DEHYDRO-INTERMEDIATES in NAPHTHALENE CHEMISTRY By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Empirical Formula Expressing the Mutual Dependence of C-C Bond Distances* Arpad Furka Department of Organic Chemistry Eotvos Lorcind University, Muzeum Krt
CROATICA CHEMICA ACTA CCACAA 56 (2) 191-197 (1983) YU ISSN 0011-1643 CCA-1368 UDC 547 :541.6 Originai Scientific Paper An Empirical Formula Expressing the Mutual Dependence of C-C Bond Distances* Arpad Furka Department of Organic Chemistry Eotvos Lorcind University, Muzeum krt. 4/B Budapest, 1088, Hungary Received August 30, 1982 An empirical formula is suggested to describe the mutuaJ dependence of the length of the bonds formed by a central atom in systems built up from equivalent carbon atoms, e.g. diamond, graphite, the cumulene and polyyne chains and intermediate struc tures between them. A geometrical representation of the relation ship is a regular tetrahedron. A point of this tetrahedron charac terizes the arrangement of the atoms around the central one. From the position of the point the bond distances - and possibly the bond angles - can be deduced. Experimental bond length determinations have made clear in the last few decades that the C-C bond distances vary over a relatively long range, from about 1.2 A to about 1.6 A. There were several attempts to correlate these bond distances on empirical way to different factors like double-bond 1 2 4 character, • n:-bond order,3 state of hybridization, •5 the number of adjacent bonds,6 or the overlap integrals.7 Recently ·a new empirical formula has been suggested to describe the mutual dependence of the C-C bond distances.8 The subject of this paper is the interpretation of this empirical equation. Carbon has three allotropic modifications: diamond, graphite and the not completely characterized chain form9•10 (carbynes). -
Exploring Antiaromaticity in Single-Molecule Junctions Formed
Nanoscale View Article Online PAPER View Journal | View Issue Exploring antiaromaticity in single-molecule junctions formed from biphenylene derivatives† Cite this: Nanoscale, 2019, 11, 20659 Markus Gantenbein,‡a Xiaohui Li, ‡b Sara Sangtarash, *‡c Jie Bai, b Gunnar Olsen, a Afaf Alqorashi,c Wenjing Hong, *b Colin J. Lambert *c and Martin R. Bryce *§a We report the synthesis of a series of oligophenylene-ethynylene (OPE) derivatives with biphenylene core units, designed to assess the effects of biphenylene antiaromaticity on charge transport in molecular junctions. Analogues with naphthalene, anthracene, fluorene and biphenyl cores are studied for compari- son. The molecules are terminated with pyridyl or methylthio units. Single-molecule conductance data were obtained using the mechanically controllable break junction (MCBJ) technique. It is found that when electrons pass from one electrode to the other via a phenylene ring, the electrical conductance is almost independent of the nature of the pendant π-systems attached to the phenylene ring and is rather insensi- Creative Commons Attribution 3.0 Unported Licence. tive to antiaromaticity. When electrons pass through the cyclobutadiene core of the biphenylene unit, transport is sensitive to the presence of the relatively weak single bonds connecting the two phenylene rings of biphenylene, which arise from partial antiaromaticity within the cyclobutadiene core. This leads to Received 25th June 2019, a negligible difference in the molecular conductance compared to the fluorene or biphenyl analogues Accepted 26th August 2019 which have standard single bonds. This ability to tune the conductance of molecular cores has no ana- DOI: 10.1039/c9nr05375a logue in junctions formed from artificial quantum dots and reflects the quantum nature of electron trans- rsc.li/nanoscale port in molecular junctions, even at room temperature. -
Conversion of Methoxy and Hydroxyl Functionalities of Phenolic Monomers Over Zeolites Rajeeva Thilakaratne Iowa State University
Chemical and Biological Engineering Publications Chemical and Biological Engineering 2016 Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites Rajeeva Thilakaratne Iowa State University Jean-Philippe Tessonnier Iowa State University, [email protected] Robert C. Brown Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/cbe_pubs Part of the Biomechanical Engineering Commons, and the Catalysis and Reaction Engineering Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ cbe_pubs/328. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites Abstract This study investigates the mechanisms of gas phase anisole and phenol conversion over zeolite catalyst. These monomers contain methoxy and hydroxyl groups, the predominant functionalities of the phenolic products of lignin pyrolysis. The proposed reaction mechanisms for anisole and phenol are distinct, with significant differences in product distributions. The nia sole mechanism involves methenium ions in the conversion of phenol and alkylating aromatics inside zeolite pores. Phenol converts primarily to benzene and naphthalene via a ring opening reaction promoted by hydroxyl radicals. The hep nol mechanism sheds insights on how reactive bi-radicals generated from fragmented phenol aromatic rings (identified as dominant coke precursors) cyclize rapidly to produce polyaromatic hydrocarbons (PAHs). -
An Indicator of Triplet State Baird-Aromaticity
inorganics Article The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity Rabia Ayub 1,2, Kjell Jorner 1,2 ID and Henrik Ottosson 1,2,* 1 Department of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden; [email protected] (R.A.); [email protected] (K.J.) 2 Department of Chemistry-Ångström Laboratory Uppsala University, Box 523, SE-751 20 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +46-18-4717476 Received: 23 October 2017; Accepted: 11 December 2017; Published: 15 December 2017 Abstract: Baird’s rule tells that the electron counts for aromaticity and antiaromaticity in the first ππ* triplet and singlet excited states (T1 and S1) are opposite to those in the ground state (S0). Our hypothesis is that a silacyclobutene (SCB) ring fused with a [4n]annulene will remain closed in the T1 state so as to retain T1 aromaticity of the annulene while it will ring-open when fused to a [4n + 2]annulene in order to alleviate T1 antiaromaticity. This feature should allow the SCB ring to function as an indicator for triplet state aromaticity. Quantum chemical calculations of energy and (anti)aromaticity changes along the reaction paths in the T1 state support our hypothesis. The SCB ring should indicate T1 aromaticity of [4n]annulenes by being photoinert except when fused to cyclobutadiene, where it ring-opens due to ring-strain relief. Keywords: Baird’s rule; computational chemistry; excited state aromaticity; Photostability 1. Introduction Baird showed in 1972 that the rules for aromaticity and antiaromaticity of annulenes are reversed in the lowest ππ* triplet state (T1) when compared to Hückel’s rule for the electronic ground state (S0)[1–3]. -
Stabilization of Anti-Aromatic and Strained Five-Membered Rings with A
ARTICLES PUBLISHED ONLINE: 23 JUNE 2013 | DOI: 10.1038/NCHEM.1690 Stabilization of anti-aromatic and strained five-membered rings with a transition metal Congqing Zhu1, Shunhua Li1,MingLuo1, Xiaoxi Zhou1, Yufen Niu1, Minglian Lin2, Jun Zhu1,2*, Zexing Cao1,2,XinLu1,2, Tingbin Wen1, Zhaoxiong Xie1,Paulv.R.Schleyer3 and Haiping Xia1* Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8p-electron anti- aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hu¨ckel anti-aromaticity into Craig-type Mo¨bius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal–carbon triple bond. Moreover, these metal–aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement. romaticity is a fascinating topic that has long interested Results and discussion both experimentalists and theoreticians because of its ever- Synthesis, characterization and reactivity of osmapentalynes. Aincreasing diversity1–5. The Hu¨ckel aromaticity rule6 applies Treatment of complex 1 (ref. 32) with methyl propiolate to cyclic circuits of 4n þ 2 mobile electrons, but Mo¨bius topologies (HC;CCOOCH3) at room temperature produced osmapentalyne favour 4n delocalized electron counts7–10. -
Exploitation of Baird Aromaticity and Clar's Rule for Tuning The
Article Exploitation of Baird Aromaticity and Clar’s Rule for Tuning the Triplet Energies of Polycyclic Aromatic Hydrocarbons Felix Plasser Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK; [email protected] Abstract: Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four biphenylene-derived PAHs finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). The results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states. Keywords: aromaticity; antiaromaticity; chemical shift; hydrocarbons, benzene; p-conjugated systems Citation: Plasser, F. Exploitation of Baird Aromaticity and Clar’s Rule for 1. Introduction Tuning the Triplet Energies of Polycyclic Aromatic Hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs) are a fascinating class of molecules provid- Chemistry 2021, 3, 532–549. http:// ing versatile organic semi-conductors [1] for a variety of use cases such as photovoltaics [2] doi.org/10.3390/chemistry3020038 including singlet fission [3,4], charge transport [5], and field-effect transistors [6]. -
Supporting Information
Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008 Supporting information Thermal cyclotrimerization of tetraphenyl[5]cumulene (tetraphenylhexapentaene) to tricyclodecadiene derivative † Nazrul Islam, Takashi Ooi , Tetsuo Iwasawa, Masaki Nishiuchi and Yasuhiko * Kawamura Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan †Institute of Health Biosciences, The University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan *Corresponding author. E-mail: [email protected] Experimental section 1. General Methods: Chemicals were obtained from Tokyo Kasei (Tokyo Chemical Industry), Wako (Wako Pure Chemical Industries), Aldrich, and Merck and used as received if not specified 1 13 otherwise. H NMR and C NMR spectra were recorded in CDCl3 on a JEOL EX-400 spectrometer with TMS as an internal standard. HPLC analysis was performed on a JASCO high-performance liquid chromatography system equipped with a 4.6 x 250 mm silica gel column (JASCO Finepak® SIL) and a HITACHI diode array detector (HITACHI L-2450; detector wavelength = 254 nm; mobile phase, CH3CN : H2O = 8:2 v/v). UV-VIS spectra were measured with a Hitachi UV-2000 spectrophotometer. Mass spectra were determined by a Shimadzu GC-MS QP-1000 with a direct inlet attachment using an ionizing voltage of 20 and 70 eV. Elemental analyses were performed by using Yanoco MT-5 instrument at the microanalytical laboratory of this university. X-ray crystallographic analysis was performed with a Rigaku RAXIS-RAPID instrument 1 Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008 (Rigaku Corporation). -
Synthesis of Bowl-Shaped Polycyclic Aromatic Compounds and Homo-Bi-Dentate 4,5-Diarylphenanthrene Ligands
Graduate Theses, Dissertations, and Problem Reports 2008 Synthesis of bowl-shaped polycyclic aromatic compounds and homo-bi-dentate 4,5-diarylphenanthrene ligands Daehwan Kim West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Kim, Daehwan, "Synthesis of bowl-shaped polycyclic aromatic compounds and homo-bi-dentate 4,5-diarylphenanthrene ligands" (2008). Graduate Theses, Dissertations, and Problem Reports. 4391. https://researchrepository.wvu.edu/etd/4391 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Synthesis of Bowl-shaped Polycyclic Aromatic Compounds and Homo-bi-dentate 4,5-Diarylphenanthrene Ligands Daehwan Kim Dissertation Submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Organic Chemistry Kung K. Wang, Ph. D., Chair Peter M. Gannett, Ph. D. John H. Penn, Ph. D. Michael Shi, Ph. D. Björn C. -
Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical Studies."
rl ì 6. .B,1l thesis titled: "Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical studies." submitted for the Degree of Doctor of Philosophy (Ph.D') by Stephen J. Blanksby B.Sc.(Hons,) from the Department of ChemistrY The University of Adelaide Cì UCE April 1999 Preface Contents Title page (i) Contents (ii) Abstract (v) Statement of OriginalitY (vi) Acknowledgments (vii) List of Figures (ix) Phase" I Chapter 1. "The Generation and Characterisation of Ions in the Gas 1.I Abstract I 1.II Generating ions 2 t0 l.ru The Mass SPectrometer t2 1.IV Characterisation of Ions 1.V Fragmentation Behaviour 22 Chapter 2 "Theoretical Methods for the Determination of Structure and 26 Energetics" 26 2,7 Abstract 27 2.IT Molecular Orbital Theory JJ 2.TII Density Functional Theory 2.rv Calculation of Molecular Properties 34 2.V Unimolecular Reactions 35 Chapter 3 "Interstellar and Circumstellar Cumulenes. Mass Spectrometric and 38 Related Studies" 3.I Abstract 38 3.II Interstellar Cumulenes 39 3.III Generation of Interstellar Cumulenes by Mass Spectrometry 46 3.IV Summary 59 Preface Chapter 4 "Generation of Two Isomers of C5H from the Corresponding Anions' 61 ATheoreticallyMotivatedMassSpectrometricStudy.'. 6l 4.r Abstract 62 4.rl Introduction 66 4.III Results and Discussion 83 4.IV Conclusions 84 4.V Experimental Section 89 4.VI Appendices 92 Chapter 5 "Gas Phase Syntheses of Three Isomeric CSHZ Radical Anions and Their Elusive Neutrals. A Joint Experimental and Theoretical Study." 92 5.I Abstract 93 5.II Introduction 95 5.ru Results and Discussion t12 5.IV Conclusions 113 5.V Experimental Section ttl 5.VI Appendices t20 Chapter 6 "Gas Phase Syntheses of Three Isomeric ClHz Radical Anions and Their Elusive Neutrals. -
Cheminformatics for Genome-Scale Metabolic Reconstructions
CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group. -
Supporting Information
Supporting Information Unusual Length Dependence of the Conductance in Cumulene Molecular Wires Wenjun Xu+, Edmund Leary+,* Songjun Hou+, Sara Sangtarash, M. Teresa Gonzlez, Gabino Rubio-Bollinger, Qingqing Wu, Hatef Sadeghi, Lara Tejerina, Kirsten E. Christensen, Nicols Agrat, Simon J. Higgins, Colin J. Lambert,* Richard J. Nichols,* and Harry L. Anderson* anie_201901228_sm_miscellaneous_information.pdf Supporting Information Table of Contents page S1. Synthesis S2 S1.1. General Synthetic Experimental Methods S2 S1.2. Synthetic Schemes S2 S1.3. Synthesis of Alkene 1 S3 S1.4. Synthesis of Allene 2 S3 S1.5. Synthesis of [3]Cumulene 3 S4 S1.6. Synthesis of [5]Cumulene 5 S6 S1.7. Single Crystal Data for Alkene 1 S7 S1.8. UV-Vis Absorption Spectra S8 S2. Theory S9 S2.1. Computational Methods S9 S2.2. Molecule Structures Used in Simulation S10 S2.3. Calculations on Conformations with Terminal Anisole Rings Coplanar S12 S2.4. The Effect of Rotating One of the Two Terminal Thioanisole Rings S13 S2.5. Effects of Rotating the Phenyl Rings and E/Z Stereochemistry S14 S3. STM Break-Junction Measurements S15 S3.1. Sample Preparation for Single-Molecule Experiments S15 S3.2. Single-Molecule Conductivity Studies S15 S3.3. 2D Histograms S16 S3.4. Plateau Length Distributions S17 S3.5. Voltage Dependence of Molecular Conductance S18 S3.6. Current through [5]Cumulene S19 S3.7. 4,4'-Bis(methylthio)biphenyl S19 S3.8. High versus Low Percentages of Molecular Junctions S20 S3.9. Measuring the Conductance at the End of the Plateau Length Distribution S21 S4. NMR Spectra of New Compounds S24 S5. -
And Stereoselective Hydrogenation of Allenes
catalysts Article Alkanethiolate-Capped Palladium Nanoparticles for Regio- and Stereoselective Hydrogenation of Allenes Ting-An Chen and Young-Seok Shon * Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-562-985-4466 Received: 3 September 2018; Accepted: 25 September 2018; Published: 29 September 2018 Abstract: Colloidal Pd nanoparticles capped with octanethiolate ligands have previously shown an excellent selectivity toward the mono-hydrogenation of both isolated and conjugated dienes to internal alkenes. This paper reports an efficient stereoselective mono-hydrogenation of cumulated dienes (allenes) to either Z or E olefinic isomers, depending on the substitution pattern around C=C bonds. Kinetic studies indicate that the reaction progresses through the hydrogenation of less hindered C=C bonds to produce internal Z olefinic isomers. In the cases of di-substitued olefinic products, this initial hydrogenation step is followed by the subsequent isomerization of Z to E isomers. In contrast, the slow isomerization of Z to E isomers for tri-substituted olefinic products results in the preservation of Z stereochemistry. The high selectivity of Pd nanoparticles averting an additional hydrogenation is steered from the controlled electronic and geometric properties of the Pd surface, which are the result of thiolate-induced partial poisoning and surface crowding, respectively. The high activity of colloidal Pd nanoparticle catalysts allows the reactions to be completed at room temperature and atmospheric pressure. Keywords: selective hydrogenation; catalysis; nanoparticle; cumulated diene; allene; ligand-capped; semi-heterogeneous 1. Introduction Selective hydrogenation of small alkynes and dienes is an important chemical process because such compounds are reactive monomers for polymerization that decreases the purity of pyrolysis petroleum products [1–3].