General Interstellar Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foundations of Interstellar Studies NY Issue
Journal of the British Interplanetary Society VOLUME 71 NO.8 AUGUST 2018 Foundations of Interstellar Studies NY Issue FIRST STOP ON THE INTERSTELLAR JOURNEY The Solar Gravity Lens Focus Louis Friedman & Slava G. Turyshev EXPERIMENTAL SIMULATION OF DUST IMPACTS at Starflight Velocities Andrew J. Higgins PLASMA DYNAMICS in Firefly's Z-pinch Fusion Engine Robert M. Freeland II GRAM-SCALE NANO-SPACECRAFT Entry into Star Systems Albert Allen Jackson IV THE INTERSTELLAR FUSION FUEL RESOURCE BASE of our Solar System Robert G. Kennedy TESTS OF FUNDAMENTAL PHYSICS in Interstellar Flight Roman Ya. Kezerashvili www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 4 JANUARY 2019 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
A Selected Bibliography of Publications By, and About, Samuel A
A Selected Bibliography of Publications by, and about, Samuel A. Goudsmit Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 10 January 2020 Version 1.03 Title word cross-reference $3.50 [Bar30, Rid47]. 136 [Cha72]. 138 [Cha72]. 140 [Cha72]. 142 [Cha72]. g [Gou25g]. Sa [Ive10]. Z [LHLT64]. Za [Ive10]. -dependent [LHLT64]. -Werte [Gou25g]. 1947 [Hen48, Whi48]. 1952 [Gou53b]. 1953 [Gou53a]. 1964 [Gou65a]. 1978 [Bed08b, Dre79]. 1983 [Moy84]. 1987 [Lug69]. 1988 [DGS89]. 3d [Tho97]. A-Bomb [Rec91, LRD+91, Bro93, Mac85]. Abides [Gla00]. Abraham [Bed08a, Bed08b]. Absorption [ZHG36]. Abstracts [GT66a, GT68, Gou69a]. Academy [Coc77, Jew77]. accept [Ano54a]. Acceptance [Gou72b]. Account [Lan54]. Ad [Gou72a]. Affirm [ACU+54]. 1 2 Again [GT66c, Gou73e, Rai85]. Age [Lan48, Sul78, Lan59a, Lan59b, Lap59]. AIP [Ano75]. Alamos [Bet91]. Alan [Gou78b]. Alfred [Hol93a, LH93]. Allies [Hol93b]. Alsos [Gou48c, Ano12, Gou47g, Gou47h, Gou47e, Gou48c, Gou51, Gou62, Gou83, Gou96, Pas69, Pas80, Ano48a, Gue50, Hen48, Moy84, Tre83, Whi48]. ALSOS. [Rid47]. Am [Gou74b]. amend [NG70]. American [EBU+52, Gou47b]. Americans [Lan54]. Among [Tre83]. Analyses [BG32, BG68]. Analysis [Gou74a, Wer10]. Analyzed [Gou47c]. Ancient [Gou81]. Angeles [Moy84, Tre83]. Angeles/San [Tre83]. Angewandte [Gou50a]. Angle [Win89, Win87]. Angry [Gou63]. Angular [BL96, NLCS05]. Announcement [Gou58c, Gou58d, Gou58e, Gou68d]. Anomalies [GB33]. Anomalous [Ben38]. anonymity [WG67]. antiquities [RG82]. Application [Hei47a, Hei47b, MU56]. applications [Ike17]. Applied [Gou50a]. Appraisal [Hei49]. Arbeiten [Hei46]. -
Albert Einstein and Wernher Von Braun – the Two Great German-American
Albert Einstein and Wernher von Braun – the two great German-American Physicists seen in a Historical Perspective FRIEDWARDT WINTERBERG, University of Nevada Reno. Abstract It was Albert Einstein who changed our view of the universe to be a non-Euclidean curved space-time. And it was Wernher von Braun who showed how to make the first step to take us into this universe, leaving the gravitational field of our planet earth, with the landing a man on the moon the greatest event in human history. Both these great physicists did this on the shoulders of giants. Albert Einstein on the shoulders of his German landsman Bernhard Riemann, and Wernher von Braun on the shoulders of Goddard and Oberth. Both Einstein and von Braun made a Faustian pact with the devil, von Braun by accepting research funds from Hitler, and Einstein by urging Roosevelt to build the atom bomb (against Hitler). Both of these great men later regretted the use of their work for the killing of innocent bystanders, even though in the end the invention of nuclear energy and space flight is for the benefit of man. Their example serves as a warning for all of us. It can be formulated as follows: “Can I in good conscience accept research funds from the military to advance scientific knowledge, for weapons developed against an abstract enemy I never have met in person?" Weapons if used do not differentiate between the scientist, who invented these weapons, and the non-scientist. In this short essay I will show that there are many surprising parallels in the life of Albert Einstein and Wernher von Braun, the two great German-American physicists who had a decisive influence on the history of the 20th century. -
Space Propulsion.Pdf
Deep Space Propulsion K.F. Long Deep Space Propulsion A Roadmap to Interstellar Flight K.F. Long Bsc, Msc, CPhys Vice President (Europe), Icarus Interstellar Fellow British Interplanetary Society Berkshire, UK ISBN 978-1-4614-0606-8 e-ISBN 978-1-4614-0607-5 DOI 10.1007/978-1-4614-0607-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011937235 # Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to three people who have had the biggest influence on my life. My wife Gemma Long for your continued love and companionship; my mentor Jonathan Brooks for your guidance and wisdom; my hero Sir Arthur C. Clarke for your inspirational vision – for Rama, 2001, and the books you leave behind. Foreword We live in a time of troubles. -
EIR Executive Intelligence Review Special Reports
EIR Executive Intelligence Review Special Reports The special reports listed below, prepared by the EIR staff, are now available. 1. Prospects for Instability in the Arabian Gulf 5. The Significance of the Shakeup at Pemex A comprehensive review of the danger of instabil EIR correctly forecast the political troubles of ity in Saudi Arabia in the coming period. Includes former Pemex director Jorge Diaz Serrano, and analysis of the Saudi military forces, and the in this report provides the full story of the recent fluence of left-wing forces, and pro-Khomeini net shakeup at Pemex.lncludes profile of new Pemex works in the country. $250. director Julio Rodolfo Moctezuma Cid, implica tions of the Pemex shakeup for the upcoming 2. Energy and Economy: Mexico in the Year 2000 presidential race, and consequences for Mexico's A development program for Mexico compiled energy policy. $200. jointly by Mexican and American scientists.Con cludes Mexico can grow at12 percent annually for 6. What is the Trilateral Commission? the next decade, creating a $100 billion capital The most complete analysis of the background, goods export market for the United States. De origins, and goals of this much-talked-about tailed analysis of key economic sectors; ideal for organization. Demonstrates the role of the com planning and marketing purposes. $250. mission in the Carter administration's Global 2000 report on mass population reduction; in the 3. Who Controls Environmentalism P-2 scandal that collapsed the Italian government A history and detailed grid of the environmental this year; and in the Federal Reserve's high ist movement in the United States. -
Sgs01fenstermacher.Pdf
- ! ,:. Sciena & Global Security, 1990, Volume I, ppo187-223 Pbotooopying permitt£d by license only Reprints available directly from the publisher C>1990 Gordon and Breach Science Publishers SoA. Printed in the United States of America The Effects of Nuclear Test-ban Regimes on Th ird -generation-wea pon I n novation Dan L. Fenstermache~ The primary reason that we are pursuing nuclear directed energy weapons is to understand the Soviets' capability to design and deploy similar weapons,which would put the US strategic deterrent force or a future defensivesystem at risk. Former US Energy Secretary John S. Herrington' It is by no means certain that a Comprehensive Test Ban would prevent the Soviets from developing a new generation of nuclear weapons, although that would assuredly be the effect of a total testing ban on the US. Former Director of Los Alamos National Laboratory, Donald Kerrt Under the rationale of assessing potential Soviet threats, several third-generation- weapon concepts are being actively studied in the US. This paper presents a technical analysis of the physical principles and likely capabilities of three nuclear directed-energy concepts (x-my lasers, nuclear kinetic-energy weapons, and micro- wave devices) and describes the implications for their development of threshold test bans at thresholds above and below 1 kiloton, Inertial Confinement Fusion, special- ized non-nuclear weapon effects simulation, and seismically quiet containment a. Center for Energy and Environmental Studies. Princeton University. Princeton. NJ 08544 Some of ftJ/s research was undertaken while on feUol,I,Shlpat ftJe Center for Science and International Affairs. Kennedy School of Government. -
Relativistic Effects on Satellite Navigation
Ž. Hećimivić Relativistički utjecaji na satelitsku navigaciju ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) UDC/UDK 531.395/.396:530.12]:629.056.8 RELATIVISTIC EFFECTS ON SATELLITE NAVIGATION Željko Hećimović Subject review The base of knowledge of relativistic effects on satellite navigation is presented through comparison of the main characteristics of the Newtonian and the relativistic space time and by a short introduction of metric of a gravity field. Post-Newtonian theory of relativity is presented as a background in numerical treating of satellite navigation relativistic effects. Time as a crucial parameter in relativistic satellite navigation is introduced through coordinate and proper time as well as terrestrial time and clocks synchronization problem. Described are relativistic effects: on time dilation, on time differences because of the gravity field, on frequency, on path range effects, caused by the Earth rotation, due to the orbit eccentricity and because of the acceleration of the satellite in the theory of relativity. Overviews of treatment of relativistic effects on the GPS, GLONASS, Galileo and BeiDou satellite systems are given. Keywords: satellite navigation, GNSS, post-Newton theory of relativity, relativistic effects, GPS, GLONASS, Galileo, BeiDou Relativistički utjecaji na satelitsku navigaciju Pregledni rad Osnovna znanja o relativističkim utjecajima na satelitsku navigaciju objašnjena su usporedbom glavnih karakteristika Newtonovog i relativističkog prostora vremena te kratkim uvodom u metriku gravitacijskog polja. Post-Newtonova teorija relativnosti objašnjena je kao osnova pri numeričkoj obradi relativističkih utjecaja u području satelitske navigacije. Vrijeme, kao vrlo važan parametar u relativističkoj satelitskoj navigaciji, objašnjeno je kroz koordinatno i vlastito vrijeme te kroz terestičko vrijeme i problem sinkronizacije satova. -
A Science-Driven Mission Concept to an Exoplanet
A Science-Driven Mission Concept to an Exoplanet Stacy Weinstein-Weiss1, Marc Rayman1, Slava Turyshev1, Abhijit Biswass1, Insoo Jun1, Hoppy Price1, Eric Mamajek1, John Callas1, Tim McElrath1, Dave Woerner1, John Brophy1, Mike Shao1, Leon Alkalai1, Nitin Arora1, Les Johnson2, Merav Opher3, Seth Redfield4, Ralph McNutt5, Carol Stoker6, Jennifer Blank6, Douglas Caldwell7, Louis Friedman8, Robert Frisbee8, Gary Bennett8 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 2 NASA Marshall Space Flight Center, Redstone Arsenal Huntsville, AL 35812 3 Boston University, 1 Silber Way, Boston, MA 02215 4 Wesleyan University, 45 Wyllys Ave, Middletown, CT 06459 5 Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Rd, Laurel, MD 20723 6 NASA Ames Research Center, Moffett Blvd, Mountain View, CA 94035 7 SETI Institute, 189 N Bernardo Ave, Mountain View, CA 94043 8 Consultant A concept for a science-driven robotic mission to an exoplanet was developed by a team of scientists and engineers from NASA and academia. The concept and scope were based on key mission and science requirements designed to address the question: “What makes a flight mission to an exoplanet compelling, in terms of science return, compared to what we will be able to learn in the next few decades with large near-Earth telescopes or other remote sensing techniques such as a telescope at the Solar Gravity Lens Focus?” By thinking systematically through mission and science goals and objectives, key requirements were developed that would drive technology developments in all necessary aspects, not just on propulsion. Unique science measurements would be performed en route to the exoplanet, including exploring the environment in the outer regions of our solar system, the Oort Cloud, the local interstellar medium, and the astrospheric environment around the host star. -
Submitting Papers to Jbis
JBIS Journal of the British Interplanetary Society VOL. 70 No. 10/11 OCTOBER-NOVEMBER 2017 Contents Einstein, Mach’s principle, and the Unification of gravity and inertia J. F. Woodward Voltage Power Law scaling of the Force for a Mach Effect Gravitational Assist Drive H. Fearn and J. F. Woodward The Quantum Handshake Explored J. G. Cramer The Relativistic Capacitor Model and the Mach-Lorentz theory J-P Montillet and C.Ziep An Epitaxial Device for Dynamic Interaction with the Vacuum State D.C. Hyland Dynamical Casimir Effect and the Possibility of Laser-like Generation of Gravitational Radiation R.Y. Chiao, J.S. Sharping, L.A. Martinez, B.S. Kang, A. Castelli, N. Inan and J.J. Thompson Preparations for Thrust Measurement and Error Discussion of the IMPULSE Resonant Microwave Cavity M. S. McDonald , M. W. Nurnberger and L. T. Williams SPECIAL ISSUE: ADVANCED PROPULSION CONCEPTS ISSN 0007-084X www.bis-space.com Published: 4 MAY 2018 SUBMITTING PAPERS TO JBIS International Advisory Board JBIS welcomes the submission of technical papers for publication dealing with Rachel Armstrong, Newcastle University, UK technical reviews, research, technology Peter Bainum, Howard University, USA and engineering in astronautics and related Stephen Baxter, Science & Science Fiction Writer, UK fields. James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically Anu Bowman, Foundation for Enterprise Development, California, USA 5,000 to 6,000 words. Shorter papers Gerald Cleaver, Baylor University, USA (Technical Notes) will also be considered; Charles Cockell, University of Edinburgh, UK longer papers will only be considered in Ian A. -
Teichmüller Space Interpretation of Quantum Mechanics
Annales de la Fondation Louis de Broglie, Volume 38, 2013 129 Teichmüller space interpretation of quantum mechanics FRIEDWARDT WINTERBERG University of Nevada, Reno, 1664 N. Virginia Street, 89557-0220 Reno, United States of America ABSTRACT. It is proposed that the non-local quantum mechanical correla- tions are explained by the analytic continuation below the Planck length in- to a complex Teichmüller space. In one space dimension, sufficient to ex- plain the Einstein-Podolski-Rosen (EPR) paradox, the Teichmüller space is reduced to a space of complex Riemann surfaces, and an experiment is pro- posed to demonstrate the possible existence of such a space below the Planck length.. 1 Introduction To this day there is no satisfactory explanation for quantum mechanics. In The Meaning of Relativity Einstein wrote [1]: One can give good reasons why reality cannot at all be represented by a continuous field. From the quantum phenomena it appears to follow with certainty that a finite system of finite energy can be completely described by a finite set of numbers (quantum numbers). This does not seem to be in ac- cordance with a continuum theory and must lead to an attempt to find a purely algebraic theory for the representation of reality. But nobody knows how to find the basis for such a theory. While the Riemannian space of general relativity describes reality in the large, the conjecture that a Teichmüller space can describe reality in the small is interesting for the following reason: Quantum mechanics has in a very fundamental way to do with the problem of measurement. -
Thoroughly Testing Einstein's Special Relativity
Journal of Modern Physics, 2016, 7, 87-105 Published Online January 2016 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.4236/jmp.2016.71009 Thoroughly Testing Einstein’s Special Relativity Theory, and More Mario Rabinowitz Armor Research, Redwood City, CA, USA Received 3 December 2015; accepted 18 January 2016; published 22 January 2016 Copyright © 2016 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that break the symmetry of reciprocal observations of length, time, and mass. It is 22 shown how Newton could also have derived length contraction L′ = L0 1 − vc. Einstein’s Gen- eral Relativity (EGR) will also be discussed occasionally such as a changed perspective on gravita- tional waves due to a small change in ESR. Some additional questions addressed are: Did Einstein totally eliminate the Ether? Is the physical interpretation of ESR completely correct? Why should there be a maximum speed limit, and should it always be the same? The mass-energy equation is 22 revisited to show that in 1717 Newton could have derived the modern m≈− m0 1 vc, and not known that it violates the foundation of his mechanics. Tributes are paid to Einstein and others. Keywords Vulnerabilities of Special Relativity, Challenge of Reciprocal Observations of Length and Time, Einstein, Newton, Galilean Transformation, Thought Experiments, General Relativity, Gravitational Waves 1.