Program at a Glance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Weather Vane Antenna for 2 Meters VHF Incognito! Here’S a 2 Meter Antenna Figure 1—The Completed Weather Vane Your Neighbors Won’T Recognize
John Portune, W6NBC, and Fred Adams, WD6ACJ A Weather Vane Antenna for 2 Meters VHF incognito! Here’s a 2 meter antenna Figure 1—The completed weather vane your neighbors won’t recognize. antenna. Can you find the loop? eeping a homeowners’ association happy isn’t easy. criminate than a dipole or J-pole. [While horizontal loops do bet- Many hams burdened with CC&Rs often live with ter in noisy situations because that local noise tends to be mainly Kbadly compromised antennas. Why not combine a com- E-field oriented, the perceived SNR improvement of a narrow- pact magnetic loop with a functional weather vane and put band antenna is principally due to the reduction in out-of-band high-performance right out in full view? A neighbor even asked signals that cause IMD, rather than any reduction of the receiver me where I got mine, so she could get one, too. noise floor.—Ed.] They also tend to work better close to the ground Compact loops, often called magnetic loops, have been or near other objects. around for years. They’re tiny open-ended ring radiators, al- 1 ways less than roughly /10th wavelength in diameter. Recently Construction we’ve seen them mostly on HF where their small size is of All materials (Figures 3A and 3B) are common hardware store great appeal. But they work very well on other bands too; here items. I recommend a tubing cutter for cutting the pipe, copper on 2 meters. Remarkably, this VHF ver- and PVC. Also, a different brand of copper sion achieves an efficiency of 93%, yet fittings may require slight adjustments to radiates as if it were a full-sized dipole the cutting dimensions shown. -
High Frequency Communications – an Introductory Overview
High Frequency Communications – An Introductory Overview - Who, What, and Why? 13 August, 2012 Abstract: Over the past 60+ years the use and interest in the High Frequency (HF -> covers 1.8 – 30 MHz) band as a means to provide reliable global communications has come and gone based on the wide availability of the Internet, SATCOM communications, as well as various physical factors that impact HF propagation. As such, many people have forgotten that the HF band can be used to support point to point or even networked connectivity over 10’s to 1000’s of miles using a minimal set of infrastructure. This presentation provides a brief overview of HF, HF Communications, introduces its primary capabilities and potential applications, discusses tools which can be used to predict HF system performance, discusses key challenges when implementing HF systems, introduces Automatic Link Establishment (ALE) as a means of automating many HF systems, and lastly, where HF standards and capabilities are headed. Course Level: Entry Level with some medium complexity topics Agenda • HF Communications – Quick Summary • How does HF Propagation work? • HF - Who uses it? • HF Comms Standards – ALE and Others • HF Equipment - Who Makes it? • HF Comms System Design Considerations – General HF Radio System Block Diagram – HF Noise and Link Budgets – HF Propagation Prediction Tools – HF Antennas • Communications and Other Problems with HF Solutions • Summary and Conclusion • I‟d like to learn more = “Critical Point” 15-Aug-12 I Love HF, just about On the other hand… anybody can operate it! ? ? ? ? 15-Aug-12 HF Communications – Quick pretest • How does HF Communications work? a. -
Compromises in Orchestra Pit Design: a Ten-Year Trench War in the Royal Theatre, Copenhagen
Downloaded from orbit.dtu.dk on: Sep 30, 2021 Compromises in orchestra pit design: A ten-year trench war in The Royal Theatre, Copenhagen Gade, Anders Christian; Mortensen, Bo Published in: Acoustical Society of America. Journal Link to article, DOI: 10.1121/1.422278 Publication date: 1998 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Gade, A. C., & Mortensen, B. (1998). Compromises in orchestra pit design: A ten-year trench war in The Royal Theatre, Copenhagen. Acoustical Society of America. Journal, 103(5), 2786-2786. https://doi.org/10.1121/1.422278 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. FRIDAY MORNING, 26 JUNE 1998 GRAND BALLROOMA&B~S!, 8:00 TO 9:00 A.M. Session 5aPLa Plenary Lecture Andrea Prosperetti, Chair Mechanical Engineering, Johns Hopkins University, 122 Latrobe Hall, 3400 North Charles Street, Baltimore, Maryland 21218 Chair’s Introduction—8:00 Invited Paper 8:05 5aPLa1. -
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting Final Program 7–12 July 2019 Hilton Atlanta Atlanta, Georgia, U.S.A. Conference at a Glance Saturday, July 6 14:00-16:00 Strategic Planning Committee 16:15-17:15 AP-S Meetings Committee 17:15-18:15 JMC Meeting (Closed Session) 18:15-21:30 JMC Meeting, Dinner and Presentations 19:15-21:15 IEEE AP-S Constitution and Bylaws Committee Meeting & Dinner Sunday, July 7 08:00-10:00 Past Presidents’ Breakfast 10:00-18:00 AdCom Meeting 19:30-22:00 Welcome Dessert Reception at the Georgia Aquarium Monday, July 8 07:00-08:00 Amateur Radio Operators Breakfast 08:00-11:40 Technical Sessions 09:00-18:00 Technical Tour - “An Engineer’s Eye View” of the Mercedes Benz Stadium 12:00-13:20 Transactions on Antennas and Propagation Editorial Board Lunch Meeting 13:20-17:00 Technical Sessions 17:00-18:00 URSI Commission A Business Meeting 17:00-18:00 URSI Commission B Business Meeting 17:00-18:00 URSI Commissions C/E (combined) Business Meeting Tuesday, July 9 07:00-08:00 AP Magazine Staff Meeting 07:00-08:00 APS 2020 Committee Meeting 07:00-08:00 Industrial Initiatives 07:00-08:00 Membership Committee Meeting 07:00-08:00 Student Design Contest (Set-Up - Closed to Others) 07:00-08:00 Technical Committee on Antenna Measurement 08:00-11:40 Student Paper Competition 08:00-11:40 Technical Sessions 08:00-09:30 Student Design Contest (Demo for Judges - Closed to Others) 08:30-14:00 Standards Committee Meeting 09:30-12:00 Student Design Contest (Demo for Public) -
Design of a Transmitarray Antenna Using 4 Layers of Double Square Ring Elements
Progress In Electromagnetics Research Letters, Vol. 94, 141–149, 2020 Design of a Transmitarray Antenna Using 4 Layers of Double Square Ring Elements Xian Wei Chua1, 2, *,Tse-TongChia3, and Kerrell Boon Khim Chia3 Abstract—Conventional dielectric lenses rely on the accumulation of phase delay during wave propagation to produce a desired wavefront. By considering the required phase delay at each lens position, an ‘equivalent’ transmitarray antenna can be obtained. Despite a lack of curvature as in conventional lenses, the phase delay in the transmitarray antenna is achieved via a periodic arrangement of unit cell elements to bend the incident waves in the desired directions. This paper presents the design and characterization of a 4-layer transmitarray antenna consisting of double square ring elements. The gap between the double square rings is varied as a fixed proportion of their dimensions, while keeping the widths constant. The transmitarray element can achieve a transmission phase range of 235◦ with a loss of less than 3 dB. The performance of the transmitarray antenna is explicitly compared to that of a convex dielectric lens, both of which are operating at 8 GHz. 1. INTRODUCTION Transmitarray antennae consist of planar, periodic arrays of printed circuit elements in sub-wavelength lattices. They have many advantages over conventional dielectric lenses for applications in satellite communication, automotive radar, and imaging systems:high-gain, lightweight, cheap, and small [1–7]. While zoning can reduce the weight of conventional lenses, it degrades system performance with reduced bandwidth and increased sidelobe levels [8]. Transmitarray antennae are also easier to fabricate with advancements in printed circuit board technologies [9, 10], while conventional lenses require expensive machining or molding processes [11]. -
An Element-Staggered, Wide-Angle Beam Scanning Transmitarray Antenna with Four Focuses Design
2018 International Symposium on Antennas and Propagation (ISAP 2018) [WeD1-2] October 23~26, 2018 / Paradise Hotel Busan, Busan, Korea An Element-Staggered, Wide-Angle Beam Scanning Transmitarray Antenna with Four Focuses Design Nan-nan Wang, Bing-xu Zhao, Mu Fang, Jing-hui Qiu School of Electronics and Information Engineering Harbin Institute of Technology Harbin, 150080, China [email protected] Li-Yi Xiao Microelectronics Center, Harbin Institute of Technology, Harbin, 150080, China Abstract – A wide-angle beam-scanning low side lobe level transmitarray antenna which is working in Ka-band is put 2. Transmitarray Design forward in this paper. The proposed transmitarray is consist of a transmitting surface with four-layer subwavelength Fig. 1 shows the structure of the proposed transmitarray circular patch elements which are in staggered arrangement antenna. The transmitting surface is composed of 21 21 and a movable feed. Four focuses design is used for reducing four-layer square patch elements. Three dielectric the phase error and the loss of gain caused by rotating the feed. The simulation results demonstrate that the loss of gain substrates are made of Rogers RT5880 with thickness of is less than 1.2 dB, the side lobe level is lower than -17.8 dB 0.508 mm, relative permittivity of 2.2, and loss tangent of during the scanning range of ±30 degrees at typical frequency 0.0012. The element dimensions is 3.3 3.3 mm2 of 35 GHz. The excellent performance shows that it can be (equivalently 0.385 0.385 ). The four-layer metal used for millimeter wave imaging system. -
High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements Ahmed H
1288 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 13, 2014 High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements Ahmed H. Abdelrahman, Atef Z. Elsherbeni, and Fan Yang Abstract—A triple-layer transmitarray antenna has been de- Jerusalem-cross elements in [3], but limiting the transmission signed, fabricated, and tested at X-band. Using a spiral-dipole phase range to 335 with 4.4 dB of variation in the transmis- element, a full transmission phase range of 360 is achieved for sion magnitude. A reconfigurable triple-layer transmitarray a transmission magnitude equal to or better than 4.2 dB. The transmission phase distribution of the transmitarray elements has element achieves 360 phase range using varactor diodes been optimized to reduce the effects of the lossy elements with in [7]. There are some designs where discrete phases states low transmission magnitudes on the antenna gain, leading to an (0 /180 for 1-bit, and 0 /90 /180 /270 for 2-bit) are used average element loss as low as 0.49 dB. The measured gain of the for beam-steering application, at the expense of reducing the transmitarray prototype is 28.9 dB at 11.3 GHz, resulting in a 30% overall antenna gain [8], [9]. aperture efficiency. Antenna bandwidths of 9% for 1-dB gain and 19.4% for 3-dB gain are achieved in this design. Hence, in order to reduce the design cost and complexity, a challenge is to achieve a full phase range of 360 using fewer Index Terms—Broadband, multilayer, transmission phase range, conductor layers while avoiding the reduction of the element transmitarray antenna. -
A K-Band Flat Transmitarray Antenna with a Planar Microstrip Slot-Fed Patch Antenna Feeder
Progress In Electromagnetics Research C, Vol. 64, 97–104, 2016 A K-Band Flat Transmitarray Antenna with a Planar Microstrip Slot-Fed Patch Antenna Feeder Lv-Wei Chen and Yuehe Ge* Abstract—A thin phase-correcting element that consists of four identical metallic layers and three identical dielectric layers is presented for the design of microwave and millimeter-wave transmitarrays. The metallic layers consist of octagon conducting strips, which are tuned to obtain the desired phase compensation on an incident wave, while maintaining high amplitude of transmission coefficient. A transmitarray has been designed at K band with the use of the element. Fed by a standard horn and three planar slot-fed patch antennas with different beamwidths alternately, the wave-focusing performance of the transmitarray was demonstrated by simulations and experiments. 1. INTRODUCTION With the modern wireless communication technology developed enormously, microwave and millimeter- wave flat transmitarray antennas have been widely studied in recent years, which will find their applications in modern broadband wireless communications, aircraft navigation and radio astronomy, etc. Like traditional dielectric lens [1–5], the microwave and millimeter-wave flat transmitarray [6–8] can transform quasi-spherical waves from a feeding source at the focal point to quasi-plane waves by adjusting the phase distributions across the surface of the transmitarray. There are two basic types of transmitarrays: one is based on the transparent-opaque Fresnel zone plate, and the other is designed using phase-correcting techniques. Traditional dielectric Fresnel zone plate and flat phase-correcting lens antennas usually enjoy high aperture efficiency but suffer from the primary disadvantages of bulky volume and heavy weight, while the transparent-opaque Fresnel zone plate lens antennas normally have a low profile and a light weight but low aperture efficiency. -
Sapporo Medical University 2004 – 2009
RESEARCH ACTIVITIES OF SAPPORO MEDICAL UNIVERSITY 2004 – 2009 Hokkaido,Japan March 2010 RESEARCH ACTIVITIES OF SAPPORO MEDICAL UNIVERSITY 2004 – 2009 Edited by Committee for International Affairs and Medical Exchanges Sapporo Medical University Toshikazu Saito Neuropsychiatry, School of Medicine Shin Morioka English, Center for Medical Education Hiroki Takahashi Internal Medicine ( III ), School of Medicine Tsuyoshi Saito Obstetrics and Gynecology, School of Medicine Michiaki Yamakage Anesthesiology, Center for Medical Education Makoto Nemoto Liberal Arts and Sciences (English), School of Health Sciences Kimiharu Inui Applied Physical Therapy , Schhl of Health Sciences Contents ΣޓOUTLINE OF SAPPORO MEDICAL UNIVERSITYȤȤ!ȁ2 ޓޓޓޓޓPediatrics ȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤȁ78 ޓ㧝ޓOUTLINE ȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤ!ȁ3 ޓޓޓޓޓOphthalmology ȤȤȤȤȤȤȤȤȤȤȤȤȤȁ7: ޓޓޓޓޓDermatology ȤȤȤȤȤȤȤȤȤȤȤȤȤȤȁ82 ޓ㧞ޓORGANIZATION ȤȤȤȤȤȤȤȤȤȤȤȤȤȤ!ȁ6 ޓޓޓޓޓUrology ȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤȁ84 ޓޓޓޓOrganization ȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤ!ȁ6 ޓޓޓޓޓOtolaryngology ȤȤȤȤȤȤȤȤȤȤȤȤȤȁ86 ޓޓޓޓNumber of Teaching Staffs & Fellows ȤȤȤȤȤ!ȁ9 ޓޓޓޓޓNeuropsychiatry ȤȤȤȤȤȤȤȤȤȤȤȤȤȁ88 ޓޓޓޓNumber of Students ȤȤȤȤȤȤȤȤȤȤȤȤ!ȁ: ޓޓޓޓޓRadiology ȤȤȤȤȤȤȤȤȤȤȤȤȤȤȤȁ8: ޓޓޓޓޓAnesthesiology ȤȤȤȤȤȤȤȤȤȤȤȤȤȁ92 ΤޓRESEARCH ACTIVITIES ȤȤȤȤȤȤȤȤȤȤȤȤ!!22 ޓޓޓޓޓCommunity and General Medicine ȤȤȤȤȤȁ94 ޓ㧭ޓSCHOOL OF MEDICINE ȤȤȤȤȤȤȤȤȤȤȤ!!23 ޓޓޓޓޓClinical Laboratory Medicine ȤȤȤȤȤȤȤȤȁ96 ޓޓ㧝ޓMedical Sciences ȤȤȤȤȤȤȤȤȤȤȤȤȤȁ23 ޓޓޓޓޓTraumatology and Critical Care Medicine ȤȤȤȁ98 ޓޓޓޓޓObstetrics and Perinatal Medicine ȤȤȤȤȤȤȁ23 ޓޓޓޓޓOral Surgery ȤȤȤȤȤȤȤȤȤȤȤȤȤȤȁ9: ޓޓޓޓޓPlastic -
Monitoring Times 2000 INDEX
Monitoring Times 1994 INDEX FEATURES: Air Show: Triumph to Tragedy Season Aug JUNE Duopolies and DXing Broadcast: Atlantic City Aero Monitoring May JULY TROPO Brings in TV & FM A Journey to Morocco May Dayton's Aviation Extravaganza DX Bolivia: Radio Under the Gun June June AUG Low Power TV Stations Broadcasting Battlefield, Colombia Flight Test Communications Jan SEP WOW, Omaha Dec Gathering Comm Intelligence OCT Winterizing Chile: Land of Crazy Geography June NOV Notch filters for good DX April Military Low Band Sep DEC Shopping for DX Receiver Deutsche Welle Aug Monitoring Space Shuttle Comms European DX Council Meeting Mar ANTENNA TOPICS Aug Monitoring the Prez July JAN The Earth’s Effects on First Year Radio Listener May Radio Shows its True Colors Aug Antenna Performance Flavoradio - good emergency radio Nov Scanning the Big Railroads April FEB The Half-Rhombic FM SubCarriers Sep Scanning Garden State Pkwy,NJ MAR Radio Noise—Debunking KNLS Celebrates 10 Years Dec Feb AntennaResonance and Making No Satellite or Cable Needed July Scanner Strategies Feb the Real McCoy Radio Canada International April Scanner Tips & Techniques Dec APRIL More Effects of the Earth on Radio Democracy Sep Spy Catchers: The FBI Jan Antenna Radio France Int'l/ALLISS Ant Topgun - Navy's Fighter School Performance Nov Mar MAY The T2FD Antenna Radio Gambia May Tuning In to a US Customs Chase JUNE Antenna Baluns Radio Nacional do Brasil Feb Nov JULY The VHF/UHF Beam Radio UNTAC - Cambodia Oct Video Scanning Aug Traveler's Beam Restructuring the VOA Sep Waiting -
For More Information Check Out
BYUH Magazine 8_04 9/11/04 9:45 PM Page 1 2005 is Golden Jubilee For more information check out www.byuh.edu. University Magazine NON PROFIT ORG Brigham Young University Hawai‘i U.S. POSTAGE 55-220 Kulanui Street #1951 _ PAID La‘ie, Hawai‘i 96762-1294 HONOLULU, HI PERMIT NO. 828 Change Service Requested BYUH Magazine 8_04 9/11/04 9:45 PM Page 2 ALL 2004 F Iosepa’sIosepa’s MaidenMaiden VoyageVoyage ChoirChoir Tour:Tour: JapanJapan && KoreaKorea CampusCampus ofof ChampionsChampions BYUH Magazine 8_04 9/11/04 9:45 PM Page 3 Aloha! s I look forward to our Golden Jubilee in 2005 and think back on my own 38 years on this campus, I still marvel at howA BYU-Hawai‘i and its companion of the heart, the Polynesian Cultural Center, are increasingly fulfilling what David O. McKay fore- _ told as he stood in the sugar cane fields of La‘ie overlooking the vast Pacific half a century ago. President McKay’s declarations—that this campus would refine men and women of integrity to become leaders in establishing peace in the world, and that this little town would entice millions to see its significance—ring more profoundly today than ever. It is humbling to be part of the evolution of these words, yet all of us here sense that the combined role he envisioned for these two institutions is just beginning. _ These are exciting times in La‘ie! In 2003-04, we celebrated the largest graduating class in our history, with 600 total graduates. -
Wednesday, January 27
Time Room A Room B Room C Room D Room E Room F Room G Monday, January 25 1B2: Workshop 2: Passive 1A2: Workshop 1: Post 1C2: Workshop 3: 1D2: Workshop 4: 1E2: Workshop 5: human detection, 10:40- processing techniques in Advancements in 5G Recent Advance in Low- Circularly Polarized localization, and posture 12:40 5G, Automotive & Space Antennas and Emerging 6G RCS Antennas and Antennas: Design and identification, using radio antenna measurements Antenna Technologies Metasurfaces Measurement techniques technologies 14:00- 1A3: Opening 15:00 15:20- 1A4: Keynote Speech 1 16:40 17:00- 1A5: Keynote Speech 2 18:40 Tuesday, January 26 2F1: OS: 2G1: Mobile 2C1: OS: Antennas and 2B1: Millimeter-Wave, Propagation 09:00- 2A1: Planar/Printed Metasurfaces/Metamaterials 2D1: Passive and 2E1: RFID and Its Propagation Terahertz and Optical and 10:40 Antennas and Arrays 1 for Radiation and Scattering Active Components Applications Technologies for Antennas 1 Measurement Control 1 Satellite Techniques Applications 2F2: Radar DOA, 2G2: 2C2: OS: Recent localization, 2B2: Millimeter-Wave, 2D2: Computational Propagation 11:00- 2A2: Planar/Printed Antennas and Propagation 2E2: EMC/EMI Sensing and Terahertz and Optical Electromagnetics and for V2X and 13:00 Antennas and Arrays 2 Technology in ASEAN Technologies Propagation Antennas 2 applications Channel Countries Measurement Sounding Techniques 1 2F3: Radar DOA, 2C3: OS: localization, 2G3: Short 14:20- 2A3: Small Antennas and 2B3: OS: Antenna Arrays Metasurfaces/Metamaterials 2D3: Short 2E3: Short Presentation