Alcohol's Role in Gastrointestinal Tract Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Alcohol's Role in Gastrointestinal Tract Disorders Alcohol’s Role in Gastrointestinal Tract Disorders CHRISTIANE BODE, PH.D., AND J. CHRISTIAN BODE, M.D. When alcohol is consumed, the alcoholic beverages first pass through the various segments of the gastrointestinal (GI) tract. Accordingly, alcohol may interfere with the structure as well as the function of GI-tract segments. For example, alcohol can impair the function of the muscles separating the esophagus from the stomach, thereby favoring the occurrence of heartburn. Alcohol-induced damage to the mucosal lining of the esophagus also increases the risk of esophageal cancer. In the stomach, alcohol interferes with gastric acid secretion and with the activity of the muscles surrounding the stomach. Similarly, alcohol may impair the muscle movement in the small and large intestines, contributing to the diarrhea frequently observed in alcoholics. Moreover, alcohol inhibits the absorption of nutrients in the small intestine and increases the transport of toxins across the intestinal walls, effects that may contribute to the development of alcohol-related damage to the liver and other organs. KEY WORDS: ethanol metabolism; AODE (alcohol and other drug effects); mouth; esophagus; stomach; intestine; gastric mucosa; intestinal mucosa; gastric lesion; gastric acid; gastrointestinal function; gastrointestinal absorption; muscle; neoplastic disease; toxins; free radicals; etiology; literature review mong the many organ systems intestinal bleeding (from lesions in the acute and chronic effects on GI-tract that mediate alcohol’s effects on stomach or small intestine) and diar- function and structure. A the human body and its health, rhea. Third, functional changes and This article reviews some of these the gastrointestinal (GI) tract plays a mucosal damage in the gut disturb the findings, focusing primarily on insights particularly important part. Several digestion of other nutrients as well as gained during the past 10 years. (For processes underlie this role. First, the their assimilation into the body, there- extensive reviews of the developments GI tract is the site of alcohol absorption by contributing to the malnutrition and into the bloodstream and, to a lesser weight loss frequently observed in CHRISTIANE BODE, PH.D., is professor extent, of alcohol breakdown and pro- and chief of the Section of Physiology alcoholics. Fourth, alcohol-induced duction. (For more information on of Nutrition (140), Hohenheim mucosal injuries—especially in the alcohol absorption, metabolism, and University, Stuttgart, Germany. upper small intestine—allow large production in the GI tract, see sidebar, pp. 82–83.) Second, the direct contact of molecules, such as endotoxin and other J. CHRISTIAN BODE, M.D., is professor alcoholic beverages with the mucosa1 bacterial toxins, to pass more easily of medicine and chief of the Section that lines the upper GI tract can induce into the blood or lymph. These toxic of Gastroenterology, Hepatology and numerous metabolic and functional substances can have deleterious effects Endocrinology in the Department of changes. These alterations may lead to on the liver and other organs. Internal Medicine, Robert-Bosch- Krankenhaus, Stuttgart, Germany. marked mucosal damage, which can Over the past three decades, re- result in a broad spectrum of acute and searchers have made major progress 1For a definition of this and other technical terms used chronic diseases, such as acute gastro- toward understanding alcohol’s many in this article, see the central glossary, pp. 93–96. 76 ALCOHOL HEALTH & RESEARCH WORLD Gastrointestinal Tract Disorders in this field up to the early 1980’s, see (figure 2). As the food mass moves Beazell and Ivy 1940; Bode 1980). through the small intestine, digestive enzymes secreted by the intestinal Tongue Oral cavity THE GI TRACT—AN OVERVIEW cells complete the chemical degrad- ation of nutrients into simple mole- Parotid The GI tract’s functions are to physi- cules that can be absorbed through the gland cally and chemically break down intestinal wall into the bloodstream. Pharynx ingested food, allow the absorption of What finally remains in the intestine nutrients into the bloodstream, and are primarily indigestible waste prod- Teeth excrete the waste products generated. ucts. These products progress into the The GI tract can be viewed as one large intestine, where the waste is Salivary continuous tube extending from the compacted and prepared for excretion glands mouth to the anus (figure 1), which is through the anus. Like the small in- Esophagus subdivided into different segments testine, the large intestine can be with specific functions. divided into three segments: the ce- Stomach In the mouth, or oral cavity, the teeth cum; the colon, which constitutes mechanically grind the food into small about 80 percent of the large intes- pieces. Moreover, saliva excreted by tine; and the rectum. The following Duodenum the salivary glands initiates the food’s sections review alcohol’s effect on the Jejunum chemical degradation. From the oral different regions of the GI tract. cavity, the food passes through the throat (i.e., pharynx) into the esophagus. The THE ORAL CAVITY coordinated contraction and relaxation AND THE ESOPHAGUS of the muscles surrounding the esopha- gus propels the food into the stomach. The oral cavity, pharynx, esophagus, In the stomach, the chemical degra- and stomach are exposed to alcohol Cecum dation of the food continues with the immediately after its ingestion. Thus, help of gastric acid and various diges- alcoholic beverages are almost undi- Large intestine tive enzymes. Excessive gastric acid luted when they come in contact with Ileum (colon) production can irritate the mucosa, the mucosa of these structures. It is Rectum Anal canal causing gastric pain, and result in the therefore not surprising that mucosal development of gastric ulcers. Two injuries (i.e., lesions) occur quite bands of muscle fibers (i.e., sphinc- frequently in people who drink large Figure 1 Schematic representation of ters) close off the stomach to the eso- amounts of alcohol.2 the human gastrointestinal tract. The phagus and the intestine. Weakness of Chronic alcohol abuse damages the small intestine comprises the duo- denum, the ileum, and the jejunum. the sphincter separating the stomach salivary glands and thus interferes from the esophagus allows the stom- with saliva secretion. In alcoholics this ach content to flow back into the eso- damage commonly manifests itself as poor nutrition or reflect alcohol’s phagus. This process, which is called an enlargement (i.e., hypertrophy) of direct effect on the mucosa. Finally, gastroesophageal reflux, can lead to the parotid gland, although the mecha- chronic alcohol abuse increases the heartburn as well as inflammation (i.e., nisms leading to this condition are incidence of tooth decay, gum disease, reflux esophagitis) and even to the unknown. Moreover, alcoholics may and loss of teeth (Kranzler et al. 1990). development of ulcers in the lower suffer from inflammation of the tongue Alcohol consumption can affect the part of the esophagus. (i.e., glossitis) and the mouth (i.e., esophagus in several ways. For exam- From the stomach, the food enters stomatitis). It is unclear, however, ple, alcohol distinctly impairs esophageal the small intestine, which is divided whether these changes result from motility, and even a single drinking into three segments: the duodenum, episode (i.e., acute alcohol consump- the jejunum, and the ileum. Like the 2The alcohol amount necessary to cause mucosal tion) significantly weakens the lower esophagus and stomach, the intestine injury varies significantly among individual drinkers esophageal sphincter. As a result, is surrounded by layers of muscles, and depends, for example, on whether alcohol consumption occurs on an empty stomach or is gastroesophageal reflux may occur, the rhythmic movements of which accompanied by a meal. Thus, no clear threshold and the esophagus’ ability to clear the help mix the food mass and push it exists above which alcohol exerts its adverse effects. refluxed gastric acid may be reduced. along the GI tract. The intestine’s However, the risk for adverse effects such as tissue Both of these factors promote the inner mucosal surface is covered with damage generally increases following the consump- occurrence of heartburn. Moreover, tion of more than 2 ounces of alcohol, which corre- small projections called villi, which sponds to approximately four standard drinks (i.e., some alcoholics exhibit an abnormali- increase the intestinal surface area “heavy” or “excessive” drinking). ty of esophageal motility known as a VOL. 21, NO. 1, 1997 77 functioning in several ways. For ex- ample, alcohol—even in relatively Small Intestine small doses—can alter gastric acid secretion, induce acute gastric mucos- al injury, and interfere with gastric Intestinal wall and intestinal motility. Gastric Acid Secretion Analyses in several animal species found that acute alcohol administration by mouth or by direct infusion into the Villi stomach (i.e., intragastrically) or the Submucosa blood (i.e., intravenously) can affect gastric acid secretion (Chari et al. 1993). The secretory response of the stomach Intestinal muscles varies considerably, however, depend- ing on the species studied and the alco- hol concentrations used. In healthy, nonalcoholic humans, intravenous alco- hol administration of 0.3 to 0.5 grams per kilogram (g/kg) body weight or Villi intragastric infusion of alcohol solutions with concentrations
Recommended publications
  • Management of Noncardiac Chest Pain
    CAG PRACTICE GUIDELINES Canadian Association of Gastroenterology Practice Guidelines: Management of noncardiac chest pain WG Paterson MD FRCPC OVERVIEW OF THE PROBLEM From 10% to 30% of patients who undergo cardiac catheteri- SPONSORS AND VALIDATION zation for chest pain are found to have normal epicardial This practice guideline was developed by coronary arteries (1,2). These patients are considered to Dr W Paterson MD FRCPC and was reviewed by have noncardiac chest pain (NCCP) and many are referred for evaluation of their upper gastrointestinal tract. By ex- · Practice Affairs Committee (Chair – trapolating American data, a conservative estimate for the Dr A Cockeram): Dr T Devlin, Dr J McHattie, Canadian incidence of NCCP is approximately 7000 new Dr D Petrunia, Dr E Semlacher and cases/year (3). Because many of these patient are referred to a Dr V Sharma gastroenterologist, it is imperative that the gastrointestinal consultant understand the nature of this condition and have · Canadian Association of Gastroenterology (CAG) a rational approach to its diagnosis and treatment. The ob- Endoscopy Committee (Chair – Dr A Barkun): jective of this document is to synthesize the available litera- Dr N Diamant, Dr N Marcon and Dr W Paterson ture on the management of NCCP as it applies to practice of · gastrointestinal specialists and to recommend practical CAG Governing Board guidelines for the management of this common problem. DIFFERENTIAL DIAGNOSIS angina-like chest pain located in the low retrosternal region. A gastroenterology referral of a patient with NCCP is usually Finally, an incarcerated hiatus hernia may be the cause of prompted by the belief that the pain might be esophageal in atypical low chest pain.
    [Show full text]
  • Mixing Alcohol with Your Diabetes You Can Drink If Your Blood Sugar Is Well Controlled – and You Take the Right Steps to Be Safe
    Diabetes Education – #16 Mixing Alcohol with Your Diabetes You can drink if your blood sugar is well controlled – and you take the right steps to be safe. If you have diabetes, you may think that drinking is off limits. Not so! Keeping an eye on how much and what you drink can help you drink more safely. You can avoid the alcohol-related pitfalls: • low blood sugar • weight gain • high blood pressure. Before you have a drink, ask yourself the 3 questions below. The ADA (American Diabetes Association) suggests these: • Is my diabetes in good control? • Does my health care team agree that I can have alcohol? • Do I know how alcohol can affect me and my blood sugar? If you can answer "yes" to all 3 questions, it is likely OK to have a drink. But make sure you know the potential effects of drinking. And, make sure you know your personal limits. What happens when you drink? Between meals and while you sleep, the liver makes new glucose (sugar). The liver then sends this sugar into the bloodstream. Here, it helps to prevent or slow down a low blood sugar reaction. When you drink, it disrupts the process. Substances form when alcohol breaks down in the liver. These substances block the liver from making new glucose. Blood sugars fall and you can quickly become too low. Diabetes Education – #16 Treat hypoglycemia quickly Drinking can affect your blood sugar for up to 12 hours. So test your blood sugar before going to bed. If it is in the 100 – 140 mg/dL range, you may be fine.
    [Show full text]
  • The Oesophagus Lined with Gastric Mucous Membrane by P
    Thorax: first published as 10.1136/thx.8.2.87 on 1 June 1953. Downloaded from Thorax (1953), 8, 87. THE OESOPHAGUS LINED WITH GASTRIC MUCOUS MEMBRANE BY P. R. ALLISON AND A. S. JOHNSTONE Leeds (RECEIVED FOR PUBLICATION FEBRUARY 26, 1953) Peptic oesophagitis and peptic ulceration of the likely to find its way into the museum. The result squamous epithelium of the oesophagus are second- has been that pathologists have been describing ary to regurgitation of digestive juices, are most one thing and clinicians another, and they have commonly found in those patients where the com- had the same name. The clarification of this point petence ofthecardia has been lost through herniation has been so important, and the description of a of the stomach into the mediastinum, and have gastric ulcer in the oesophagus so confusing, that been aptly named by Barrett (1950) " reflux oeso- it would seem to be justifiable to refer to the latter phagitis." In the past there has been some dis- as Barrett's ulcer. The use of the eponym does not cussion about gastric heterotopia as a cause of imply agreement with Barrett's description of an peptic ulcer of the oesophagus, but this point was oesophagus lined with gastric mucous membrane as very largely settled when the term reflux oesophagitis " stomach." Such a usage merely replaces one was coined. It describes accurately in two words confusion by another. All would agree that the the pathology and aetiology of a condition which muscular tube extending from the pharynx down- is a common cause of digestive disorder.
    [Show full text]
  • Mouth Esophagus Stomach Rectum and Anus Large Intestine Small
    1 Liver The liver produces bile, which aids in digestion of fats through a dissolving process known as emulsification. In this process, bile secreted into the small intestine 4 combines with large drops of liquid fat to form Healthy tiny molecular-sized spheres. Within these spheres (micelles), pancreatic enzymes can break down fat (triglycerides) into free fatty acids. Pancreas Digestion The pancreas not only regulates blood glucose 2 levels through production of insulin, but it also manufactures enzymes necessary to break complex The digestive system consists of a long tube (alimen- 5 carbohydrates down into simple sugars (sucrases), tary canal) that varies in shape and purpose as it winds proteins into individual amino acids (proteases), and its way through the body from the mouth to the anus fats into free fatty acids (lipase). These enzymes are (see diagram). The size and shape of the digestive tract secreted into the small intestine. varies in each individual (e.g., age, size, gender, and disease state). The upper part of the GI tract includes the mouth, throat (pharynx), esophagus, and stomach. The lower Gallbladder part includes the small intestine, large intestine, The gallbladder stores bile produced in the liver appendix, and rectum. While not part of the alimentary 6 and releases it into the duodenum in varying canal, the liver, pancreas, and gallbladder are all organs concentrations. that are vital to healthy digestion. 3 Small Intestine Mouth Within the small intestine, millions of tiny finger-like When food enters the mouth, chewing breaks it 4 protrusions called villi, which are covered in hair-like down and mixes it with saliva, thus beginning the first 5 protrusions called microvilli, aid in absorption of of many steps in the digestive process.
    [Show full text]
  • Managing a High Output Ostomy: for Patients with an Ileostomy Or Jejunostomy
    Form: D-8844 Managing a High Output Ostomy: For patients with an ileostomy or jejunostomy Read this brochure to learn: • what is a high output ostomy • why is a high output ostomy a problem • what foods and drinks can help you manage it What is a high output ostomy? A high output ostomy is when your ostomy output (the amount of waste coming out of your stoma) is more than 1.2 litres (about 5 cups) in a day. Signs of a high output ostomy include: • having to empty your stoma bag more than 8 times a day • having watery output Why is it a problem? You may become dehydrated (your body does not get enough water) if you have too much output. Your body may not absorb fluids well when you have a high output ostomy. Signs of dehydration are: • feeling thirsty • peeing less than usual • having dark yellow pee • losing weight • having dry lips and mouth • having a headache, dizziness or fatigue 2 How can I manage a high output ostomy? Making some changes to how you eat and drink can help manage a high output ostomy. Your health care team may also give you medicine to help manage a high output ostomy. 9 Have a small meal every 2 to 3 hours. This helps your body absorb food better and meet your nutrition needs. 9 Chew your food very well. This makes it easier for your body to break down and use the food you eat. 9 Do not drink fluids while you eat. Wait 30 minutes before and after a meal before drinking fluids.
    [Show full text]
  • Medicines That Affect Fluid Balance in the Body
    the bulk of stools by getting them to retain liquid, which encourages the Medicines that affect fluid bowels to push them out. balance in the body Osmotic laxatives e.g. Lactulose, Macrogol - these soften stools by increasing the amount of water released into the bowels, making them easier to pass. Older people are at higher risk of dehydration due to body changes in the ageing process. The risk of dehydration can be increased further when Stimulant laxatives e.g. Senna, Bisacodyl - these stimulate the bowels elderly patients are prescribed medicines for chronic conditions due to old speeding up bowel movements and so less water is absorbed from the age. stool as it passes through the bowels. Some medicines can affect fluid balance in the body and this may result in more water being lost through the kidneys as urine. Stool softener laxatives e.g. Docusate - These can cause more water to The medicines that can increase risk of dehydration are be reabsorbed from the bowel, making the stools softer. listed below. ANTACIDS Antacids are also known to cause dehydration because of the moisture DIURETICS they require when being absorbed by your body. Drinking plenty of water Diuretics are sometimes called 'water tablets' because they can cause you can reduce the dry mouth, stomach cramps and dry skin that is sometimes to pass more urine than usual. They work on the kidneys by increasing the associated with antacids. amount of salt and water that comes out through the urine. Diuretics are often prescribed for heart failure patients and sometimes for patients with The major side effect of antacids containing magnesium is diarrhoea and high blood pressure.
    [Show full text]
  • Overview of Gastrointestinal Function
    Overview of Gastrointestinal Function George N. DeMartino, Ph.D. Department of Physiology University of Texas Southwestern Medical Center Dallas, TX 75390 The gastrointestinal system Functions of the gastrointestinal system • Digestion • Absorption • Secretion • Motility • Immune surveillance and tolerance GI-OP-13 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Structure of a villus Villus Lamina propria Movement of substances across the epithelial layer Tight junctions X Lumen Blood Apical membrane Basolateral membrane X X transcellular X X paracellular GI-OP-19 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Motility in the gastrointestinal system Propulsion net movement by peristalsis Mixing for digestion and absorption Separation sphincters Storage decreased pressure GI-OP-42 Intercellular signaling in the gastrointestinal system • Neural • Hormonal • Paracrine GI-OP-10 Neural control of the GI system • Extrinsic nervous system autonomic central nervous system • Intrinsic (enteric) nervous system entirely with the GI system GI-OP-14 The extrinsic nervous system The intrinsic nervous system forms complete functional circuits Sensory neurons Interneurons Motor neurons (excitatory and inhibitory) Parasympathetic nerves regulate functions of the intrinsic nervous system Y Reflex control of gastrointestinal functions Vago-vagal Afferent reflex Salivary Glands Composition of Saliva O Proteins α−amylase lactoferrin lipase RNase lysozyme et al mucus O Electrolyte solution water Na+ , K + - HCO3
    [Show full text]
  • Study of Gastrointestinal and Hepaticmanifestations in Systemic Lupus Erythematosus
    ISSN 2380-5498 SciO p Forschene n HUB for Sc i e n t i f i c R e s e a r c h International Journal of Nephrology and Kidney Failure Research Article Volume: 3.2 Open Access Received date: 09 Sep 2017; Accepted date: 18 Study of Gastrointestinal and Hepatic Oct 2017; Published date: 26 Oct 2017. Manifestations in Systemic Lupus Erythematosus Citation: Gupta KL, Pattanashetti N, Babu J, Dutta U (2017) Study of Gastrointestinal and Krishan L Gupta1*, NavinPattanashetti1, Jai Babu2, Usha Dutta3 Hepatic Manifestations in Systemic Lupus Erythematosus. Int J Nephrol Kidney Failure 3(2): 1Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India doi http://dx.doi.org/10.16966/2380-5498.147 2 Department of Internal medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India Copyright: © 2017 Gupta KL, et al. This is an 3 Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India open-access article distributed under the terms of the Creative Commons Attribution License, *Corresponding author: Krishan L Gupta, MD, DM. Diplomate NB. (Neph), MNAMS, FISN, FICP, which permits unrestricted use, distribution, and Professor of Nephrology, Postgraduate Institute of Medical Education And Research, Chandigarh reproduction in any medium, provided the original -160 012 (India) Tel: no.91-172-2756732 (O) - 2700070 (R); Fax: 91-172-2749911/ 2740044; author and source are credited. E-mail: [email protected] Abstract Introduction: Gastrointestinal manifestation of systemic lupus erythematosus varies widely. Abdominal pain vomiting and diarrhoea are seen in more than 50% SLE patients. Many of them are nonspecific and occur either as direct involvement of the GI tract or the effects of various medications.
    [Show full text]
  • Anatomy of Small Intestine Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Important Anatomy of Small Intestine Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives: At the end of the lecture, students should: List the different parts of small intestine. Describe the anatomy of duodenum, jejunum & ileum regarding: the shape, length, site of beginning & termination, peritoneal covering, arterial supply & lymphatic drainage. Differentiate between each part of duodenum regarding the length, level & relations. Differentiate between the jejunum & ileum regarding the characteristic anatomical features of each of them. Abdomen What is Mesentery? It is a double layer attach the intestine to abdominal wall. If it has mesentery it is freely moveable. L= liver, S=Spleen, SI=Small Intestine, AC=Ascending Colon, TC=Transverse Colon Abdomen The small intestines consist of two parts: 1- fixed part (no mesentery) (retroperitoneal) : duodenum 2- free (movable) part (with mesentery) :jejunum & ileum Only on the boys’ slides RELATION BETWEEN EMBRYOLOGICAL ORIGIN & ARTERIAL SUPPLY مهم :Extra Arterial supply depends on the embryological origin : Foregut Coeliac trunk Midgut superior mesenteric Hindgut Inferior mesenteric Duodenum: • Origin: foregut & midgut • Arterial supply: 1. Coeliac trunk (artery of foregut) 2. Superior mesenteric: (artery of midgut) The duodenum has 2 arterial supply because of the double origin The junction of foregut and midgut is at the second part of the duodenum Jejunum & ileum: • Origin: midgut • Arterial
    [Show full text]
  • The Skin As a Mirror of the Gastrointestinal Tract
    DOI: http://dx.doi.org/10.22516/25007440.397 Case report The skin as a mirror of the gastrointestinal tract Martín Alonso Gómez,1* Adán Lúquez,2 Lina María Olmos.3 1 Associate Professor of Gastroenterology in the Abstract Gastroenterology and Endoscopy Unit of the National University Hospital and the National University of We present four cases of digestive bleeding whose skin manifestations guided diagnosis prior to endoscopy. Colombia in Bogotá Colombia These cases demonstrate the importance of a good physical examination of all patients rather than just 2 Internist and Gastroenterologist at the National focusing on laboratory tests. University of Colombia in Bogotá, Colombia 3 Dermatologist at the Military University of Colombia and the Dispensario Medico Gilberto Echeverry Keywords Mejia in Bogotá, Colombia Skin, bleeding, endoscopy, pemphigus. *Correspondence: [email protected]. ......................................... Received: 30/01/18 Accepted: 13/04/18 Despite great technological advances in diagnosis of disea- CASE 1: VULGAR PEMPHIGUS ses, physical examination, particularly an appropriate skin examination, continues to play a leading role in the detec- This 46-year-old female patient suffered an episode of hema- tion of gastrointestinal pathologies. The skin, the largest temesis with expulsion of whitish membranes through her organ of the human body, has an area of 2​​ m2 and a thick- mouth during hospitalization. Upon physical examination, ness that varies between 0.5 mm (on the eyelids) to 4 mm she was found to have multiple erosions and scaly plaques (on the heel). It weighs approximately 5 kg. (1) Many skin with vesicles that covered the entire body surface. After a manifestations may indicate systemic diseases.
    [Show full text]
  • JNM J Neurogastroenterol Motil, Vol. 26 No. 2 April, 2020
    J Neurogastroenterol Motil, Vol. 26 No. 2 April, 2020 pISSN: 2093-0879 eISSN: 2093-0887 https://doi.org/10.5056/jnm19096 JNM Journal of Neurogastroenterology and Motility Original Article Gastroesophageal Reflux Disease Is Not Associated With Jackhammer Esophagus: A Case-control Study Matthew Woo,* Andy Liu, Lynn Wilsack, Dorothy Li, Milli Gupta, Yasmin Nasser, Michelle Buresi, Michael Curley, and Christopher N Andrews 1Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, Canada Background/Aims The pathophysiology of jackhammer esophagus (JE) remains unknown but may be related to gastroesophageal reflux disease or medication use. We aim to determine if pathologic acid exposure or the use of specific classes of medications (based on the mechanism of action) is associated with JE. Methods High-resolution manometry (HRM) studies from November 2013 to March 2019 with a diagnosis of JE were identified and compared to symptomatic control patients with normal HRM. Esophageal acid exposure and medication use were compared between groups. Multivariate regression analysis was performed to look for predictors of mean distal contractile integral. Results Forty-two JE and 127 control patients were included in the study. Twenty-two (52%) JE and 82 (65%) control patients underwent both HRM and ambulatory pH monitoring. Two (9%) JE patients and 14 (17%) of controls had evidence of abnormal acid exposure (DeMeester score > 14.7); this difference was not significant (P = 0.290). Thirty-six (86%) JE and 127 (100%) control patients had complete medication lists. Significantly more JE patients were on long-acting beta agonists (LABA) (JE = 5, control = 4; P = 0.026) and calcium channel blockers (CCB) (JE = 5, control = 3; P = 0.014).
    [Show full text]
  • Short Bowel Syndrome with Intestinal Failure Were Randomized to Teduglutide (0.05 Mg/Kg/Day) Or Placebo for 24 Weeks
    Short Bowel (Gut) Syndrome LaTasha Henry February 25th, 2016 Learning Objectives • Define SBS • Normal function of small bowel • Clinical Manifestation and Diagnosis • Management • Updates Basic Definition • A malabsorption disorder caused by the surgical removal of the small intestine, or rarely it is due to the complete dysfunction of a large segment of bowel. • Most cases are acquired, although some children are born with a congenital short bowel. Intestinal Failure • SBS is the most common cause of intestinal failure, the state in which an individual’s GI function is inadequate to maintain his/her nutrient and hydration status w/o intravenous or enteral supplementation. • In addition to SBS, diseases or congenital defects that cause severe malabsorption, bowel obstruction, and dysmotility (eg, pseudo- obstruction) are causes of intestinal failure. Causes of SBS • surgical resection for Crohn’s disease • Malignancy • Radiation • vascular insufficiency • necrotizing enterocolitis (pediatric) • congenital intestinal anomalies such as atresias or gastroschisis (pediatric) Length as a Determinant of Intestinal Function • The length of the small intestine is an important determinant of intestinal function • Infant normal length is approximately 125 cm at the start of the third trimester of gestation and 250 cm at term • <75 cm are at risk for SBS • Adult normal length is approximately 400 cm • Adults with residual small intestine of less than 180 cm are at risk for developing SBS; those with less than 60 cm of small intestine (but with a
    [Show full text]