Download Issue 14

Total Page:16

File Type:pdf, Size:1020Kb

Download Issue 14 ISSN 2397-9127 PRINCIPIUM The Newsletter of the Initiative for Interstellar Studies Issue 14 | August 2016 ■ Guest Introduction by Paul Gilster ■ News from the Initiative ■ Cosmos: A Personal Voyage ■ The BIS Daedalus Model - the last lap R O ■ The Starship Engineer Course 2015 F E V ■ Interstellar Studies at the ISU 2016 I T A I T I N I S T U D I E S www.i4is.org Scientia ad sidera Knowledge to the stars Principium | Issue 14 | August 2016 1 account in this issue is no more than a taste of what was delivered in Strasbourg. Editorial Last November the i4is delivered a two-day Starship Welcome to Principium 14, our quarterly Engineer course at BIS HQ in London. Kelvin Long newsletter about all things interstellar. Our Guest and Rob Swinney give us an outline of its content. Introduction this time is by Paul Gilster of the This is the first of a series of technical courses at invaluable Centauri Dreams blog and the Tau Zero several levels which i4is is planning. Foundation. He muses on the relations between The front cover illustration this time is a "blueprint" Science Fiction, space advocacy, exoplanets, SETI of the thermonuclear Orion spacecraft as envisaged and increasingly well funded projects for interstellar for the Cosmos series. probes. Paul is one of our foremost "rational For our rear cover we have an image we spotted on dreamers" and we look forward to more Centauri Paul Gilster's Centauri Dreams website. No obvious Dreams. His thoughts will always be very keenly interstellar connection but the beauty of the image welcomed in Principium. bowled us over! Interstellar News this time reports on the Andromeda Look out for the latest issue of our academic probe project. We report from Charterhouse, the education journal, Axiom, out soon, and for annual British Interplanetary Society (BIS) Space opportunities to help us achieve our interstellar Conference with i4is contributors and the unveiling goals, Working towards the real Final Frontier, of Terry Regan's Daedalus model, soon to appear in towards the end of this issue. You don't have to be a the BIS headquarters. Two of our regular and highly rocket scientist! valued artists have been honoured by the BIS and by a pair of influential SF organisations. Adrian Mann Comments on i4is and all matters interstellar are was honoured with the BIS Patrick Moore medal. always welcome. Write to me! David Hardy gave the principal address at the joint John I Davies, Editor, Principium AGM of the British Science Fiction Association [email protected] and the Science Fiction Foundation; we report from Imperial College. BIS and i4is will be contributing PS Look out for the STOP PRESS at the end of to science television in Japan, we report from BIS the account of Starship Engineer 2015 announcing HQ. Starship Engineer 2016 - Weekend of 12-13 November, BIS London. This is a revised and We have more schools outreach happening updated version of the course with a more work- in London. We'd love to help the interstellar friendly timing. Contact [email protected] for more community to inspire the rising generation UK-wide, details. across Europe and worldwide. Please get in touch via contacts, at the end of this editorial. Kelvin Long, Executive Director of i4is, is a long established collector of space art and memorabilia. Keep in touch! He remembers, Cosmos: A Personal Voyage, the Join in the conversation by following the pioneering television series by Carl Sagan and shows i4is on our Facebook page www.facebook. us some of the original art work for the series which com/InterstellarInstitute he has acquired from the original artist. Become part of our professional net- work on LinkedIn www.linkedin.com/ Terry Regan completes a saga of detailed model groups/4640147 making stretching over several years in The BIS And take a look at the i4is blog, The Star- Daedalus Model - the last lap. More pictures of ship Log www.i4is.org/the-starship-log how it was done and an engrossing account of the Follow us on Twitter at @I4Interstellar mishaps and triumphs on the way to his completion And seek out our followers too! and it's unveiling. Contact us on email via [email protected]. Back issues of Principium, from number The i4is two-week elective for masters students one, can be found at www.i4is.org/Publica- at the International Space University is reported tions#Principium in Interstellar Studies at the ISU. This was a very substantial piece of work by i4is people and The views of our writers are their own. We aim associates from industry and academe and the for sound science, but not editorial orthodoxy. Principium | Issue 14 | August 2016 2 Shaping the Interstellar Imagination INTRODUCTION Writing and editing Centauri Dreams over imagination soar because of what they imply the years, I’ve talked to numerous scientists and about our future. engineers in universities, space agencies and the commercial sector. They’re my primary sources Long Journey to Earth 2.0 and they often take the time to answer questions While we dream of places like Pandora, and write for the site. But I’m always struck by Avatar’s utterly unlikely setting (gas giants the number of non-technical people who weigh in around Centauri A and B have been ruled to discuss the prospects of reaching another star. out), or imagine evocative worlds like Robert Curiosity among the public is rampant, and we Silverberg’s Majipoor, we’re also hoping to in the interstellar community need to nurture it. close the circle by detecting a real Earth-like Fortunately, a number of trends are converging world. that make this easier. About 1,200 light years from Earth in the Let’s start with science fiction, because the direction of the constellation Lyra, Kepler- field has proven enormously productive in 62f is a world with a radius 40 percent larger enlisting new enthusiasts no matter what their than Earth’s, which puts it below the 1.6 RE backgrounds. Science fiction writer and critic demarcation line that is increasingly thought to Adam Roberts, whose recent novel The Thing define the difference between Earth-like worlds Itself (Gollancz, 2015) is a new and richly and planets that are more like Neptune. Thus developed take on the Fermi paradox, likes to talk we’re probably looking at a rocky planet here. about science fiction as a genre that keeps alive It’s also a planet that orbits its K-class primary our facility for what he calls ‘imaginative play,’ at a distance that could place it in the outer something that we’re pretty good at as kids and regions of the habitable zone (as defined by the tend to lose all too quickly among the pressures of possibility of liquid water on the surface). adult jobs, families and other responsibilities. New work on this world examines the A. Gilster Paul Imaginative play is something I try to engage in planet’s atmosphere to consider scenarios everyday. As does the interstellar community, that could produce habitability. A team led which is in the interesting position of straddling by Aomawa Shields (UCLA), working with the line between science fiction and science Rory Barnes, Eric Agol, Benjamin Charnay, fact. We talk about concepts that have yet to be Cecilia Bitz and Victoria Meadows (all at confirmed and discuss possibilities of engineering the University of Washington) modelled that are well beyond what is currently attainable. climate possibilities using several different People who hear about some of these notions methods — the Community Climate System through movies like Interstellar or Avatar take Model and the Laboratoire de Météorologie note when they realize that there are serious Dynamique Generic Model. Informing the people who think there are genuinely possible climate modelling was the use of another futures that involve star-flight. computer model called HNBody, which was used to analyze and adjust the planet’s orbital So let’s talk about what we are doing to engage parameters. Out of all this, we get this from the imagination in fiction and in fact. Much of this Shields: is happening through the ongoing development of space missions. We can thank William Borucki “We found there are multiple atmospheric (NASA Ames), principal investigator for NASA's compositions that allow [Kepler62f] to be Kepler mission, for his herculean efforts at getting warm enough to have surface liquid water. the stupendously successful exoplanet hunting This makes it a strong candidate for a space telescope to fly. And among thousands of habitable planet.” confirmed exoplanets that are the result of this, we’re beginning to find a few worlds that let the Principium | Issue 14 | August 2016 3 Habitability is a thorny issue, obliquity — the angle between exoplanet populations statistically, and all too often we look the planet’s rotational axis and we’re now about to start deeper into the composition and its orbit. The Earth’s obliquity is populating the local neighborhood characteristics of distant worlds 23 percent. An axial tilt of 60° around M -dwarfs, K -dwarfs and only to find that the likelihood or higher, coupled with summer G -class stars much like the Sun. of liquid water on their surface solstice at a given hemisphere is slim. In many cases the planet occurring at the planet’s closest Couple this with the James Webb may not be a rocky terrestrial approach to its star, could Space Telescope, which is on world at all. But Kepler62f passes produce this effect, allowing track for a 2018 launch, and we most of our tests and remains a surface conditions that were at can begin drilling down to smaller seriously intriguing candidate, least periodically habitable.
Recommended publications
  • SETI Is Part of Astrobiology
    SETI is Part of Astrobiology Jason T. Wright Department of Astronomy & Physics Center for Exoplanets and Habitable Worlds Penn State University Phone: (814) 863-8470 [email protected] I. SETI is Part of Astrobiology “Traditional SETI is not part of astrobiology” declares the NASA Astrobiology Strategy 2015 document (p. 150). This is incorrect.1 Astrobiology is the study of life in the universe, in particular its “origin, evolution, distribution, and future in the universe.” [emphasis mine] Searches for biosignatures are searches for the results of interactions between life and its environment, and could be sensitive to even primitive life on other worlds. As such, these searches focus on the origin and evolution of life, using past life on Earth as a guide. But some of the most obvious ways in which Earth is inhabited today are its technosignatures such as radio transmissions, alterations of its atmosphere by industrial pollutants, and probes throughout the Solar System. It seems clear that the future of life on Earth includes the development of ever more obvious technosignatures. Indeed, the NASA Astrobiology Strategy 2015 document acknowledges “the possibility” that such technosignatures exist, but erroneously declares them to be “not part of contemporary SETI,” and mentions them only to declare that we should “be aware of the possibility” and to “be sure to include [technosignatures] as a possible kind of interpretation we should consider as we begin to get data on the exoplanets.” In other words, while speculation on the nature of biosignatures and the design of multi-billion dollar missions to find those signatures is consistent with NASA’s vision for astrobiology, speculation on the nature of technosignatures and the design of observations to find them is not.
    [Show full text]
  • Lecture-29 (PDF)
    Life in the Universe Orin Harris and Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2021 c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 1 / 95 Overview Dating Rocks Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 2 / 95 Dating Rocks Zircon Dating Sedimentary Grand Canyon Life on Earth How Did Life Arise? Life in the Solar System Life Around Dating Rocks Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 3 / 95 Zircon Dating Zircon, (ZrSiO4), minerals incorporate trace amounts of uranium but reject lead. Naturally occuring uranium: • U-238: 99.27% • U-235: 0.72% Decay chains: • 238U −→ 206Pb, τ =4.47 Gyrs. • 235U −→ 207Pb, τ = 704 Myrs. 1956, Clair Camron Patterson dated the Canyon Diablo meteorite: τ =4.55 Gyrs. c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 4 / 95 Dating Sedimentary Rocks • Relative ages: Deeper layers were deposited earlier • Absolute ages: Decay of radioactive isotopes old (deposited last) oldest (depositedolder first) c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 5 / 95 Grand Canyon: Earth History from 200 million - 2 billion yrs ago. Dating Rocks Life on Earth Earth History Timeline Late Heavy Bombardment Hadean Shark Bay Stromatolites Cyanobacteria Q: Earliest Fossils? Life on Earth O2 History Q: Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G.
    [Show full text]
  • Materials Challenges for the Starshot Lightsail
    PERSPECTIVE https://doi.org/10.1038/s41563-018-0075-8 Materials challenges for the Starshot lightsail Harry A. Atwater 1*, Artur R. Davoyan1, Ognjen Ilic1, Deep Jariwala1, Michelle C. Sherrott 1, Cora M. Went2, William S. Whitney2 and Joeson Wong 1 The Starshot Breakthrough Initiative established in 2016 sets an audacious goal of sending a spacecraft beyond our Solar System to a neighbouring star within the next half-century. Its vision for an ultralight spacecraft that can be accelerated by laser radiation pressure from an Earth-based source to ~20% of the speed of light demands the use of materials with extreme properties. Here we examine stringent criteria for the lightsail design and discuss fundamental materials challenges. We pre- dict that major research advances in photonic design and materials science will enable us to define the pathways needed to realize laser-driven lightsails. he Starshot Breakthrough Initiative has challenged a broad nanocraft, we reveal a balance between the high reflectivity of the and interdisciplinary community of scientists and engineers sail, required for efficient photon momentum transfer; large band- Tto design an ultralight spacecraft or ‘nanocraft’ that can reach width, accounting for the Doppler shift; and the low mass necessary Proxima Centauri b — an exoplanet within the habitable zone of for the spacecraft to accelerate to near-relativistic speeds. We show Proxima Centauri and 4.2 light years away from Earth — in approxi- that nanophotonic structures may be well-suited to meeting such mately
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • Optical SETI: the All-Sky Survey
    Professor van der Veen Project Scientist, UCSB Department of Physics, Experimental Cosmology Group class 4 [email protected] frequencies/wavelengths that get through the atmosphere The Planetary Society http://www.planetary.org/blogs/jason-davis/2017/20171025-seti-anybody-out-there.html THE ATMOSPHERE'S EFFECT ON ELECTROMAGNETIC RADIATION Earth's atmosphere prevents large chunks of the electromagnetic spectrum from reaching the ground, providing a natural limit on where ground-based observatories can search for SETI signals. Searching for technology that we have, or are close to having: Continuous radio searches Pulsed radio searches Targeted radio searches All-sky surveys Optical: Continuous laser and near IR searches Pulsed laser searches a hypothetical laser beacon watch now: https://www.youtube.com/watch?time_continue=41&v=zuvyhxORhkI Theoretical physicist Freeman Dyson’s “First Law of SETI Investigations:” Every search for alien civilizations should be planned to give interesting results even when no aliens are discovered. Interview with Carl Sagan from 1978: Start at 6:16 https://www.youtube.com/watch?v=g- Q8aZoWqF0&feature=youtu.be Anomalous signal recorded by Big Ear Telescope at Ohio State University. Big Ear was a flat, aluminum dish three football fields wide, with reflectors at both ends. Signal was at 1,420 MHz, the hydrogen 21 cm ‘spin flip’ line. http://www.bigear.org/Wow30th/wow30th.htm May 15, 2015 A Russian observatory reports a strong signal from a Sun-like star. Possibly from advanced alien civilization. The RATAN-600 radio telescope in Zelenchukskaya, at the northern foot of the Caucasus Mountains location: star HD 164595 G-type star (like our Sun) 94.35 ly away, visually located in constellation Hercules 1 planet that orbits it every 40 days unusual radio signal detected – 11 GHz (2.7 cm) claim: Signal from a Type II Kardashev civilization Only one observation Not confirmed by other telescopes Russian Academy of Sciences later retracted the claim that it was an ETI signal, stating the signal came from a military satellite.
    [Show full text]
  • The Copernican Principle Rules out BLC1 As a Technological Radio Signal from the Alpha Centauri System
    Draft version January 13, 2021 Typeset using LATEX twocolumn style in AASTeX62 The Copernican Principle Rules Out BLC1 as a Technological Radio Signal from the Alpha Centauri System Amir Siraj1 and Abraham Loeb1 1Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA ABSTRACT Without evidence for occupying a special time or location, we should not assume that we inhabit privileged circumstances in the Universe. As a result, within the context of all Earth-like planets orbiting Sun-like stars, the origin of a technological civilization on Earth should be considered a single outcome of a random process. We show that in such a Copernican framework, which is inherently optimistic about the prevalence of life in the Universe, the likelihood of the nearest star system, Alpha Centauri, hosting a radio-transmitting civilization is ∼ 10−8. This rules out, a priori, Breakthrough Listen Candidate 1 (BLC1) as a technological radio signal from the Alpha Centauri system, as such a scenario would violate the Copernican principle by about eight orders of magnitude. We also show that the Copernican principle is consistent with the vast majority of Fast Radio Bursts being natural in origin. Keywords: technosignatures; astrobiology; search for extraterrestrial intelligence; biosignatures 1. INTRODUCTION lihood of searches for primitive and intelligent life, us- The Copernican principle asserts that we are not priv- ing a Drake-type approach. Westby & Conselice(2020) ileged observers of the Universe. Successes of its appli- applied the Copernican principle to the search for intel- cation include the rejection of Ptolemaic geocentrism ligent life, but in forms that featured strict boundaries and the adoption of the modern cosmological princi- in time, thereby not reflecting a truly random process.
    [Show full text]
  • Arthur C. Clarke Fred Körper, SFGH-Treffen 21.02.2009
    SF-Klassiker: Arthur C. Clarke Fred Körper, SFGH-Treffen 21.02.2009 Sir Arthur Charles Clarke (* 16. Dezember 1917 in Minehead, Somerset, England; † 19. März 2008 in Colombo, Sri Lanka) war ein britischer Science-Fiction-Schriftsteller. Durch den Film 2001: Odyssee im Weltraum von Stanley Kubrick, der auf einer Kurzgeschichte Clarkes beruht und dessen Drehbuch Clarke gemeinsam mit Kubrick schrieb, wurde er auch außerhalb der Science-Fiction-Szene bekannt. Clarke gilt als Visionär neuer Technologien, die er außer in Science-Fiction-Romanen und Kurzgeschichten auch in wissenschaftlichen Artikeln beschrieb. 1 Leben 2 Werk 2.1 Romane 2.2 Erzählungen 2.3 Kurzgeschichtensammlungen 2.4 Gemeinschaftswerke 2.5 Autobiografisches 3 Verfilmungen (Auswahl) 4 Clarke'sche Gesetze Leben Arthur Charles Clarke wurde am 16.Dezember 1917 in der Grafschaft Somerset im Südwesten Englands geboren. Von 1927 bis 1936 besuchte er die Huish's Grammar School in Taunton/Somerset und las bereits als Jugendlicher die Werke von H. G. Wells und Olaf Stapledon. Da Clarke aus finanziellen Gründen ein Studium zunächst verwehr blieb, ging er 1936 nach London und arbeitete dort zunächst im Staatsdienst. 1941 trat er als Radaroffizier in die Royal Air Force ein. Diese Erfahrungen liegen dem Roman Glide Path zugrunde. Seine Idee, geostationäre Satelliten zur technischen Kommunikation zu nutzen, die er 1945 unter dem Titel Extra-terrestrial Relays – Can Rocket Stations Give World- wide Radio Coverage? in der wissenschaftlichen Zeitschrift Wireless World veröffentlichte, erlebte 1964 mit dem Saetelliten Syncom 3 ihre Verwirklichung. Ihm zu Ehren wird daher der geostationäre Orbit auch „Clarke Belt“ beziehungsweise „Clarke Orbit“ genannt. Von 1946 bis 1948 studierte er Mathematik und Physik am Londoner King's College.
    [Show full text]
  • Astrobiology and the Search for Life Beyond Earth in the Next Decade
    Astrobiology and the Search for Life Beyond Earth in the Next Decade Statement of Dr. Andrew Siemion Berkeley SETI Research Center, University of California, Berkeley ASTRON − Netherlands Institute for Radio Astronomy, Dwingeloo, Netherlands Radboud University, Nijmegen, Netherlands to the Committee on Science, Space and Technology United States House of Representatives 114th United States Congress September 29, 2015 Chairman Smith, Ranking Member Johnson and Members of the Committee, thank you for the opportunity to testify today. Overview Nearly 14 billion years ago, our universe was born from a swirling quantum soup, in a spectacular and dynamic event known as the \big bang." After several hundred million years, the first stars lit up the cosmos, and many hundreds of millions of years later, the remnants of countless stellar explosions coalesced into the first planetary systems. Somehow, through a process still not understood, the laws of physics guiding the unfolding of our universe gave rise to self-replicating organisms − life. Yet more perplexing, this life eventually evolved a capacity to know its universe, to study it, and to question its own existence. Did this happen many times? If it did, how? If it didn't, why? SETI (Search for ExtraTerrestrial Intelligence) experiments seek to determine the dis- tribution of advanced life in the universe through detecting the presence of technology, usually by searching for electromagnetic emission from communication technology, but also by searching for evidence of large scale energy usage or interstellar propulsion. Technology is thus used as a proxy for intelligence − if an advanced technology exists, so to does the ad- vanced life that created it.
    [Show full text]
  • CASKAR: a CASPER Concept for the SKA Phase 1 Signal Processing Sub-System
    CASKAR: A CASPER concept for the SKA phase 1 Signal Processing Sub-system Francois Kapp, SKA SA Outline • Background • Technical – Architecture – Power • Cost • Schedule • Challenges/Risks • Conclusions Background CASPER Technology MeerKAT Who is CASPER? • Berkeley Wireless Research Center • Nancay Observatory • UC Berkeley Radio Astronomy Lab • Oxford University Astrophysics • UC Berkeley Space Sciences Lab • Metsähovi Radio Observatory, Helsinki University of • Karoo Array Telescope / SKA - SA Technology • NRAO - Green Bank • New Jersey Institute of Technology • NRAO - Socorro • West Virginia University Department of Physics • Allen Telescope Array • University of Iowa Department of Astronomy and • MIT Haystack Observatory Physics • Harvard-Smithsonian Center for Astrophysics • Ohio State University Electroscience Lab • Caltech • Hong Kong University Department of Electrical and Electronic Engineering • Cornell University • Hartebeesthoek Radio Astronomy Observatory • NAIC - Arecibo Observatory • INAF - Istituto di Radioastronomia, Northern Cross • UC Berkeley - Leuschner Observatory Radiotelescope • Giant Metrewave Radio Telescope • University of Manchester, Jodrell Bank Centre for • Institute of Astronomy and Astrophysics, Academia Sinica Astrophysics • National Astronomical Observatories, Chinese Academy of • Submillimeter Array Sciences • NRAO - Tucson / University of Arizona Department of • CSIRO - Australia Telescope National Facility Astronomy • Parkes Observatory • Center for Astrophysics and Supercomputing, Swinburne University
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Optimizing a Solar Sailing Polar Mission to the Sun
    Optimizing a Solar Sailing Polar Mission to the Sun Development and Application of a New Ant Colony Optimizer Giacomo Acciarini Optimizing a Solar Sailing Polar Mission to the Sun Development and Application of a New Ant Colony Optimizer by Giacomo Acciarini to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday November 1, 2019 at 1:30 PM. Student number: 4754883 Project duration: January 4, 2019 – November 1, 2019 Thesis committee: Prof. Dr. P. Visser, TU Delft, chair Dr. ir. E. Mooij, TU Delft, supervisor Dr. F. Oliviero, TU Delft Dr. D. Izzo, European Space Agency This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image credit: https://www.theguardian.com/science/2015/jun/11/ spacewatch-lightsail-deploys-solar-sail, date of access: August 2019. ii Preface After months of hard work, I am proud to present to you my thesis to obtain the Master of Science degree at the faculty of Aerospace Engineering, at the Delft University of Technology. It has been an amazing experience that allowed me to come in contact with many researchers from all over the world who share my same love and interest in space exploration. I have always felt privileged and honored to be able to study such a marvelous and challenging subject. First of all, I would thus like to thank my parents, Andrea and Manuela, and my sister, Chiara, without your help and support I would have never been able to reach this point.
    [Show full text]
  • Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
    Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.
    [Show full text]