A.C., therapeutic resistance (7, 8, 13). Moreover, previous studies re- and C.H.M.J. wrote the paper. veal extensive RNA editing in the human transcriptome (14–17), The authors declare no conflict of interest. primarily in primate-specific Alu sequences (18–20), which pro- *This Direct Submission article had a prearranged editor. motes splice isoform diversity. RNA editing activity is mediated Freely available online through the PNAS open access option. by the adenosine deaminase acting on dsRNA (ADAR) family of 1To whom correspondence should be addressed. E-mail: [email protected]. editases (21), which includes ADAR1 (also known as ADAR), This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. ADAR2 (ADARB1), and ADAR3 (ADARB2). ADAR1 and 1073/pnas.1213021110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1213021110 PNAS | January 15, 2013 | vol. 110 | no. 3 | 1041–1046 Downloaded by guest on September 29, 2021 Imatinib- A FGF SIGNALING G treated PATHWAY(N) NATURAL PROTEOGLYCAN KILLER 3.00 SYNDECAN-MEDIATED ROLE OF MEF2D CELL MEDIATED 2.00 SIGNALING IN CYTOTOXICITY(K) 1.00 EVENTS(N) T-CELL 0.00 APOPTOSIS(B) -1.00 PDGFR-BETA BCELL T CELL -2.00 CP-13 CP-05 CP-01 BC-17 BC-06 BC-02 CP-12 CP-04 CP-19 BC-05 BC-08 BC-09 CP-02 CB-03 BC-07 CB-02 CP-06 BC-25 SIGNALING BCELL ACTIVATION(P) CB-01 FAM107B NECTIN ACTIVATION(P) -3.00 PATHWAY(N) RECEPTOR CD70 ADHESION THROMBOXANE RPS6KA2 A2 SIGNALING DCTN4 PATHWAY(N) FARP1 SPHINGOSINE RECEPTOR PATHWAY(K) RAP1GAP2 1-PHOSPHATE SIGNALING(N) SERINC5 S1P1 NRP1 PATHWAY(N) (S1P) KIF1C PATHWAY(N) CPM TRAIL NLRC5 SIGNALING T CELL ZCCHC7 EVENTS SIGNALING LARGE RECEPTOR MXRA7 REGULATION OF PATHWAY(N) MEDIATED BY SIGNALING NEK11 PTP1B(N) NUCLEAR STAT1 PATHWAY(K) TSPAN13 SMAD2/3 TNF RECEPTOR MGAT4A SIGNALING(N) CDK9 SIGNALING IL12RB1 BCR SIGNALING PLASMA GLYPICAN 1 C4orf34 P38 MAPKPATHWAY(N) PATHWAY(N) AGPS MEMBRANE NETWORK(N) TMEM154 ESTROGEN SIGNALING OLFML2A PATHWAY(N) GLYPICAN VCAN RECEPTOR PATHWAY(N) TCR SIGNALING ANXA2 SIGNALING(N) FBXW7 REGULATION OF CLASS I PI3K IN LY96 NAIVE CD4+ T RBM47 REGULATION OF P38-ALPHA SIGNALING GALNT3 AND EVENTS(N) CELLS(N) PTPN14 CYTOPLASMIC TRIM38 AND P38-BETA(N) IL1-MEDIATED HDAC5 SIGNALING FLNB NUCLEAR TCR SIGNALING CMTM8 BMP RECEPTOR EVENTS(N) SMAD2/3 IN CLMN SIGNALING(N) ARHGAP25 SIGNALING(N) NAIVE CD8+ T CUEDC1 TGF-BETA BC Increased in CML CELLS(N) SLC27A1 RECEPTOR TCR LAPTM5 γ ALOX5 IFN- SIGNALING(N) SIGNALING(R) SLC35E3 SPATS2L IL6-MEDIATED PATHWAY(N) RNASET2 MS4A7 SIGNALING CD58 EVENTS(N) RAB31 FDR 4.0E-05 0.01 IL12-MEDIATED PLCD3 SIGNALING MEF2A CDS2 EVENTS(N) LRRFIP1 PIK3IP1 NCUBE1 ICOSLG MEF2D ADAR1 mRNA Expression ANXA6 BC HCK *P<0.05 VIL2 2 FGD6 p150 r =0.63, P=0.058 RNF125 20 **P<0.05 50 TPM4 2 S100A16 p110 r =0.42, P=0.162 FRMD4B MYO5C GUCY1A3 40 ABCA1 15 PKM2 SSBP2 SNX2 30 KIAA2018 PROM1 10 RUNX2 DUSP3 20 ANPEP TIMP2 SH3BP2 ARHGAP26 5 MAML2 10 SMAD1 TCF7L2 SVIL ADAR1 mRNA Expression PLCB1 0 0 COQ10B ATF3 d 0.0 0.5 1.0 1.5 2.0 2.5 IRGQ Ratio of p150 to p110 mRNA Levels mRNA Ratio of p150 to p110 CP SESN1 RNF11 BCR-ABL mRNA Expression CLEC2B CML CML BC RHOC Cord Bloo RIPK2 NSUN7 RASGEF1B CNST A-to-I Editing Changes in CML BC v.
Recommended publications
  • The G Protein-Coupled Receptor GPR157 Regulates Neuronal
    www.nature.com/scientificreports OPEN The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial Received: 12 February 2016 Accepted: 12 April 2016 progenitors through the Gq-IP3 Published: 04 May 2016 pathway Yutaka Takeo1, Nobuhiro Kurabayashi2, Minh Dang Nguyen3 & Kamon Sanada2 The ability of radial glial progenitors (RGPs) to generate cortical neurons is determined by local extracellular factors and signaling pathways intrinsic to RGPs. Here we find that GPR157, an orphan G protein-coupled receptor, localizes to RGPs’ primary cilia exposed to the cerebrospinal fluid (CSF). GPR157 couples with Gq-class of the heterotrimeric G-proteins and signals through IP3-mediated Ca2+ cascade. Activation of GPR157-Gq signaling enhances neuronal differentiation of RGPs whereas interfering with GPR157-Gq-IP3 cascade in RGPs suppresses neurogenesis. We also detect the presence of putative ligand(s) for GPR157 in the CSF, and demonstrate the increased ability of the CSF to activate GPR157 at neurogenic phase. Thus, GPR157-Gq signaling at the primary cilia of RGPs is activated by the CSF and contributes to neurogenesis. Nearly all adult excitatory cortical neurons derive from radial glial progenitors (RGPs) located in the ventricular zone (VZ) of the developing neocortex1–3. During early neocortical development, RGPs divide symmetrically to amplify the progenitor pools. As corticogenesis proceeds, RGPs divide asymmetrically to self-renew and to pro- duce neurons either directly, or indirectly through intermediate progenitors4,5. Fate determination of RGPs results from integration of signals borne by a variety of sources (i.e. neighboring neurons, neighboring RGPs, meninges, and cerebrospinal fluid− CSF) to cell-intrinsic programs6–8.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Expression Patterns and the Prognostic Roles of PTPN Family Members in Digestive Tract Cancers
    Preprint: Please note that this article has not completed peer review. The expression patterns and the prognostic roles of PTPN family members in digestive tract cancers CURRENT STATUS: UNDER REVIEW Jing Chen The First Affiliated Hospital of China Medical University Xu Zhao Liaoning Vocational College of Medicine Yuan Yuan The First Affiliated Hospital of China Medical University Jing-jing Jing The First Affiliated Hospital of China Medical University [email protected] Author ORCiD: https://orcid.org/0000-0002-9807-8089 DOI: 10.21203/rs.3.rs-19689/v1 SUBJECT AREAS Cancer Biology KEYWORDS PTPN family members, digestive tract cancers, expression, prognosis, clinical features 1 Abstract Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members and the prognosis of digestive tract cancers. Method Expression profiling of PTPN family genes in digestive tract cancers were analyzed through ONCOMINE and UALCAN. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal couple with Cytoscape. Data from The Cancer Genome Atlas (TCGA) were downloaded for validation and to explore the relationship of the PTPN expression with clinicopathological parameters and survival of digestive tract cancers. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. For esophageal carcinoma (ESCA), expression of PTPN1, PTPN4 and PTPN12 were upregulated; expression of PTPN20 was associated with poor prognosis.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Genetic Alterations of Protein Tyrosine Phosphatases in Human Cancers
    Oncogene (2015) 34, 3885–3894 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Genetic alterations of protein tyrosine phosphatases in human cancers S Zhao1,2,3, D Sedwick3,4 and Z Wang2,3 Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, PTP receptor T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11, which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs. Oncogene (2015) 34, 3885–3894; doi:10.1038/onc.2014.326; published online 29 September 2014 INTRODUCTION tyrosine/threonine-specific phosphatases. (4) Class IV PTPs include Protein tyrosine phosphorylation has a critical role in virtually all four Drosophila Eya homologs (Eya1, Eya2, Eya3 and Eya4), which human cellular processes that are involved in oncogenesis.1 can dephosphorylate both tyrosine and serine residues. Protein tyrosine phosphorylation is coordinately regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases 1 THE THREE-DIMENSIONAL STRUCTURE AND CATALYTIC (PTPs). Although PTKs add phosphate to tyrosine residues in MECHANISM OF PTPS proteins, PTPs remove it. Many PTKs are well-documented oncogenes.1 Recent cancer genomic studies provided compelling The three-dimensional structures of the catalytic domains of evidence that many PTPs function as tumor suppressor genes, classical PTPs (RPTPs and non-RPTPs) are extremely well because a majority of PTP mutations that have been identified in conserved.5 Even the catalytic domain structures of the dual- human cancers are loss-of-function mutations.
    [Show full text]