1 Molecular Insights Into Neotropical Bird

Total Page:16

File Type:pdf, Size:1020Kb

1 Molecular Insights Into Neotropical Bird Molecular insights into Neotropical bird – tick ecological associations and the role of birds in tick-borne disease ecology Matthew J. Millera, Helen J. Essera,b, Jose R. Loaizaa,c,d, Edward Allen Herrea, Celestino Aguilara,c, Diomedes Quinteroe, Erick Alvareza,d, Eldredge Berminghama,f a Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, Republic of Panama b Department of Environmental Sciences, Wageningen University, PO Box 47, 6700 AA Wageningen, the Netherlands c Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Clayton, Panamá, República de Panamá d Programa Centroamericano de Maestría en Entomología, Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, República de Panamá e Museo de Invertebrados G. B. Fairchild, Estafeta Universitaria 0824, Universidad de Panamá, República de Panamá f Patricia and Phillip Frost Museum of Science, Miami, FL 33129, USA Corresponding Author: Matthew J. Miller, [email protected] Key words: avian ectoparasites, vector ecology, host-parasite interactions, host specificity, interaction network analysis 1 ABSTRACT Ticks are important vectors of emerging zoonotic diseases. While adults of many tick species parasitize mammals, immature ticks are often found on wild birds. In the tropics, difficulties in species-level identification of immature ticks hinder studies of tick ecology and tick-borne disease transmission, including any potential role for birds. In Panama, we found immature ticks on 227 out of 3,498 birds representing 93 host species, about 1/8th of the entire Panamanian terrestrial avifauna. Tick parasitism rates did not vary with temperature or rainfall, but parasitism rates did vary with host ecological traits: non-migratory residents, forest dwelling birds, bark insectivores, terrestrial foragers and lowland species were most likely to be infested with ticks. Using a molecular library developed from adult ticks specifically for this study, we identified 130 immature ticks obtained from wild birds, corresponding to eleven tick species, indicating that a substantial portion of the Panamanian avifauna is parasitized by a variety of tick species. Furthermore, we found evidence that immature ticks show taxonomic or ecological specificity to avian hosts. Finally, our data indicate that Panamanian birds are not parasitized regularly by the tick species responsible for most known tick-borne diseases. However, they are frequent hosts of other tick species known to carry a variety of rickettsial parasites of unknown pathogenicity. Given the broad interaction between tick and avian biodiversity in the Neotropics, future work on emerging tropical tick-borne disease should explicitly consider wild birds as vertebrate hosts. 2 INTRODUCTION Wild birds are increasingly recognized as playing an important role in human and animal health. Emerging zoonotic diseases such as avian influenza, West Nile Virus, and Lyme disease (which is transmitted by ticks) often have wild birds in their transmission cycle (1-3). Wild birds can act as reservoir hosts in endemic areas (4). They also have the potential to introduce diseases into previously naïve populations by spreading pathogens and/or their vectors over large distances via migratory flyways (5,6). Ticks (Ixodidae) are haematophagous ectoparasites that are regularly found on wild birds, providing them habitat and blood-meal resources, and are known to transmit to humans a larger variety of pathogens than any other arthropod vector group (7). Migratory birds captured in temperate regions upon their return from wintering grounds have been observed infected with larval and nymphal stages of tropical tick species (5). The ability of migratory birds to move tropical ticks over long distances, in concert with global climate change, potentially exposes extra-tropical regions to novel tropical tick-borne pathogens and vice versa (7, 21, 22). Therefore, empirical studies are needed that evaluate which tick species are frequently involved in bird parasitism and which ecological characteristics of bird species are related to increased tick infestation levels. In the New World tropics, the greatest risk of tick-borne disease comes from Rickettsia rickettsii, the etiological agent of Rocky Mountain Spotted Fever. Here, its primary Neotropical vector is Amblyomma cajennense sensu lato (8), although R. rickettsii has also recently been discovered in A. aureolatum in Brazil (9). Recent improvements in molecular detection of tick endosymbionts have uncovered many novel Rickettsia species of unknown pathogenicity in Neotropical Amblyomma (10-12). Although adults of the genus Amblyomma and several other Neotropical tick species typically exploit mammals, or reptiles and amphibians to a lesser degree (13), immature forms are routinely found on birds (7, 12-19) including, rarely, nymphs of the A. cajennense species complex (20). Our understanding of Neotropical bird-tick associations and hence their role in disease 3 transmission has been hampered by species identification problems; most immature Neotropical ticks, especially those of the genus Amblyomma, are not readily identifiable to species by morphology alone. Amblyomma species diversity peaks in the Neotropics, where taxonomic keys serve to identify the nymphal stage of few Amblyomma species (23). For example, in a recent survey of ticks found parasitizing humans in Panama, only 38% of the recovered specimens of Amblyomma could be identified to species (24). Similarly, in a study documenting tick infestation patterns in wild birds from southeastern Brazil, nearly 48% of the specimens of Amblyomma could not be identified to species (20). This study and others (12, 14) demonstrate that new tools and approaches are needed to properly assess the role of wild birds in tick ecology and tick-borne disease transmission in the Neotropics. Here, we: 1) identify the ecological characteristics of Panamanian bird species frequently parasitized by ticks, and determine if climate (e.g., rainfall and temperature) affects tick parasitism rates; 2) produce a robust DNA barcode library capable of identifying most of the commonly encountered ticks in Panama; 3) use the DNA barcode library to identify to species immature ticks collected off of Panamanian wild birds and 4) provide the first analysis of bird- tick ecological associations at the species level in the northern Neotropics, including an assessment of the potential role that birds may have in the transmission of tick-borne pathogens. RESULTS Ecological traits of Panamanian wild birds parasitized by ticks We evaluated patterns of tick parasitism in 3,498 bird specimens from the STRI bird collection, representing 384 species, i.e. nearly half of the roughly 800 non-aquatic bird species recorded from Panama. Ticks parasitized a total of 227 specimens of Panamanian birds (6.5%; Supplementary Table S1) representing 93 avian species and 24 families. Among avian families with at least 25 specimens evaluated, the families with the greatest proportion of specimens parasitized by ticks (%) were: Thamnophilidae (antbirds: 18%; 12 of 20 species); Furnariidae (ovenbirds and woodcreepers: 15%; 11 of 20 species); Polioptilidae (gnatcatchers: 15%; 1 of 3 species); Turdidae (thrushes: 15%; 7 of 15 species); and Troglodytidae (wrens: 14%; 9 of 16 species). Resident birds (i.e. species that breed in Panama) were 3.8 times as likely to be 4 parasitized by ticks compared to non-breeding long-distance migrant species (Fisher’s exact test, P = 0.001). Although females had a slightly higher prevalence of tick parasitism than males, the difference was not significant (Fisher’s exact test, P = 0.23). Among resident birds, a logistic model indicated that only forest habitation, terrestrial foraging, bark insectivory, and lowland residency were significantly associated with tick parasitism (Table 1). Among 26 sites with at least 20 sampled birds, we found no relationship between the frequency of tick parasitism and annual mean temperature, temperature seasonality, annual precipitation, or precipitation seasonality, however we did recover an affect of taxonomic composition, specifically, the proportion of the sampled avifauna belonging to the five families most frequently parasitized by ticks (Supplementary Table S2). DNA identifications of adult ticks agree with morphological taxonomy The 96 individuals in the adult reference library of morphologically identified ticks from central Panama formed 20 clusters with pairwise Kimura-2 parameter (K2P) genetic distances greater than 5% (Supplementary Figure 1). All 96 could be placed in clusters in agreement with the original morphological identification of the voucher with bootstrap support values of at least 99%. Among the 20 species -clusters, average nearest-neighbor K2P distance to another cluster was 15.6% and the minimum nearest-neighbor K2P distance was 12.5% (range: 12.5% – 20.5%). Two species contained DNA barcode sub-clusters with between-cluster sequence divergence greater than 3.0%. Haemaphysalis juxtakochi comprised two clusters that differed by 3.0% pairwise K2P distance, with each cluster supported by 99% bootstrap support, while Amblyomma ovale contained one cluster of four individuals supported by 97% bootstrap and a fifth individual that varied by an average K2P distance of 3.2%. In all both cases, individuals from both clusters were collected at a shared location, suggesting that these might represent cryptic biological species. Thus, the BIN (barcode identification number) numerical
Recommended publications
  • Tapera Dromococcyx
    HOST LIST OF AVIAN BROOD PARASITES - 3 - CUCULIFORMES; Neomorphidae Peter E. Lowther, Field Museum version 14 Sep 2011 Tapera Tapera Thunberg 1819, Handlingar Kungl Vetenskaps och vitterheetssamhället i Göteborg, 3, p. 1. American Striped Cuckoo, Tapera naevia (Linnaeus) 1766 Systema Naturae, ed. 12, p. 170. Distribution. – Neotropics. General life history information found in Friedmann 1933, Belcher and Smooker 1936, Sick 1953, Haverschmidt 1955, 1961, Wetmore 1968, Morton and Farabaugh 1979, Salvador 1982, Payne 2005, Pulgarín-R. et al. 2007 (see also additional references in host list below). Host list. – From Friedmann 1933; see also Davis 1940, Loetscher 1952, Sick 1953, 1993, Haverschmidt 1955, 1961, 1968, Wetmore 1968 1, Salvador 1982, Kiff and Williams 1978, Payne 2005. Brief mention of this cuckoo in studies of actual or potential hosts given by: Skutch 1969, Thomas 1983, Freed 1987 2 TYRANNIDAE White-headed Marsh-Tyrant, Arundinicola leucocephala tody-flycatcher, Todirostrum spp. * (Sick 1953, 1993 lists species as “apparently also” a host) flycatcher, Myiozetetes spp. * (Sick 1953, 1993 lists species as “apparently also” a host) FURNARIIDAE Chotoy Spinetail, Schoeniophylax phryganophila Sooty-fronted Spinetail, Synallaxis frontalis Azara's Spinetail, Synallaxis azarae 3 (includes superciliosa) Pale-breasted Spinetail, Synallaxis albescens Spix’s Spinetail, Synallaxis spixi Plain-crowned Spinetail, Synallaxis gujanensis Rufous-breasted Spinetail, Synallaxis erythrothorax Stripe-breasted Spinetail, Synallaxis cinnamomea Yellow-chinned Spinetail, Certhiaxis cinnamomeus Short-billed Castanero, Asthenes [pyrrholeuca] baeri Plain Thornbird, Phacellodomus [rufifrons] rufifrons Greater Thornbird, Phacellodomus ruber Red-eyed Thornbird, Phacellodomus erythrophthalmus Buff-fronted Foliage-Gleaner, Philydor rufus TROGLODYTIDAE Rufous-and-white Wren, Thryothorus rufalbus Plain W ren, Thryothorus modestus EMBERIZIDAE Black-striped Sparrow, Arremonops conirostris Dromococcyx Dromococcyx W ied-Neuwied 1832, Beitrage zur Naturgeschichte von Brasil.
    [Show full text]
  • Molecular Phylogeny of Cuckoos Supports a Polyphyletic Origin of Brood Parasitism
    Molecular phylogeny of cuckoos supports a polyphyletic origin of brood parasitism S. ARAGO N,*A.P.MéLLER,*J.J.SOLER & M. SOLER *Laboratoire d'Ecologie, CNRS-URA 258, Universite Pierre et Marie Curie, BaÃt. A, 7e eÂtage, 7, quai St. Bernard, Case 237, F-75252 Paris Cedex 05, France Departamento de BiologõÂa Animal y EcologõÂa, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain Keywords: Abstract brood parasitism; We constructed a molecular phylogeny of 15 species of cuckoos using cuculiformes; mitochondrial DNA sequences spanning 553 nucleotide bases of the cyto- cytochrome b; chrome b gene and 298 nucleotide bases of the ND2 gene. A parallel analysis DNA sequencing; for the cytochrome b gene including published sequences in the Genbank ND2. database was performed. Phylogenetic analyses of the sequences were done using parsimony, a sequence distance method (Fitch-Margoliash), and a character-state method which uses probabilities (maximum likelihood). Phenograms support the monophyly of three major clades: Cuculinae, Phaenicophaeinae and Neomorphinae-Crotophaginae. Clamator, a strictly parasitic genus traditionally included within the Cuculinae, groups together with Coccyzus (a nonobligate parasite) and some nesting cuckoos. Tapera and Dromococcyx, the parasitic cuckoos from the New World, appear as sister genera, close to New World cuckoos: Neomorphinae and Crotophaginae. Based on the results, and being conscious that a more strict resolution of the relationships among the three major clades is required, we postulate that brood parasitism has a polyphyletic origin in the Cuculiformes, with parasite species being found within the three de®ned clades. Evidence suggests that species within each clade share a common parasitic ancestor, but some show partial or total loss of brood parasitic behaviour.
    [Show full text]
  • Maya Knowledge and "Science Wars"
    Journal of Ethnobiology 20(2); 129-158 Winter 2000 MAYA KNOWLEDGE AND "SCIENCE WARS" E. N. ANDERSON Department ofAnthropology University ofCalifornia, Riverside Riverside, CA 92521~0418 ABSTRACT.-Knowledge is socially constructed, yet humans succeed in knowing a great deal about their environments. Recent debates over the nature of "science" involve extreme positions, from claims that allscience is arbitrary to claims that science is somehow a privileged body of truth. Something may be learned by considering the biological knowledge of a very different culture with a long record of high civilization. Yucatec Maya cthnobiology agrees with contemporary international biological science in many respects, almost all of them highly specific, pragmatic and observational. It differs in many other respects, most of them highly inferential and cosmological. One may tentatively conclude that common observation of everyday matters is more directly affected by interaction with the nonhuman environment than is abstract deductive reasoning. but that social factors operate at all levels. Key words: Yucatec Maya, ethnoornithology, science wars, philosophy ofscience, Yucatan Peninsula RESUMEN.-EI EI conocimiento es una construcci6n social, pero los humanos pueden aprender mucho ce sus alrededores. Discursos recientes sobre "ciencia" incluyen posiciones extremos; algunos proponen que "ciencia" es arbitrario, otros proponen que "ciencia" es verdad absoluto. Seria posible conocer mucho si investiguemos el conocimiento biol6gico de una cultura, muy difcrente, con una historia larga de alta civilizaci6n. EI conodrniento etnobiol6gico de los Yucatecos conformc, mas 0 menos, con la sciencia contemporanea internacional, especial mente en detallas dcrivadas de la experiencia pragmatica. Pero, el es deferente en otros respectos-Ios que derivan de cosmovisi6n 0 de inferencia logical.
    [Show full text]
  • THE EUPHONIA Quarterly Journal of Mexican Avifauna Volume 1, Number 2 December 1992 the EUPHONIA Quarterly Journal of Mexican Avifauna
    THE EUPHONIA Quarterly Journal of Mexican Avifauna Volume 1, Number 2 December 1992 THE EUPHONIA Quarterly Journal of Mexican Avifauna Editor: Kurt Radamaker Associate Editors: Michael A. Patten, Deb Davidson Spanish Consultant: Luis Santaella Consultant: Steve N.G. Howell Proofreaders: Richard A. Erickson, Bob Pann Circulation Manager: Cindy Ludden For an annual subscription to The Euphonia, please send 15.00 dollars U.S. payable to The Euphonia P.O. Box 8045, Santa Maria, California, 93456-8045, U.S.A. Checks drawn on Bancomer in Pesos accepted. The Euphonia encourages you to send in manuscripts. Appropriate topics range from recent sightings to scientific studies of Mexican birds. Feature articles in Spanish are encouraged. Please send manuscripts, preferably on diskette written in Wordperfect (although almost any major word processor file will suffice), to Kurt Radamaker, P.O. Box 8045, Santa Maria, California 93456, U.S.A. Please send summaries for Recent Ornithological Literature to Michael A. Patten at P.O. Box 8561, Riverside, California, 92515-8561, U.S.A. Recent sightings (with details) should be sent to Luis Santaella, 919 Second St., Encinitas, California 92024, U.S.A. Contents 27 OBSERVATIONS OF NORTH AMERICAN MIGRANT BIRDS IN THE REVILLAGIGEDO ISLANDS Steve N.G. Howell and Sophie Webb 34 PARASITISM OF YELLOW-OLIVE FLY­ CATCHER BY THE PHEASANT CUCKOO Richard G. Wilson 37 SEMIPALMATED SANDPIPER RECORDS FOR BAJA CALIFORNIA Thomas E. Wurster and Kurt Radamaker 39 RECENT RECORDS OF MAROON-CHESTED GROUND-DOVE IN MEXICO Steve N.G. Howell 42 OBSERVATION OF A BENDIRE'S THRASHER FROM NORTHEAST BAJA CALIFORNIA Brian Daniels, Doug Willick and Thomas E.
    [Show full text]
  • Ultimate Bolivia Tour Report 2019
    Titicaca Flightless Grebe. Swimming in what exactly? Not the reed-fringed azure lake, that’s for sure (Eustace Barnes) BOLIVIA 8 – 29 SEPTEMBER / 4 OCTOBER 2019 LEADER: EUSTACE BARNES Bolivia, indeed, THE land of parrots as no other, but Cotingas as well and an astonishing variety of those much-loved subfusc and generally elusive denizens of complex uneven surfaces. Over 700 on this tour now! 1 BirdQuest Tour Report: Ultimate Bolivia 2019 www.birdquest-tours.com Blue-throated Macaws hoping we would clear off and leave them alone (Eustace Barnes) Hopefully, now we hear of colourful endemic macaws, raucous prolific birdlife and innumerable elusive endemic denizens of verdant bromeliad festooned cloud-forests, vast expanses of rainforest, endless marshlands and Chaco woodlands, each ringing to the chorus of a diverse endemic avifauna instead of bleak, freezing landscapes occupied by impoverished unhappy peasants. 2 BirdQuest Tour Report: Ultimate Bolivia 2019 www.birdquest-tours.com That is the flowery prose, but Bolivia IS that great destination. The tour is no longer a series of endless dusty journeys punctuated with miserable truck-stop hotels where you are presented with greasy deep-fried chicken and a sticky pile of glutinous rice every day. The roads are generally good, the hotels are either good or at least characterful (in a good way) and the food rather better than you might find in the UK. The latter perhaps not saying very much. Palkachupe Cotinga in the early morning light brooding young near Apolo (Eustace Barnes). That said, Bolivia has work to do too, as its association with that hapless loser, Che Guevara, corruption, dust and drug smuggling still leaves the country struggling to sell itself.
    [Show full text]
  • Bolivia: the Andes and Chaco Lowlands
    BOLIVIA: THE ANDES AND CHACO LOWLANDS TRIP REPORT OCTOBER/NOVEMBER 2017 By Eduardo Ormaeche Blue-throated Macaw www.birdingecotours.com [email protected] 2 | T R I P R E P O R T Bolivia, October/November 2017 Bolivia is probably one of the most exciting countries of South America, although one of the less-visited countries by birders due to the remoteness of some birding sites. But with a good birding itinerary and adequate ground logistics it is easy to enjoy the birding and admire the outstanding scenery of this wild country. During our 19-day itinerary we managed to record a list of 505 species, including most of the country and regional endemics expected for this tour. With a list of 22 species of parrots, this is one of the best countries in South America for Psittacidae with species like Blue-throated Macaw and Red-fronted Macaw, both Bolivian endemics. Other interesting species included the flightless Titicaca Grebe, Bolivian Blackbird, Bolivian Earthcreeper, Unicolored Thrush, Red-legged Seriema, Red-faced Guan, Dot-fronted Woodpecker, Olive-crowned Crescentchest, Black-hooded Sunbeam, Giant Hummingbird, White-eared Solitaire, Striated Antthrush, Toco Toucan, Greater Rhea, Brown Tinamou, and Cochabamba Mountain Finch, to name just a few. We started our birding holiday as soon as we arrived at the Viru Viru International Airport in Santa Cruz de la Sierra, birding the grassland habitats around the terminal. Despite the time of the day the airport grasslands provided us with an excellent introduction to Bolivian birds, including Red-winged Tinamou, White-bellied Nothura, Campo Flicker, Chopi Blackbird, Chotoy Spinetail, White Woodpecker, and even Greater Rhea, all during our first afternoon.
    [Show full text]
  • COSTA RICA: the Introtour (Group 1) Feb 2017
    Tropical Birding Trip Report COSTA RICA: The Introtour (Group 1) Feb 2017 A Tropical Birding set departure tour COSTA RICA: The Introtour 13th - 23rd February 2017 (Group 1) Tour Leader: Sam Woods (Report and all photos by Sam Woods) This Keel-billed Toucan lit up our first afternoon, near Braulio Carrillo National Park. The same day also featured Thicket Antpitta and THREE species of owl during the daytime… Ferruginous Pygmy, Crested and Spectacled Owls. 1 www.tropicalbirding.com +1-409-515-9110 [email protected] Page Tropical Birding Trip Report COSTA RICA: The Introtour (Group 1) Feb 2017 INTRODUCTION There can be few countries in the World as welcoming to birders as Costa Rica; everywhere we went birds were plentiful and frequently people with binoculars were in attendance too. Indeed, Costa Rica makes you feel odd if you are NOT wearing a pair. We enjoyed a fantastic tour of some of the most revered sites in Costa Rican birding; we started out near San Jose in the dry Central Valley, before driving over to the Caribbean side, where foothill birding was done in and around Braulio Carrillo National Park, and held beautiful birds from the outset, like Black-and-yellow Tanager, Black-thighed Grosbeak, and daytime Spectacled and Crested Owls. A tour first was also provided by a Thicket Antpitta seen well by all. From there we continued downslope to the lowlands of that side, and the world famous La Selva Biological Station. La Selva is a place where birds feel particularly plentiful, and we racked up a heady list of birds on our one and a half days there, including Rufous and Broad-billed Motmots, Black-throated Trogon, Pale-billed, Cinnamon and Chestnut-colored Woodpeckers, Keel-billed and Yellow-throated Toucans, and Great Curassow, to name just a few of the highlights, which also included several two-toed sloths, the iconic Red-eyed Tree Frog (photo last page), and Strawberry Poison Dart Frogs of the much publicized “blue jeans” form that adorns so many tourist posters in this Sarapiqui region.
    [Show full text]
  • Brazil's Eastern Amazonia
    The loud and impressive White Bellbird, one of the many highlights on the Brazil’s Eastern Amazonia 2017 tour (Eduardo Patrial) BRAZIL’S EASTERN AMAZONIA 8/16 – 26 AUGUST 2017 LEADER: EDUARDO PATRIAL This second edition of Brazil’s Eastern Amazonia was absolutely a phenomenal trip with over five hundred species recorded (514). Some adjustments happily facilitated the logistics (internal flights) a bit and we also could explore some areas around Belem this time, providing some extra good birds to our list. Our time at Amazonia National Park was good and we managed to get most of the important targets, despite the quite low bird activity noticed along the trails when we were there. Carajas National Forest on the other hand was very busy and produced an overwhelming cast of fine birds (and a Giant Armadillo!). Caxias in the end came again as good as it gets, and this time with the novelty of visiting a new site, Campo Maior, a place that reminds the lowlands from Pantanal. On this amazing tour we had the chance to enjoy the special avifauna from two important interfluvium in the Brazilian Amazon, the Madeira – Tapajos and Xingu – Tocantins; and also the specialties from a poorly covered corner in the Northeast region at Maranhão and Piauí states. Check out below the highlights from this successful adventure: Horned Screamer, Masked Duck, Chestnut- headed and Buff-browed Chachalacas, White-crested Guan, Bare-faced Curassow, King Vulture, Black-and- white and Ornate Hawk-Eagles, White and White-browed Hawks, Rufous-sided and Russet-crowned Crakes, Dark-winged Trumpeter (ssp.
    [Show full text]
  • The Best of Costa Rica March 19–31, 2019
    THE BEST OF COSTA RICA MARCH 19–31, 2019 Buffy-crowned Wood-Partridge © David Ascanio LEADERS: DAVID ASCANIO & MAURICIO CHINCHILLA LIST COMPILED BY: DAVID ASCANIO VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM THE BEST OF COSTA RICA March 19–31, 2019 By David Ascanio Photo album: https://www.flickr.com/photos/davidascanio/albums/72157706650233041 It’s about 02:00 AM in San José, and we are listening to the widespread and ubiquitous Clay-colored Robin singing outside our hotel windows. Yet, it was still too early to experience the real explosion of bird song, which usually happens after dawn. Then, after 05:30 AM, the chorus started when a vocal Great Kiskadee broke the morning silence, followed by the scratchy notes of two Hoffmann´s Woodpeckers, a nesting pair of Inca Doves, the ascending and monotonous song of the Yellow-bellied Elaenia, and the cacophony of an (apparently!) engaged pair of Rufous-naped Wrens. This was indeed a warm welcome to magical Costa Rica! To complement the first morning of birding, two boreal migrants, Baltimore Orioles and a Tennessee Warbler, joined the bird feast just outside the hotel area. Broad-billed Motmot . Photo: D. Ascanio © Victor Emanuel Nature Tours 2 The Best of Costa Rica, 2019 After breakfast, we drove towards the volcanic ring of Costa Rica. Circling the slope of Poas volcano, we eventually reached the inspiring Bosque de Paz. With its hummingbird feeders and trails transecting a beautiful moss-covered forest, this lodge offered us the opportunity to see one of Costa Rica´s most difficult-to-see Grallaridae, the Scaled Antpitta.
    [Show full text]
  • Defining a Monophyletic Cardinalini
    Available online at www.sciencedirect.com Molecular Phylogenetics and Evolution 45 (2007) 1014–1032 www.elsevier.com/locate/ympev Defining a monophyletic Cardinalini: A molecular perspective John Klicka a,*, Kevin Burns b, Garth M. Spellman a,1 a Barrick Museum of Natural History, Box 454012, University of Nevada Las Vegas, 4505 Maryland, Parkway, Las Vegas, NV 89154-4012, USA b Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA Received 28 March 2007; revised 29 June 2007; accepted 10 July 2007 Available online 19 July 2007 Abstract Within the New World nine-primaried oscine assemblage, feeding morphology and behavior have long been used as a guideline for assigning membership to subgroups. For example, birds with stout, conical bills capable of crushing heavy seeds have generally been placed within the tribe Cardinalini (cardinal-grosbeaks). Many workers have tried to characterize this group more definitively, using a variety of morphological characters; however, the characters used often conflicted with one another. Previous molecular studies addressing the monophyly of Cardinalini have had only limited sampling within the group. In this study, we analyze mtDNA sequence data from all genera and 34 of the 42 Cardinalini species (sensu [Sibley, C.G., Monroe, B.L., 1990. Distribution and Taxonomy of the Birds of the World, Yale University Press, New Haven, CT]) to address the monophyly of the group and to reconstruct the most com- plete phylogeny of this tribe published to date. We found strong support for a redefined Cardinalini that now includes some members previously placed within Thraupini (tanagers; the genera Piranga, Habia, Chlorothraupis, and Amaurospiza) and some members previ- ously placed within the Parulini (wood-warblers; the genus Granatellus).
    [Show full text]
  • An Update of Wallacels Zoogeographic Regions of the World
    REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009).
    [Show full text]
  • Troglodytidae Species Tree
    Troglodytidae I Rock Wren, Salpinctes obsoletus Canyon Wren, Catherpes mexicanus Sumichrast’s Wren, Hylorchilus sumichrasti Nava’s Wren, Hylorchilus navai Salpinctinae Nightingale Wren / Northern Nightingale-Wren, Microcerculus philomela Scaly-breasted Wren / Southern Nightingale-Wren, Microcerculus marginatus Flutist Wren, Microcerculus ustulatus Wing-banded Wren, Microcerculus bambla ?Gray-mantled Wren, Odontorchilus branickii Odontorchilinae Tooth-billed Wren, Odontorchilus cinereus Bewick’s Wren, Thryomanes bewickii Carolina Wren, Thryothorus ludovicianus Thrush-like Wren, Campylorhynchus turdinus Stripe-backed Wren, Campylorhynchus nuchalis Band-backed Wren, Campylorhynchus zonatus Gray-barred Wren, Campylorhynchus megalopterus White-headed Wren, Campylorhynchus albobrunneus Fasciated Wren, Campylorhynchus fasciatus Cactus Wren, Campylorhynchus brunneicapillus Yucatan Wren, Campylorhynchus yucatanicus Giant Wren, Campylorhynchus chiapensis Bicolored Wren, Campylorhynchus griseus Boucard’s Wren, Campylorhynchus jocosus Spotted Wren, Campylorhynchus gularis Rufous-backed Wren, Campylorhynchus capistratus Sclater’s Wren, Campylorhynchus humilis Rufous-naped Wren, Campylorhynchus rufinucha Pacific Wren, Nannus pacificus Winter Wren, Nannus hiemalis Eurasian Wren, Nannus troglodytes Zapata Wren, Ferminia cerverai Marsh Wren, Cistothorus palustris Sedge Wren, Cistothorus platensis ?Merida Wren, Cistothorus meridae ?Apolinar’s Wren, Cistothorus apolinari Timberline Wren, Thryorchilus browni Tepui Wren, Troglodytes rufulus Troglo dytinae Ochraceous
    [Show full text]