ASPECTS of the LIFE HISTORY of Cichla Temensis (PERCIFORMES

Total Page:16

File Type:pdf, Size:1020Kb

ASPECTS of the LIFE HISTORY of Cichla Temensis (PERCIFORMES © 2015 Paul Reiss ALL RIGHTS RESERVED ASPECTS OF THE LIFE HISTORY OF Cichla temensis (PERCIFORMES: CICHLIDAE) AND ITS RELATIONSHIP TO THE AMAZON BASIN’S FLOOD PULSE By PAUL REISS A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Ecology and Evolution Written under the direction of Kenneth W. Able And approved by ----------------------------------------------------- ----------------------------------------------------- ------------------------------------------------------ ------------------------------------------------------- New Brunswick, New Jersey October 2015 ABSTRACT OF THE DISSERTATION Aspects of the Life History of Cichla temensis (Perciformes: Cichlidae) and its relationship to the Amazon Basin’s flood pulse by PAUL REISS Dissertation Director: Kenneth W. Able Abstract – Cichla temensis, the largest of the Neotropical “peacock basses”, is an economically important species for both sportfishing and human consumption in the central Amazon lowlands. As an apex predator, it is also an important component of its ecosystem. Due to taxonomic questions and a dearth of definitive information about the species’ life history and relationship to its natural flood pulse habitat, there has been a lack of effective management tools and conservation policies to protect this economically and ecologically important species. The principle motivation for the work performed for, and described in, this dissertation is to clarify these topics and provide a foundation for the creation of effective future management tools. In Chapter 1, a three-part study using morphometric, reproductive and molecular data showed that variants of Cichla temensis are members of a single species whose individuals undergo a yearly color and pattern variation correlated to their specific degree of seasonal sexual maturation. Chapter 2 used geometric morphometric techniques to analyze shape changes in the variants and their relation to the deposition of fatty reserves necessary for prespawn ii gametogenesis and postspawn maintenance during a protracted fast associated with brood guarding behavior. The study showed that the behavioral and physiological characters analyzed are related to each other and to their environment’s yearly flood pulse. Chapters 1 and 2, in conjunction with prior studies and personal observation, laid a foundation that served as the basis for Chapter 3. Habitat use and spawning behavior were analyzed in relation to flood pulse conditions and grade of color and pattern variation. The temporal and spatial linkages provided by these results enabled, for the first time, a synthesis of the species’ life history with the Amazon basin’s pulsative ecology. This new body of information can help provide a foundation for future management tools and conservation policies to maximize the economic benefits provided by this species while simultaneously creating the sustainability to protect the unique ecosystem in which it plays an integral role. iii Acknowledgements I want to thank my advisor, Ken Able, for having the patience to teach an old dog new tricks. Converting a somewhat grizzled and academically uncivilized fishing guide into a legitimate scientific investigator should be a recognized resume category. His broad knowledge and boundless insight as an ichthyologist instantly showed me where my goals lay. His unwavering consistency in shaping my scientific reasoning and streamlining (at least somewhat) my writing style has allowed me to already accomplish some of those goals; particularly the conservation oriented goals that motivated my pursuit of a graduate degree in the first place. I would also like to thank Paulo Petry and Izeni Farias for igniting the motivation I needed to return to school. As an Amazon fishing guide I have enjoyed unique access to and gained priceless perspective on this normally inaccessible wilderness. My years in Amazonia have stirred a desire to play a part in protecting its future. These two scientists made me understand that if I wanted to contribute something more than lip service and unheard grumbles to my environmental aspirations, I needed to make a commitment. I had to obtain the necessary credentials to legitimize the observations I made; to begin the research that I was in a unique position to perform; and to memorialize the resulting information. Acute Angling, an Amazon sportfishing operation, funded all of the research for this dissertation. My Brazilian friends Norberto Guedes and Wellington Melo provided me with endless support in the field and helped make much of my work possible. Tomas Hrbek and Thomas Grothues provided critical scientific and technical guidance. My iv doctorate wielding children, Michael Reiss and Jenny Reiss served as mentors and academic role models. I am grateful to all of them. Finally, I am indebted to Marsha Morin and her ability to provide adult babysitting for a part-time student who is out of the country for half the year. Marsha kept me connected at Rutgers and saved my bacon more than once when deadlines rolled right by me. v Dedication I dedicate this dissertation to my future wife, Helen, whose generosity, graciousness and strength allows me to share my heart with my other great love, the Amazon. vi Table of Contents Abstract .................... ii Acknowledgments ................ iv Dedication .................... vi Table of Contents ................ vii Introduction .................... 1 Chapter 1 - Color pattern variation in Cichla temensis (Perciformes: Cichlidae): resolution based on morphological, molecular, and reproductive data ..................... 12 Chapter 2 - Geometric morphometric analysis of cyclical body shape changes in color pattern variants of Cichla temensis demonstrates reproductive energy allocation ................... 47 Chapter 3 - A periodic environment yields a cyclical life history; How Cichla temensis adapts to its flood pulse habitat ................ 79 Conclusion.................... 144 Appendix 1 ................... 150 vii 1 Introduction Cichla temensis is a large, Neotropical, predatory fish of considerable economic importance, both as a sportfish (Myatt et al., 2005; Holley et al., 2008; Thomé-Souza et al., 2014) and for human consumption (Smith, 1981; Goulding et al., 1996). Called ‘tucunaré’ in Brazil and ‘pavon’ in Spanish speaking countries, the term “peacock bass” is applied to all fifteen currently recognized species within the genus Cichla, a basal genus within the family Cichlidae (Stiassney, 1987; Farias et al., 1999; Kullander & Ferreira, 2006). The family Cichlidae has received much attention due to its rapid speciation in African rift lakes (Barlow, 2000). African cichlid radiation has been attributed in part to the high degree of variability of cichlid pharyngeal jaw configurations (Konings, 1995) enabling the rapid exploitation of multiple ecological niches within a lacustrine system. Neotropical cichlid diversification, however, is less spectacular and more likely attributable to long-term genetic changes resulting from large-scale geological vicariance (Willis, 2007). Within the family, the South American genus Cichla has posed various taxonomic challenges. Cichla was long considered to be a sister genus to the elongate predators, Crenicichla (Stiassny, 1987). However, more recently, molecular analysis indicates that Cichla is more closely aligned within a clade that includes the genus Astronotus (oscars), (Farias et al. 1999, 2000). Until 2006, taxonomists had recognized only five species, although many researchers had suggested that several additional undescribed species existed. A revision of the genus based on morphological data 2 expanded the number of accepted species to fifteen (Kullander & Ferreira, 2006). Taxonomic uncertainty still remains, however. Karyological evidence suggests that hybridization may have occurred (Brinn et al. 2004) while molecular data suggests that groupings within the genus may differ from the morphologically based species descriptions (Willis, 2007). Within the species, C. temensis itself, there have also been ongoing taxonomic questions that are addressed by this dissertation. Cichla temensis is found in lowland flood pulse rivers in the central Amazon basin and appears to be restricted to tannin stained, acidic, blackwater systems (Winemiller, 2001). It inhabits regions of the Amazon River basin, including the Rio Negro and Uatuma drainages as well as Venezuelan and Columbian tributaries of the Orinoco (Kullander, 2003). Additionally, an active sport fishery exists for C. temensis in blackwater tributaries of the Rio Madeira and Rio Branco (Kullander, 2006; Holley, et al., 2008; Reiss et al., 2012). Within flood pulse systems, C. temensis are subject to large variations in available habitat. They occur in both lagoon (lentic) and river (lotic) habitats. Changing water levels and conditions associated with the flood pulse affect the selection of habitat, so that at varying times in the seasonal rainy/dry cycle, primary habitat selection can swing from lentic to lotic (Jepsen et al., 1997). Cichla temensis can grow rapidly during its first year, although information from its natural flood pulse habitat is lacking. In aquaculture facilities, presumed C. temensis <50 mm were found to grow 1.0 mm per day, while fish 50-100 mm in length grew at 0.8 mm per day (Braga, 1953). A study of C. temensis reared in Texas ponds indicates
Recommended publications
  • Dissertação Final.Pdf
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE ÁGUA DOCE E PESCA INTERIOR - BADPI CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS JANICE MACHADO DE QUADROS MANAUS-AM 2019 JANICE MACHADO DE QUADROS CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS ORIENTADORA: Eliana Feldberg, Dra. COORIENTADOR: Efrem Jorge Gondim Ferreira, Dr. Dissertação apresentada ao Programa de Pós- Graduação do Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em CIÊNCIAS BIOLÓGICAS, área de concentração Biologia de Água Doce e Pesca Interior. MANAUS-AM 2019 Ficha Catalográfica Q1c Quadros, Janice Machado de CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS / Janice Machado de Quadros; orientadora Eliana Feldberg; coorientadora Efrem Ferreira. -- Manaus:[s.l], 2019. 56 f. Dissertação (Mestrado - Programa de Pós Graduação em Biologia de Água Doce e Pesca Interior) -- Coordenação do Programa de Pós- Graduação, INPA, 2019. 1. Hibridação. 2. Tucunaré. 3. Heterocromatina. 4. FISH. 5. DNAr. I. Feldberg, Eliana, orient. II. Ferreira, Efrem, coorient. III. Título. CDD: 639.2 Sinopse: A fim de investigar a existência de híbridos entre espécies de Cichla, nós analisamos, por meio de técnicas de citogenética clássica e molecular indivíduos de C. monoculus, C. temensis, C. pinima, C. kelberi, C. piquiti, C. vazzoleri de diferentes locais da bacia amazônica e entre eles, três indivíduos foram considerados, morfologicamente, híbridos. Todos os indivíduos apresentaram 2n=48 cromossomos acrocêntricos. A heterocromatina foi encontrada preferencialmente em regiões centroméricas e terminais, com variações entre indivíduos de C.
    [Show full text]
  • Final Report Galveston Bay Invasive Animal Field Guide TCEQ Contract Number 582-8-84976
    Final Report Galveston Bay Invasive Animal Field Guide TCEQ Contract Number 582-8-84976 August 2010 Prepared For: Texas Commission on Environmental Quality Galveston Bay Estuary Program 17041 El Camino Real, Ste. 210 Houston, Texas 77058 GBEP Project Manager Lindsey Lippert Prepared By: Geotechnology Research Institute (GTRI) Houston Advanced Research Center (HARC) 4800 Research Forest Drive The Woodlands, Texas 77381 Principal Investigator Lisa A. Gonzalez [email protected] Prepared in Cooperation with the Texas Commission on Environmental Quality and U.S. Environmental Protection Agency The preparation of this report was financed through grants from the U.S. Environmental Protection Agency through the Texas Commission on Environmental Quality www.galvbayinvasives.org Table of Contents 1 Executive Summary _______________________________________________________4 2 Introduction ______________________________________________________________5 3 Project Methodology _______________________________________________________6 3.1 Invasive Species Chosen for Inclusion______________________________________ 6 3.2 Data Collection and Database Creation _____________________________________ 6 3.3 Creation and Printing of the Field Guide ____________________________________ 6 3.4 Website Development __________________________________________________ 7 4 Project Results ____________________________________________________________7 4.1 Hard Copy, Field Guide Printing __________________________________________ 7 4.2 Website Use __________________________________________________________
    [Show full text]
  • Royal Peacock Bass (Cichla Intermedia) Ecological Risk Screening Summary
    Royal Peacock Bass (Cichla intermedia) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, May 2018 Web Version, 9/7/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela. Probably occurs in Colombia.” Status in the United States This species has not been reported as introduced or established in the United States. This species is present in the aquarium trade in the United States, for example: From Bluegrass Aquatics (2018): “Intermedia Peacock Bass Cichlid REGULAR $232.48” “Intermedia Peacock Bass Cichlid REGULAR Cichla Intermedia Known as the "Royal" peacock by American anglers.” 1 Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Cichla Species Cichla intermedia Machado-Allison, 1971” “Taxonomic Status: Current Standing: valid” Size, Weight, and Age Range From Froese and Pauly (2018): “[…] range 28 - ? cm Max length: 55.0 cm TL male/unsexed; [IGFA 2001]; max. published weight: 3,000 g [IGFA 2001].” Environment From Froese and Pauly (2018): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018): “South America: Orinoco River basin, tributaries of the Orinoco River, and the Casiquiare River in Venezuela.
    [Show full text]
  • Release Recreational Angling to Effectively Conserve Diverse Fishery
    Biodiversity and Conservation 14: 1195–1209, 2005. Ó Springer 2005 DOI 10.1007/s10531-004-7845-0 Do we need species-specific guidelines for catch-and- release recreational angling to effectively conserve diverse fishery resources? STEVEN J. COOKE1,* and CORY D. SUSKI2 1Department of Forest Sciences, Centre for Applied Conservation Research, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4; 2Department of Biology, Queen’s University, Kingston, ON, Canada K7L 3N6; *Author for correspondence (e-mail: [email protected]) Received 2 April 2003; accepted in revised form 12 January 2004 Key words: Catch-and-release, Fisheries conservation, Hooking mortality, Recreational angling, Sustainable fisheries Abstract. Catch-and-release recreational angling has become very popular as a conservation strategy and as a fisheries management tool for a diverse array of fishes. Implicit in catch-and-release angling strategies is the assumption that fish experience low mortality and minimal sub-lethal effects. Despite the importance of this premise, research on this topic has focused on several popular North American sportfish, with negligible efforts directed towards understanding catch-and-release angling effects on alternative fish species. Here, we summarise the existing literature to develop five general trends that could be adopted for species for which no data are currently available: (1) minimise angling duration, (2) minimise air ex- posure, (3) avoid angling during extremes in water temperature, (4) use barbless hooks and artificial lures=flies, and (5) refrain from angling fish during the reproductive period. These generalities provide some level of protection to all species, but do have limitations. Therefore, we argue that a goal of conservation science and fisheries management should be the creation of species-specific guidelines for catch-and-release.
    [Show full text]
  • Freshwater Fish of New River, Belize
    FRESHWATER FISH OF NEW RIVER, BELIZE Belize is home to an abundant diversity of freshwater Blue Tilapia fish species and is often considered a fisherman’s Oreochromis aureus, Tilapia paradise. The New River area is a popular freshwater Adult size: 13–20 cm (5–8 in) fishing destination in the Orange Walk district of northern Belize. Here locals and visitors alike take to the lagoons and waterways for dinner or for good sportfishing. This guide highlights the most popular species in the area and will help people identify and understand these species. A fishing license is required for all fishers, so before casting be sure to check the local laws and regulations. Tarpon Victor Atkins Megalops atlanticus This edible, fleshy fish can be identified by its overall blue Adult size: 1-2.5 m (4-8 ft) color. Adults can weigh up to 2.7kg (6 lbs). This exotic cichlid is abundant in both fresh and brackish waters. Mayan Cichlid Cichlasoma urophthalmus, Pinta Adult size: 25–27 cm (10–11 in) Albert Kok Tarpon are large fish that can weigh up to 127kg (280 lbs). They are covered in large, silver scales and have no spines in their fins, and have a broad mouth with a prominent lower jaw. Tarpon are fighters and may jump out of the water DATZ. R. Stawikowski several times when hooked. They are found in fresh and saltwater. This popular food fish has dark vertical bars and a large black eyespot with a blue border at the tail base. The first Bay Snook dorsal and anal fins have many sharp spines.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Florida Fishing Regulations
    2009–2010 Valid from July 1, 2009 FLORIDA through June 30, 2010 Fishing Regulations Florida Fish and Wildlife Conservation Commission FRESHWATER EDITION MyFWC.com/Fishing Tips from the Pros page 6 Contents Web Site: MyFWC.com Visit MyFWC.com/Fishing for up-to- date information on fishing, boating and how to help ensure safe, sus- tainable fisheries for the future. Fishing Capital North American Model of of the World—Welcome .........................2 Wildlife Conservation ........................... 17 Fish and wildlife alert reward program Florida Bass Conservation Center ............3 General regulations for fish management areas .............................18 Report fishing, boating or hunting Introduction .............................................4 law violations by calling toll-free FWC contact information & regional map Get Outdoors Florida! .............................19 1-888-404-FWCC (3922); on cell phones, dial *FWC or #FWC Freshwater fishing tips Specific fish management depending on service carrier; or from the pros..................................... 6–7 area regulations ............................18–24 report violations online at Northwest Region MyFWC.com/Law. Fishing license requirements & fees .........8 North Central Region Resident fishing licenses Northeast Region Nonresident fishing licenses Southwest Region Lifetime and 5-year licenses South Region Freshwater license exemptions Angler’s Code of Ethics ..........................24 Methods of taking freshwater fish ..........10 Instant “Big Catch” Angler Recognition
    [Show full text]
  • Color Pattern Variation in Cichla Temensis (Perciformes: Cichlidae): Resolution Based on Morphological, Molecular, and Reproductive Data
    Neotropical Ichthyology, 10(1): 59-70, 2012 Copyright © 2012 Sociedade Brasileira de Ictiologia Color pattern variation in Cichla temensis (Perciformes: Cichlidae): Resolution based on morphological, molecular, and reproductive data Paul Reiss1, Kenneth W. Able2, Mario S. Nunes3 and Tomas Hrbek3 Morphological variants of Cichla temensis, readily differentiated by their striking color pattern differences, are found in several Amazon basin flood pulse river systems. The adult variants have at times been thought to represent different species or sexual dimorphism. A three part study was performed in two regions in Brazil (rio Igapó Açú and rio Caures) to elucidate the nature of the variants. In part one; selected diagnostic morphometric characters were compared intraspecifically among the variants and interspecifically with C. monoculus and C. orinocensis. All of the C. temensis variants were found to differ significantly from their sympatric congeners while not differing among each other. In part two, mitochondrial DNA samples were compared intraspecifically among the variants and interspecifically with their sympatric congeners. There were no diagnostic molecular synapomorphies that would unambiguously distinguish the variants and all C. temensis variants were clearly diagnosable and divergent from their sympatric congeners. In part three, color pattern variation in both sexes was compared to a gonadosomatic index (GSI). A significant correlation between color pattern variation and gonadosomatic index was found. The results of this study demonstrate that Cichla temensis variants are confirmed to be members of a single species and that the variation does not represent a sexual dimorphism. The color pattern variation is a cyclically occurring secondary sexual characteristic and is indicative of the specific degree of an individual’s seasonal sexual maturation.
    [Show full text]
  • Pdf (740.35 K)
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(3): 311 – 322 (2020) www.ejabf.journals.ekb.eg Origin of Invasive Fish Species, Peacock Bass Cichla Species in Lake Telabak Malaysia Revealed by Mitochondrial DNA Barcoding Aliyu G. Khaleel1,2, Syafiq A. M. Nasir1, Norshida Ismail1, 1, and Kamarudin Ahmad-Syazni * 1 School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia. 2 Department of Animal Science, Faculty of Agriculture and Agricultural Technology, Kano University of Science and Technology, Wudil, P.M.B. 3244 Kano State, Nigeria. *Corresponding author: [email protected] ARTICLE INFO ABSTRACT Article History: Peacock bass (Perciformes, Cichlidae, Cichla) are multi-coloured and Received: Nov. 18, 2019 highly predatory fish originated from Amazonian region. The species was Accepted: April 27, 2020 deliberately introduced into Malaysia freshwater bodies by anglers in the early Online: May 2020 1990’s for sport fisheries. In this recent study, we found the population of _______________ peacock bass in Lake Telabak, a man-made lake in Besut, Terengganu. Using mitochondrial DNA analysis approach, the origin and taxonomy of peacock Keywords: bass in the lake were clarify. A total of forty fishes were sampled from Lake Peacock bass, Telabak for the analysis. Haplotype was detected among all samples. The Invasive species, current study revealed that Cichla spp. in Lake Telabak are closer to Cichla mitochondrial DNA ocellaris (Bloch and Schneider, 1801) with a sequence similarity of 99.72% barcoding, Lake Telabak as blasted at the National Center for Biotechnology Information (NCBI) database.
    [Show full text]
  • Abstracts Part 1
    375 Poster Session I, Event Center – The Snowbird Center, Friday 26 July 2019 Maria Sabando1, Yannis Papastamatiou1, Guillaume Rieucau2, Darcy Bradley3, Jennifer Caselle3 1Florida International University, Miami, FL, USA, 2Louisiana Universities Marine Consortium, Chauvin, LA, USA, 3University of California, Santa Barbara, Santa Barbara, CA, USA Reef Shark Behavioral Interactions are Habitat Specific Dominance hierarchies and competitive behaviors have been studied in several species of animals that includes mammals, birds, amphibians, and fish. Competition and distribution model predictions vary based on dominance hierarchies, but most assume differences in dominance are constant across habitats. More recent evidence suggests dominance and competitive advantages may vary based on habitat. We quantified dominance interactions between two species of sharks Carcharhinus amblyrhynchos and Carcharhinus melanopterus, across two different habitats, fore reef and back reef, at a remote Pacific atoll. We used Baited Remote Underwater Video (BRUV) to observe dominance behaviors and quantified the number of aggressive interactions or bites to the BRUVs from either species, both separately and in the presence of one another. Blacktip reef sharks were the most abundant species in either habitat, and there was significant negative correlation between their relative abundance, bites on BRUVs, and the number of grey reef sharks. Although this trend was found in both habitats, the decline in blacktip abundance with grey reef shark presence was far more pronounced in fore reef habitats. We show that the presence of one shark species may limit the feeding opportunities of another, but the extent of this relationship is habitat specific. Future competition models should consider habitat-specific dominance or competitive interactions.
    [Show full text]
  • Cytogenetics of Gymnogeophagus Setequedas (Cichlidae: Geophaginae), with Comments on Its Geographical Distribution
    Neotropical Ichthyology, 15(2): e160035, 2017 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20160035 Published online: 26 June 2017 (ISSN 1982-0224) Copyright © 2017 Sociedade Brasileira de Ictiologia Printed: 30 June 2017 (ISSN 1679-6225) Cytogenetics of Gymnogeophagus setequedas (Cichlidae: Geophaginae), with comments on its geographical distribution Leonardo M. Paiz1, Lucas Baumgärtner2, Weferson J. da Graça1,3, Vladimir P. Margarido1,2 and Carla S. Pavanelli1,3 We provide cytogenetic data for the threatened species Gymnogeophagus setequedas, and the first record of that species collected in the Iguaçu River, within the Iguaçu National Park’s area of environmental preservation, which is an unexpected occurrence for that species. We verified a diploid number of 2n = 48 chromosomes (4sm + 24st + 20a) and the presence of heterochromatin in centromeric and pericentromeric regions, which are conserved characters in the Geophagini. The multiple nucleolar organizer regions observed in G. setequedas are considered to be apomorphic characters in the Geophagini, whereas the simple 5S rDNA cistrons located interstitially on the long arm of subtelocentric chromosomes represent a plesiomorphic character. Because G. setequedas is a threatened species that occurs in lotic waters, we recommend the maintenance of undammed environments within its known area of distribution. Keywords: Chromosomes, Conservation, Iguaçu River, Karyotype, Paraná River. Fornecemos dados citogenéticos para a espécie ameaçada Gymnogeophagus setequedas, e o primeiro registro da espécie coletado no rio Iguaçu, na área de preservação ambiental do Parque Nacional do Iguaçu, a qual é uma área de ocorrência inesperada para esta espécie. Verificamos em G. setequedas 2n = 48 cromossomos (4sm + 24st + 20a) e heterocromatina presente nas regiões centroméricas e pericentroméricas, as quais indicam caracteres conservados em Geophagini.
    [Show full text]
  • Reproductive Seasonality of Geophagus Steindachneri Eigenmann & Hildebrand, 1922 (Perciformes: Cichlidae) in a Tropical Mountain River
    Neotropical Ichthyology, 2015 Copyright © 2015 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20140091 Reproductive seasonality of Geophagus steindachneri Eigenmann & Hildebrand, 1922 (Perciformes: Cichlidae) in a tropical mountain river Federico Rangel-Serpa1 and Mauricio Torres2 Reproductive seasonality in tropical freshwater fishes is strongly influenced by rainfall. In lowlands, floods spill laterally to floodplains and fishes usually breed during the flooding season. In mountain rivers, floods are sudden and flush out aquatic organisms. Fishes in mountain rivers usually breed during dry seasons, what has been hypothesized as a strategy to reduce mortality due to strong floods. If that is the case, mouth-brooding fishes should suffer less from strong floods and should have more prolonged breeding seasons in mountain rivers. Here we investigated the breeding activity of a mouth-brooding cichlid (Geophagus steindachneri) in a mountain river in Colombia using three kinds of evidence: monthly variation of gonad weight, macroscopic and histological observations of the gonads, and occurrence of mouth-brooding females. Analysis was made on adults captured monthly throughout a year. The results indicate that G. steindachneri breeds during the dry season in the mountain river studied. Female mouth brooding was related with a halt in the maturation of their ovaries. Other factors than the flushing-out effect of floods on offspring may be determining dry-season breeding of fishes in tropical mountain rivers. La estacionalidad reproductiva de los peces tropicales de agua dulce esta influida por los patrones de lluvia. En tierras bajas, las aguas se expanden hacia el plano de inundación y los peces generalmente se reproducen en aguas altas.
    [Show full text]