Approches D'intégration De Données Haut Débit Sur L'interactome Humain

Total Page:16

File Type:pdf, Size:1020Kb

Approches D'intégration De Données Haut Débit Sur L'interactome Humain Approches d’intégration de données haut débit sur l’interactome humain. Ghislain Bidaut To cite this version: Ghislain Bidaut. Approches d’intégration de données haut débit sur l’interactome humain.. Sciences du Vivant [q-bio]. Aix Marseille Université (AMU), Marseille, FRA., 2020. tel-02960532 HAL Id: tel-02960532 https://hal.archives-ouvertes.fr/tel-02960532 Submitted on 7 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole´ doctorale des Sciences de la Vie et de la Sant´e Approches d'int´egrationde donn´ees haut d´ebitsur l'interactome humain THESE` pr´esent´eeet soutenue publiquement le 13 Mars 2020 pour l'obtention d'une Habilitation `aDiriger les Recherches de l'Universit´eAix-Marseille (mention bio-informatique) par Ghislain A. M. Bidaut Composition du jury Pr´esident: Pr Jacques Van Helden Universit´eAix-Marseille Rapporteurs : Dr Pascal Barbry Institut de Pharmacologie Mol´eculaireet Cellulaire Dr Ana¨ısBaudot Marseille Medical Genetics Pr Ga¨elleLelandais Universit´eParis-Saclay Examinateurs : Dr Laurence Calzone Institut Curie Dr Benno Schwikowski Institut Pasteur Centre de Recherche en Canc´erologiede Marseille - Inserm U1068 - CNRS 7528 - Universit´e Aix-Marseille - Institut Paoli Calmettes Mis en page avec la classe thesul. Remerciements Je tiens à remercier chaleureusement mes mentors de master et de doctorat qui m’ont formé à l’analyse de données, les Pr Christophe Garcia (INSA Lyon) et Dr Michael Ochs (Fox Chase Cancer Center), Le Dr Chris Stoeckert qui m’a accueilli en stage post-doctoral au CBIL à Université de Pennsylvanie à Philadelphie. Le Dr Benno Schwikowski, qui m’a accueilli en stage post-doctoral à l’Unité de Biologie Systémique à l’Institut Pasteur, Paris. Les Pr Jean-Paul Borg et Dr Françoise Birg, qui m’ont accueilli et recruté comme responsable de plateforme bioinformatique au CRCM de Marseille. Merci à mon tuteur, le Pr Jacques Van Helden du TAGC, aux rapporteurs et examinateurs, ainsi qu’aux membres du Jury d’avoir relu et porté un jugement sur ce manuscrit. i ii Je dédie cette thèse à ma chère épouse, Wahiba à mes filles, Leila et Nora à mes parents, Et, bien sur, à mes amis. iii iv Sommaire Préambule xi Table des figures xiii Parcours professionnel1 Mon parcours initial3 Mise en place de la plateforme Cibi au CRCM5 Titre des travaux7 L’analyse et le traitement de données à haut débit en biologie molécu- laire 15 Chapitre 1 Analyse du transcriptome et intégration de données 17 1.1 Introduction . 17 1.2 Analyse de données à grand échelle par la bioinformatique . 18 1.3 Méthodes d’analyse d’enrichissement . 18 1.4 Présentation des chapitres de cette thèse . 19 v Sommaire Chapitre 2 Recherche d’une signature de différentiation somatique par intégration de données 23 2.1 Introduction . 23 2.2 Matériel et Méthodes . 29 2.2.1 Jeu de données . 29 2.2.2 Procédure d’intégration de données . 30 2.2.3 Projection vectorielle . 30 2.2.4 Valeurs manquantes et organisation des données . 30 2.2.5 Architecture du système et paramètres . 31 2.2.6 Algorithme de classification . 31 2.3 Classification . 31 2.4 Discussions . 34 2.5 Conclusion du chapitre . 34 Chapitre 3 Découverte de modules dans l’interactome humain liés aux mécanismes de métastase 35 3.1 Introduction . 36 3.2 Matériel et Méthodes . 38 3.2.1 Mise en place de l’interactome humain . 38 3.2.2 Compendium de données d’expression dans le cancer du sein . 38 3.2.3 Stratification des données d’apprentissage et validation croisée à 10 niveaux . 39 3.2.4 Algorithme Integration-Transcriptome-Interactome - construction des sous réseaux . 39 3.2.5 Validation statistique et filtrage des sous-réseaux . 40 3.2.6 Construction d’une signature sous-réseaux commune . 41 3.2.7 Classification des tumeurs et prédiction de la rechute métastatique sur les type ER+ et ER- sur deux jeux de données indépendants . 41 3.2.8 Ressource en ligne ITI - Enrichissement GO . 42 3.3 Résultats . 43 3.3.1 Établissement de deux jeux de sous réseaux discriminants pour les sous-types ER+ et ER- à partir d’un compendium de 930 tumeurs . 43 3.3.2 La classification par sous réseaux sur des données indépendantes montre la supériorité d’ITI par rapport à une classification sans interactome . 43 vi 3.3.3 Les signatures obtenues avec ITI montrent une stabilité supérieure sur différent jeux de données . 46 3.3.4 La biologie des sous-réseaux est plus facilement interprétable que celle des signatures classiques . 47 3.4 Discussion . 48 3.5 Remerciements . 50 3.6 Conclusions du chapitre . 50 Chapitre 4 Découverte de gènes drivers par analyse intégrée Interactome, transcriptome et génome 51 4.1 Introduction . 52 4.1.1 Sous types moléculaires dans le cancer du sein . 52 4.1.2 Intégration de données génomiques pour la découverte de gènes drivers dans les sous-types moléculaires luminal A et basal . 52 4.1.3 CNV-Intégration Transcriptome Interactome (CITI) . 53 4.2 Matériel et Méthodes . 56 4.2.1 Pipeline C-ITI . 56 4.2.2 Bases de données d’Interactions Protéines-Protéines . 56 4.2.3 Profils d’expression puces à ADN . 57 4.2.4 Profils d’amplification de copies . 58 4.2.5 Détection des gènes candidats initiaux par intégration primaire des données d’expression et d’altération génomique. 58 4.2.6 Autres bases de données d’annotations et éléments de pipeline . 58 4.2.7 Algorithme ITI d’Intégration Transcriptome Interactome . 59 4.3 Analyse . 60 4.3.1 Détection des gènes drivers avec intégration transcriptome-interactome 60 4.3.2 Visualisation des sous-réseaux . 60 4.3.3 Analyse fonctionnelle des sous-réseaux . 61 4.3.4 Identification des gènes mutés, suppresseurs de tumeurs et oncogènes 61 4.3.5 Autres méthodes d’intégration destinées à la détection de gènes drivers en cancérologie . 62 4.3.6 Méthode CONEXIC par Akavia et al. .................. 62 4.3.7 Méthode de Beroukhim et al. ....................... 63 4.4 Discussion . 63 4.5 Conclusion du chapitre . 64 4.6 Remerciements . 65 vii Sommaire Chapitre 5 Analyse de données de screening siRNA par HTS-Net : High-Throughput Screening - Network 73 5.1 Introduction . 74 5.2 Matériel et Méthodes . 77 5.2.1 Assemblage des données réseau . 77 5.2.2 Détection de sous-réseaux avec HTS-Net . 78 5.2.3 Validation statistique . 79 5.2.4 Intégration des sous-réseau interactome et regulome . 80 5.2.5 Rapport d’analyse et base de données de sous-réseaux générées par HTS-Net . 80 5.2.6 Analyse d’enrichissement en termes Gene Ontology (GO) . 81 5.2.7 Sources de données publiques . 81 5.2.8 Comparaison des résultats obtenus avec HTS-Net, HotNet2, CARD et la méthode de Gonzalez&Zimmer . 82 5.3 Analyse et Résultats . 83 5.3.1 Un nouveau pipeline pour comprendre les interactions et les phéno- mènes de régulations impactés dans un screen HTS . 83 5.3.2 Analyse réseau des déterminant de la différentiation des cellules souches embryonnaires humaines [34]....................... 83 5.3.3 Analyse réseau de la formation des mammosphères dans les cellules cancéreuses dans le sein [184]....................... 85 5.3.4 Analyse réseau des co-facteurs hôtes de réplication du virus de l’hépa- tite C [164]................................. 85 5.3.5 Comparaison de HTS-Net avec les algorithmes existants . 86 5.4 Discussion . 88 5.5 Conclusion du chapitre . 89 5.6 Remerciements . 90 Chapitre 6 Djeen : Gestion de données génomiques simplifiées sur le Web 97 6.1 Introduction . 97 6.2 État de l’art . 99 6.3 Implémentation . 100 6.3.1 Objectifs . 100 6.3.2 Système de Gestion de Contenu . 101 6.3.3 Intégration de Djeen avec Joomla ! . 102 viii 6.3.4 Organisation des données et éléments de Djeen . 103 6.3.5 Fonctionnalités et interface utilisateur . 105 6.4 Résultats et discussions . 105 6.4.1 Préparer la hiérarchie des projets dans Djeen . 106 6.4.2 Importation de données microarray(Fichiers CEL) . 106 6.4.3 Ajouter et formatter un gabarit au standard MIAME . 106 6.5 conclusion . 108 6.6 Conclusion du chapitre . 110 6.7 Remerciements . 110 Chapitre 7 Interactome dans les cellules LAM 111 7.1 Introduction . 111 7.2 Matériel et Méthodes . 112 7.2.1 Analyse d’expression par microarrays . 112 7.2.2 Analyse interactome . 112 7.2.3 Conversion d’identifiants entre organismes . 114 7.2.4 Filtrage sur les termes Gene Ontology . 114 7.2.5 Comparaison des populations cellulaires . 114 7.2.6 Enrichissement en termes GO . 115 7.2.7 Enrichissement en groupes de gènes Gene Set Enrichment Analysis(GSEA)115 7.3 Conclusion et directions futures . 115 Chapitre 8 Détermination des mécanismes de régulation génomique par intégration de données cistrome, épigénome et transcriptome 117 8.1 Introduction . 117 8.2 Matériel et Méthodes . 118 Conclusion Générale Conclusion 121 Bibliographie 125 ix Sommaire x Préambule Cette thèse a pour objet de présenter mes travaux de recherche depuis mon entrée au Centre de Recherche en Cancérologie de Marseille en vue de l’obtention de l’Habilitation à Diriger des Recherches.
Recommended publications
  • The Rnase H-Like Superfamily: New Members, Comparative Structural Analysis and Evolutionary Classification Karolina A
    4160–4179 Nucleic Acids Research, 2014, Vol. 42, No. 7 Published online 23 January 2014 doi:10.1093/nar/gkt1414 The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification Karolina A. Majorek1,2,3,y, Stanislaw Dunin-Horkawicz1,y, Kamil Steczkiewicz4, Anna Muszewska4,5, Marcin Nowotny6, Krzysztof Ginalski4 and Janusz M. Bujnicki1,3,* 1Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland, 2Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA USA-22908, USA, 3Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, 4Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, PL-02-089 Warsaw, Poland, 5Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, PL-02-106 Warsaw, Poland and 6Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland Received September 23, 2013; Revised December 12, 2013; Accepted December 26, 2013 ABSTRACT revealed a correlation between the orientation of Ribonuclease H-like (RNHL) superfamily, also called the C-terminal helix with the exonuclease/endo- the retroviral integrase superfamily, groups together nuclease function and the architecture of the numerous enzymes involved in nucleic acid metab- active site. Our analysis provides a comprehensive olism and implicated in many biological processes, picture of sequence-structure-function relation- including replication, homologous recombination, ships in the RNHL superfamily that may guide func- DNA repair, transposition and RNA interference.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Identification and Functional Analysis of Novel Genes Associated with Inherited Bone Marrow Failure Syndromes
    Identification and Functional Analysis of Novel Genes Associated with Inherited Bone Marrow Failure Syndromes by Anna Matveev A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Anna Matveev 2020 Abstract Identification and Functional Analysis of Novel Genes Associated with Inherited Bone Marrow Failure Syndromes Anna Matveev Master of Science Institute of Medical Science University of Toronto 2020 Inherited bone marrow failure syndromes are multisystem-disorders that affect development of hematopoietic system. One of IBMFSs is Shwachman-Diamond-syndrome and about 80-90% of patients have mutations in the Shwachman-Bodian-Diamond-Syndrome gene. To unravel the genetic cause of the disease in the remaining 10-20% of patients, we performed WES as well as SNP-genotyping in families with SDS-phenotype and no mutations in SBDS. The results showed a region of homozygosity in chromosome 5p-arm DNAJC21 is in this region. Western blotting revealed reduced/null protein in patient. DNAJC21-homolog in yeast has been shown facilitating the release of the Arx1/Alb1 heterodimer from pre-60S.To investigate the cellular functions of DNAJC21 we knocked-down it in HEK293T-cells. We observed a high-level of ROS, which led to reduced cell proliferation. Our data indicate that mutations in DNAJC21 contribute to SDS. We hypothesize that DNAJC21 related ribosomal defects lead to increased levels of ROS therefore altering development and maturation of hematopoietic cells. ii Acknowledgments I would like to take this opportunity to extend my deepest gratitude to everyone who has helped me throughout my degree.
    [Show full text]
  • A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules Natasha L
    www.nature.com/scientificreports OPEN A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules Natasha L. Patel-Murray1, Miriam Adam2, Nhan Huynh2, Brook T. Wassie2, Pamela Milani2 & Ernest Fraenkel 2,3* High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning model of transcriptomics, epigenomics, metabolomics, and proteomics. Examining compounds with benefcial efects in models of Huntington’s Disease, we found common MoAs for compounds with unrelated structures, connectivity scores, and binding targets. The approach also predicted highly divergent MoAs for two FDA-approved antihistamines. We experimentally validated these efects, demonstrating that one antihistamine activates autophagy, while the other targets bioenergetics. The use of multiple omics was essential, as some MoAs were virtually undetectable in specifc assays. Our approach does not require reference compounds or large databases of experimental data in related systems and thus can be applied to the study of agents with uncharacterized MoAs and to rare or understudied diseases. Unknown modes of action of drug candidates can lead to unpredicted consequences on efectiveness and safety. Computational methods, such as the analysis of gene signatures, and high-throughput experimental methods have accelerated the discovery of lead compounds that afect a specifc target or phenotype1–3. However, these advances have not dramatically changed the rate of drug approvals. Between 2000 and 2015, 86% of drug can- didates failed to earn FDA approval, with toxicity or a lack of efcacy being common reasons for their clinical trial termination4,5.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Insights Into Regulation of Human RAD51 Nucleoprotein Filament Activity During
    Insights into Regulation of Human RAD51 Nucleoprotein Filament Activity During Homologous Recombination Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ravindra Bandara Amunugama, B.S. Biophysics Graduate Program The Ohio State University 2011 Dissertation Committee: Richard Fishel PhD, Advisor Jeffrey Parvin MD PhD Charles Bell PhD Michael Poirier PhD Copyright by Ravindra Bandara Amunugama 2011 ABSTRACT Homologous recombination (HR) is a mechanistically conserved pathway that occurs during meiosis and following the formation of DNA double strand breaks (DSBs) induced by exogenous stresses such as ionization radiation. HR is also involved in restoring replication when replication forks have stalled or collapsed. Defective recombination machinery leads to chromosomal instability and predisposition to tumorigenesis. However, unregulated HR repair system also leads to similar outcomes. Fortunately, eukaryotes have evolved elegant HR repair machinery with multiple mediators and regulatory inputs that largely ensures an appropriate outcome. A fundamental step in HR is the homology search and strand exchange catalyzed by the RAD51 recombinase. This process requires the formation of a nucleoprotein filament (NPF) on single-strand DNA (ssDNA). In Chapter 2 of this dissertation I describe work on identification of two residues of human RAD51 (HsRAD51) subunit interface, F129 in the Walker A box and H294 of the L2 ssDNA binding region that are essential residues for salt-induced recombinase activity. Mutation of F129 or H294 leads to loss or reduced DNA induced ATPase activity and formation of a non-functional NPF that eliminates recombinase activity. DNA binding studies indicate that these residues may be essential for sensing the ATP nucleotide for a functional NPF formation.
    [Show full text]
  • Supplementary Table S2
    1-high in cerebrotropic Gene P-value patients Definition BCHE 2.00E-04 1 Butyrylcholinesterase PLCB2 2.00E-04 -1 Phospholipase C, beta 2 SF3B1 2.00E-04 -1 Splicing factor 3b, subunit 1 BCHE 0.00022 1 Butyrylcholinesterase ZNF721 0.00028 -1 Zinc finger protein 721 GNAI1 0.00044 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 GNAI1 0.00049 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 PDE1B 0.00069 -1 Phosphodiesterase 1B, calmodulin-dependent MCOLN2 0.00085 -1 Mucolipin 2 PGCP 0.00116 1 Plasma glutamate carboxypeptidase TMX4 0.00116 1 Thioredoxin-related transmembrane protein 4 C10orf11 0.00142 1 Chromosome 10 open reading frame 11 TRIM14 0.00156 -1 Tripartite motif-containing 14 APOBEC3D 0.00173 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D ANXA6 0.00185 -1 Annexin A6 NOS3 0.00209 -1 Nitric oxide synthase 3 SELI 0.00209 -1 Selenoprotein I NYNRIN 0.0023 -1 NYN domain and retroviral integrase containing ANKFY1 0.00253 -1 Ankyrin repeat and FYVE domain containing 1 APOBEC3F 0.00278 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F EBI2 0.00278 -1 Epstein-Barr virus induced gene 2 ETHE1 0.00278 1 Ethylmalonic encephalopathy 1 PDE7A 0.00278 -1 Phosphodiesterase 7A HLA-DOA 0.00305 -1 Major histocompatibility complex, class II, DO alpha SOX13 0.00305 1 SRY (sex determining region Y)-box 13 ABHD2 3.34E-03 1 Abhydrolase domain containing 2 MOCS2 0.00334 1 Molybdenum cofactor synthesis 2 TTLL6 0.00365 -1 Tubulin tyrosine ligase-like family, member 6 SHANK3 0.00394 -1 SH3 and multiple ankyrin repeat domains 3 ADCY4 0.004 -1 Adenylate cyclase 4 CD3D 0.004 -1 CD3d molecule, delta (CD3-TCR complex) (CD3D), transcript variant 1, mRNA.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Análise Correlacional Entre a Expressão Dos Fatores De Splicing E a Ocorrência De Splicing Alternativo Em Tecidos Humanos E De Camundongos
    ANÁLISE CORRELACIONAL ENTRE A EXPRESSÃO DOS FATORES DE SPLICING E A OCORRÊNCIA DE SPLICING ALTERNATIVO EM TECIDOS HUMANOS E DE CAMUNDONGOS JULIO CÉSAR NUNES Dissertação apresentada à Fundação Antônio Prudente para a obtenção do título de Mestre em Ciências Área de Concentração: Oncologia Orientador: Dr. Sandro José de Souza São Paulo 2008 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. FICHA CATALOGRÁFICA Preparada pela Biblioteca da Fundação Antônio Prudente Nunes, Julio César Análise correlacional entre a expressão dos fatores de splicing e a ocorrência de splicing alternativo em tecidos humanos e de camundongos / Julio César Nunes – São Paulo, 2008. 79p. Dissertação (Mestrado) - Fundação Antônio Prudente. Curso de Pós-Graduação em Ciências - Área de concentração: Oncologia. Orientador: Sandro José Souza Descritores: 1. SPLICING ALTERNATIVO 2. BIOLOGIA MOLECULAR COMPUTACIONAL 3. CÂNCER 4. GENOMICA. AGRADECIMENTOS Agradeço à FAPESP e CAPES pela bolsa de Mestrado. Ao Sandro José de Souza agradeço toda orientação e conhecimento oferecido. Meus especiais agradecimentos ao Pedro Alexandre Favoretto Galante que dedicou atenção a minha formação no processo de Pós-Graduação na Fundação Antônio Prudente, bem como pela sua oficiosa co-orientação ao projeto de pesquisa. À grande família e amigos pela dedicação e incentivo a minha formação acadêmica. À Fundação Antônio Prudente, Hospital do Câncer e Instituto Ludwig de Pesquisa sobre o Câncer dedico os meus nobres agradecimentos finais. RESUMO Nunes JC. Análise correlacional entre a expressão dos fatores de splicing e a ocorrência de splicing alternativo em tecidos humanos e de camundongos. São Paulo; 2007. [Dissertacão de Mestrado - Fundação Antônio Prudente] Splicing alternativo desempenha uma significante função no aumento da complexidade genômica, produzindo um extenso número de mRNA e isoformas protéicas.
    [Show full text]
  • Gigantea: Uncovering New Functions in Flower Development
    G C A T T A C G G C A T genes Review Gigantea: Uncovering New Functions in Flower Development Claudio Brandoli 1, Cesar Petri 2 , Marcos Egea-Cortines 1 and Julia Weiss 1,* 1 Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; [email protected] (C.B.); [email protected] (M.E.-C.) 2 Instituto de Hortofruticultura Subtropical y Mediterránea-UMA-CSIC, Departamento de Fruticultura Subtropical y Mediterránea, 29750 Algarrobo-costa, Málaga, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-868-071-078 Received: 27 August 2020; Accepted: 22 September 2020; Published: 28 September 2020 Abstract: GIGANTEA (GI) is a gene involved in multiple biological functions, which have been analysed and are partially conserved in a series of mono- and dicotyledonous plant species. The identified biological functions include control over the circadian rhythm, light signalling, cold tolerance, hormone signalling and photoperiodic flowering. The latter function is a central role of GI, as it involves a multitude of pathways, both dependent and independent of the gene CONSTANS(CO), as well as on the basis of interaction with miRNA. The complexity of the gene function of GI increases due to the existence of paralogs showing changes in genome structure as well as incidences of sub- and neofunctionalization. We present an updated report of the biological function of GI, integrating late insights into its role in floral initiation, flower development and volatile flower production. Keywords: Gene ontology; molecular function; cellular localisation; biological function; circadian clock; flowering time; flower development; floral scent 1.
    [Show full text]