Download (8MB)

Total Page:16

File Type:pdf, Size:1020Kb

Download (8MB) CSILLAGÁSZATI ÉVKÖNYV AZ 1961. ÉVRE V SZERKESZTETTE A TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT CSILLAGÁSZATI SZAKOSZTÁLYÁNAK VÁLASZTMÁNYA GONDOLAT KIADÓ Budapest, 1960 CSILLAGÁSZATI ADATOK AZ 1 9 6 1 . ÉVRE Az I—IX. táblázatokat összeállította: MERSITS JÓZSEF 0 kalkulátor, MTA Napfizikai Obszervatórium, Debrecen a X—XV. táblázatokat: IFJ. BARTHA LAJOS, FEJES IMRE, MOISZA JÁNOS, THALY KOPPÁNY ÉS SZÁNTÓ ANDRÁS Uránia Csillagvizsgáló, Budapest % I. JANUÁR Közép-Európai zónaidőben Budapesten A NAP A HOLD A HOLD fény­ nyug­ változásai kel nyug­ napja delel hete szik kel szik Az Az év hányadik Az Az év hányadik A A hét napjai Dátum h m h m h m h m h m h m i V i i 7 32 11 47 16 03 16 04 6 40 @ 0 06 2 H 2 2 7 32 1 1 4 8 16 05 16 54 7 27 3 K 3 7 32 11 49 16 06 17 49 8 07 4 Sz 4 7 32 1 1 4 9 16 06 18 46 8 44 5 Cs 5 7 32 11 49 16 07 19 45 9 16 6 P 6 7 32 11 50 16 08 20 45 9 46 7 Sz 7 7 32 11 50 16 09 21 46 10 13 « 8 V 8 7 31 11 50 16 10 22 49 10 39 9 H 3 9 7 3 1 11 51 16 12 23 54 11 05 10 K 10 7 30 11 51 16 13 — 11 33 g 4 03 11 Sz 11 7 30 11 52 16 14 1 00 12 03 12 Cs 12 7 29 11 52 16 16 2 09 12 37 13 P 13 7 29 11 53 16 17 3 19 13 17 14 Sz 14 7 28 11 53 16 19 4 29 14 06 15 V 15 7 28 11 54 16 20 5 37 15 04 16 H 4 16 7 28 11 54 16 21 6 38 16 11 ® 22 30 17 K 17 7 27 11 54 16 22 7 32 17 25 18 Sz 18 7 26 11 55 16 24 8 17 18 42 19 Cs 19 7 25 11 55 16 25 8 56 19 59 20 P 20 7 24 11 55 16 27 9 30 21 13 21 Sz 21 7 23 11 55 16 28 10 01 22 25 22 V 22 7 22 11 56 16 30 10 30 23 34 23 H 5 23 7 22 11 56 16 31 10 59 — 3 17 14 24 K 24 7 21 11 56 16 32 11 29 0 41 25 Sz 25 7 20 11 56 16 34 12 01 1 44 26 Cs 26 7 19 11 56 16 36 12 37 2 45 27 P 27 7 17 11 57 16 37 13 17 3 43 28 Sz 28 7 16 11 57 16 39 14 01 4 35 29 V 29 7 16 11 57 16 40 14 50 5 24 30 H 6 30 7 14 11 58 16 42 15 43 6 07 31 K 31 7 13 11 58 16 43 16 40 6 45 o 19 47 Föld: 2-án 15h-kor napközeiben. Hold: 3-án 14h-kor földtávolban, látszólagos sugara : 14'42",2 16-án 24h-kor földközelben, látszólagos sugara : 16'45", 1 30-án 14b-kor földtávolban, látszólagos sugara : 14'42",l 4 HÓN AP Oh világidőkor A NAP A HOLD Julián Csillagidő dátum (A — 0°-nál) 2 4 3 7 ... rektasz- dekliná­ látszó­ rektasz- dekliná­ cenziója ciója sugara cenziója ciója / o h m s h m o / // h m / ...3 0 0 ,5 6 41 37,580 18 45 —23 02 16 18 5 59 + 18 44 301,5 6'45 34,135 18 49 22 57 16 18 6 50 18 44 302,5 6 49 30,691 18 54 22 52 16 18 7 39 17 53 303,5 6 53 27,246 18 58 22 46 16 18 8 29 16 17 304,5 6 57 23,802 19 03 22 40 16 18 9 17 13 59 305,5 7 01 20,357 19 07 22 33 16 18 10 04 1106 306,5 7 05 16,912 19 11 22 26 16 18 10 50 7 45 307,5 7 09 13,468 19 16 22 18 16 18 1 1 3 7 4 02 • 308,5 7 13 10,023 19 20 22 10 16 17 12 24 + 0 05 309,5 7 17 06,578 19 24 22 01 16 17 13 12 — 3 57 310,5 7 21 03,134 19 29 21 52 16 17 14 01 7 55 311,5 7 24 59,689 19 33 21 43 16 17 14 54 11 38 312,5 7 28 56,244 19 37 2133 16 17 15 49 14 50 313,5 7 32 52,800 19 42 21 23 16 17 16 48 17 15 314,5 7 36 49,355 19 46 21 12 16 17 17 50 18 36 315,5 7 40 45,911 19 50 21 01 16 17 18 54 18 39 316,5 7 44 42,466 19 55 20 50 16 17 19 58 17 22 317,5 7 48 39,021 19 59 20 38 16 17 21 01 14 50 318,5 7 52 35,577 20 03 20 26 16 17 22 01 11 19 319,5 7 56 32,132 20 07 20 13 16 17 22 59 7 10 320,5 8 00 28,687 20 12 20 00 16 17 23 53 — 2 44 321,5 8 04 25,243 20 16 19 47 16 17 0 46 + 1 4 3 322,5 8 08 21,798 20 20 19 33 16 17 1 37 5 56 323,5 8 12 18,353 20 24 ' 19 19 16 16 2 27 9 44 324,5 8 16 14,909 20 29 19 04 16 16 3 17 12 59 325,5 8 20 11,464 20 33 18 49 16 16 4 07 15 35 326,5 8 24 08,020 20 37 18 34 16 16 4 57 17 27 327,6 8 28 04,575 20 41 18 19 16 16 5 47 18 31 328,5 8 32 01,130 20 45 18 03 16 16 6 37 18 45 329,5 8 35 57,686 20 49 17 47 16 16 7 27 18 09 330,5 8 39 54,241 2Q 53 — 17 30 16 16 8 16 + 10 46 * A greenwichi közepes csillagidő. 5 I. FEBRUÁR Közép-Európai zónaidőben Budapesten A NAP A HOLD A HOLD fény­ nyug­ változásai kel delel nyug­ napja hete szik kel Az Az év hányadik Az Az év hányadik szik Dátum A hét napjai h m h m h m h m h m h m i Sz (6) 32 7 12 11 58 16 44 17 38 7 19 2 Cs 33 7 10 11 58 16 46 18 38 7 49 3 P 34 7 09 11 59 16 48 19 39 8 18 4 Sz 35 7 07 11 59 16 50 20 41 8 44 5 V 36 7 06 11 59 16 51 2 1 4 5 9 10 6 11 7 37 7 05 11 59 16 53 22 49 9 37 7 K 38 7 04 11 59 16 54 23 55 10 05 8 Sz 39 7 02 11 59 16 55 — 10 36 £ 17 50 9 Cs 40 7 00 11 59 16 57 1 03 11 12 10 P 41 6 59 11 59 16 59 2 10 11 55 11 Sz 42 6 57 11 59 17 01 3 17 12 46 12 V 43 6 56 11 59 17 02 4 19 13 47 13 H 8 44 6 55 11 59 17 04 5 16 14 56 14 K 45 6 53 11 59 17 06 6 05 16 11 15 Sz 46 6 51 11 59 17 07 6 47 17 29 @ 0 9 11 16 Cs 47 6 49 11 59 17 08 7 24 18 46 17 P 48 6 47 11 59 17 10 7 58 20 02 18 Sz 49 6 45 11 59 17 12 8 29 21 15 19 V 50 6 44 11 59 17 13 8 59 22 25 20 11 9 51 6 43 11 59 17 14 9 29 23 32 21 K 52 6 41 11 58 17 16 10 02 _ 22 Sz 53 6 39 11 58 17 17 10 37 0 35 2 ) 09 35 23 Cs 54 6 37 11 58 17 19 11 16 1 35 24 P 55 6 36 11 58 17 21 11 58 2 30 25 Sz 56 6 34 1 1 5 7 17 22 12 46 3 20 26 V 57 6 32 11 57 17 23 13 37 4 05 27 H 10 58 6 30 11 57 17 24 14 32 4 45 28 K 59 6 28 11 57 17 26 15 30 5 20 Hold: 1 4-én l2h-kor földközelben, látszólagos sugara: 16'40",8 26-áu> , 22h-kor íöldtóvolban, látszólagos sugara : 14'44",2 a HÓNAP Oh világidőkor A NAP A HOLD Ju liá n Csillagidő dátum (í = 0°-nál) 2 4 3 7 ... rektasz- dekliná­ látszó­ rektasz- dekli ná­ cenziója ciója sugara ccnziója ciója o / / // r h m s h m h m 0 ...3 3 1 ,5 8 44 50,796 20 57 — 17 13 16 15 9 05 + 14 40 332,5 8 é 8 47,352 21 02 16 56 16 15 9 52 11 57 333,5 8 52 43,907 21 06 16 39 16 15 10 39 8 42 334,5 8 56 40,462 21 10 16 21 16 15 11 26 5 05 335,5 8 59 37,018 21 14 16 03 16 15 12 12 + 1 12 336,5 9 03 33,573 21 18 15 45 16 15 12 59 — 2 46 337,5 90730,129 2122 15 27 16 15 13 48 6 43 338,5 9 11 26,684 21 26 15 08 16 14 14 38 10 25 339,5 9 1523,239 2130 1449 16 14 15 31 13 43 340,5 9 19 19,795 21 34 14 30 16 14 16 26 16 21 341,5 9 23 16,350 21 38 14 10 16 14 17 25 18 06 342,5 9 27 12,905 21 42 13 50 16 14 18 26 18 43 343,5 9 31 09,461 21 45 13 30 16 13 19 29 18 05 344,5 9 35 06,016 21 49 13 10 16 13 20 31 16 10 345,5 9 39 02,571 21 53 12 50 16 13 21 33 13 07 346,5 9 42 59,127 2157 12 29 16 13 22 32 9 12 347,5 9 46 55,682 22 01 12 08 16 13 23 30 4 46 348,5 9 50 52,238 22 05 11 47 16 12 0 25 — 0 11 349,5 9 54 48,793 22 09 11 26 16 12 1 18 + * 17 350 5 9 58 45,348 22 13 11 05 16 12 2 10 8 23 351,5 10 02 41,904 22 16 10 43 16 12 3 01 11 56 352,5 10 06 38,459 22 20 10 21 16 12 3 52 14 49 353,5 10 10 35,014 22 24 9 59 16 11 4 43 16 56 354,5 10 M 31,570 22 28 9 37 16 11 5 33 18 14 355,5 10 18 28,125 22 32 9 15 16 11 6 23 * 18 42 356,5 10 22 24,680 22 35 8 53 16 11 7 13 18 21 357,5 10 26 21,236 22 39 8 31 16 10 8 03 17 11 358,5 10 30 17,791 22 43 — 8 08 16 10 8 51 + 15 17 7 / I.
Recommended publications
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Tímaákvarðanir Á Myrkvum Valinna Myrkvatvístirna Og Þvergöngum Fjarreikistjarna, Árin 2017-2018, Og Fjarlægðamælingar
    Tímaákvarðanir á myrkvum valinna myrkvatvístirna, þvergöngum fjarreikistjarna og fjarlægðamælingar, árin 2017—2018 Snævarr Guðmundsson 2019 Náttúrustofa Suðausturlands Litlubrú 2, 780 Höfn í Hornafirði Nýheimar, Litlubrú 2 780 Höfn Í Hornafirði www.nattsa.is Skýrsla nr. Dagsetning Dreifing NattSA 2019-04 10. apríl 2019 Opin Fjöldi síðna 109 Tímaákvarðanir á myrkvum valinna myrkvatvístirna, Fjöldi mynda 229 þvergöngum fjarreikistjarna og fjarlægðamælingar, árin 2017- 2018. Verknúmer 1280 Höfundur: Snævarr Guðmundsson Verkefnið var styrkt af Prófarkarlestur Þorsteinn Sæmundsson, Kristín Hermannsdóttir og Lilja Jóhannesdóttir Útdráttur Hér er gert grein fyrir stjörnuathugunum á Hornafirði á árabilinu 2017 til loka árs 2018. Í flestum tilfellum voru viðfangsefnin óeiginlegar breytistjörnur, aðallega myrkvatvístirni, en einnig var fylgst með nokkrum fjarreikistjörnum. Í mælingum á myrkvatvístirnum og fjarreikistjörnum er markmiðið að tímasetja myrkva og þvergöngur. Einnig er sagt frá niðurstöðum á nándarstjörnunni Ross 248 og athugunum á lausþyrpingunni NGC 7790 og breytistjörnum í nágrenni hennar. Markmið mælinga á nándarstjörnu og lausþyrpingum er að meta fjarlægðir eða aðra eiginleika fyrirbæranna. Að lokum eru kynntar athuganir á litrófi nokkurra bjartra stjarna. Í samantektinni er sagt frá hverju viðfangsefni í sérköflum. Þessi samantekt er sú þriðja um stjörnuathuganir sem er gefin út af Náttúrustofu Suðausturlands. Niðurstöður hafa verið sendar í alþjóðlegan gagnagrunn þar sem þær, ásamt fjölda sambærilegra mæligagna frá stjörnuáhugamönnum, eru aðgengilegar stjarnvísindasamfélaginu. Hægt er að sækja skýrslur um stjörnuathuganir á vefslóðina: http://nattsa.is/utgefid-efni/. Lykilorð: myrkvatvístirni, fjarreikistjörnur, breytistjörnur, lausþyrpingar, ljósmælingar, fjarlægðir stjarna, litróf stjarna. ii Tímaákvarðanir á myrkvum valinna myrkvatvístirna, þvergöngum fjarreikistjarna og fjarlægðamælingar, árin 2017-2018. — Annáll 2017-2018. Timings of selected eclipsing binaries, exoplanet transits and distance measurements in 2017- 2018.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • UNSC Science and Technology Command
    UNSC Science and Technology Command Earth Survey Catalogue: Official Name/(Common) Star System Distance Coordinates Remarks/Status 18 Scorpii {TCP:p351} 18 Scorpii {Fact} 45.7 LY 16h 15m 37s Diameter: 1,654,100km (1.02R*) {Fact} -08° 22' 06" {Fact} Spectral Class: G2 Va {Fact} Surface Temp.: 5,800K {Fact} 18 Scorpii ?? (Falaknuma) 18 Scorpii {Fact} 45.7 LY 16h 15m 37s UNSC HQ base on world. UNSC {TCP:p351} {Fact} -08° 22' 06" recruitment center in the city of Halkia. {TCP:p355} Constellation: Scorpio 111 Tauri 111 Tauri {Fact} 47.8 LY 05h:24m:25.46s Diameter: 1,654,100km (1.19R*) {Fact} +17° 23' 00.72" {Fact} Spectral Class: F8 V {Fact} Surface Temp.: 6,200K {Fact} Constellation: Taurus 111 Tauri ?? (Victoria) 111 Tauri {Fact} 47.8 LY 05:24:25.4634 UNSC colony. {GoO:p31} {Fact} +17° 23' 00.72" Constellation: Taurus Location of a rebel cell at Camp New Hope in 2531. {GoO:p31} 51 Pegasi {Fact} 51 Pegasi {Fact} 50.1 LY 22h:57m:28s Diameter: 1,668,000km (1.2R*) {Fact} +20° 46' 7.8" {Fact} Spectral Class: G4 (yellow- orange) {Fact} Surface Temp.: Constellation: Pegasus 51 Pegasi-B (Bellerophon) 51 Pegasi 50.1 LY 22h:57m:28s Gas giant planet in the 51 Pegasi {Fact} +20° 46' 7.8" system informally named Bellerophon. Diameter: 196,000km. {Fact} Located on the edge of UNSC territory. {GoO:p15} Its moon, Pegasi Delta, contained a Covenant deuterium/tritium refinery destroyed by covert UNSC forces in 2545. {GoO:p13} Constellation: Pegasus 51 Pegasi-B-1 (Pegasi 51 Pegasi 50.1 LY 22h:57m:28s Moon of the gas giant planet 51 Delta) {GoO:p13} +20° 46' 7.8" Pegasi-B in the 51 Pegasi star Constellation: Pegasus system; a Covenant stronghold on the edge of UNSC territory.
    [Show full text]
  • Macrocosmo Nº33
    HA MAIS DE DOIS ANOS DIFUNDINDO A ASTRONOMIA EM LÍNGUA PORTUGUESA K Y . v HE iniacroCOsmo.com SN 1808-0731 Ano III - Edição n° 33 - Agosto de 2006 * t i •■•'• bSÈlÈWW-'^Sif J fé . ’ ' w s » ws» ■ ' v> í- < • , -N V Í ’\ * ' "fc i 1 7 í l ! - 4 'T\ i V ■ }'- ■t i' ' % r ! ■ 7 ji; ■ 'Í t, ■ ,T $ -f . 3 j i A 'A ! : 1 l 4/ í o dia que o ceu explodiu! t \ Constelação de Andrômeda - Parte II Desnudando a princesa acorrentada £ Dicas Digitais: Softwares e afins, ATM, cursos online e publicações eletrônicas revista macroCOSMO .com Ano III - Edição n° 33 - Agosto de I2006 Editorial Além da órbita de Marte está o cinturão de asteróides, uma região povoada com Redação o material que restou da formação do Sistema Solar. Longe de serem chamados como simples pedras espaciais, os asteróides são objetos rochosos e/ou metálicos, [email protected] sem atmosfera, que estão em órbita do Sol, mas são pequenos demais para serem considerados como planetas. Até agora já foram descobertos mais de 70 Diretor Editor Chefe mil asteróides, a maior parte situados no cinturão de asteróides entre as órbitas Hemerson Brandão de Marte e Júpiter. [email protected] Além desse cinturão podemos encontrar pequenos grupos de asteróides isolados chamados de Troianos que compartilham a mesma órbita de Júpiter. Existem Editora Científica também aqueles que possuem órbitas livres, como é o caso de Hidalgo, Apolo e Walkiria Schulz Ícaro. [email protected] Quando um desses asteróides cruza a nossa órbita temos as crateras de impacto. A maior cratera visível de nosso planeta é a Meteor Crater, com cerca de 1 km de Diagramadores diâmetro e 600 metros de profundidade.
    [Show full text]
  • View & Download
    78-8970 70MM REFRACTOR WITH REALVOICE™ OUTPUT INSTRUCTION MANUAL 78-8930 76MM REFLECTOR MANUEL D’INSTRUCTIONS MANUAL DE INSTRUCCIONES BEDIENUNGSANLEITUNG MANUALE DI ISTRUZIONI MANUAL DE INSTRUÇÕES 78-8945 114MM REFLECTOR Lit.#: 98-0965/06-07 PAGE GUIDE ENGLISH ............... 4 Catalog Index........... 18 FrANÇAIS.............. 34 ESPAÑOL ............... 50 DEUTSCH............... 66 ITALIANO............... 82 PORTUGUÊS........... 98 ENGLISH Congratulations on the purchase of your Bushnell Discoverer Telescope with Real Voice Output! This is one of the first telescopes ever created that actually speaks to you to educate you about the night sky. Consider this feature as your personal astronomy assistant. After reading through this manual and preparing for your observing session as outlined in these pages you can start enjoying the Real Voice Output feature by doing the following: To activate your telescope, simply turn it on! The Real Voice Output feature is built in to the remote control handset. Along the way the telescope will speak various helpful comments during the alignment process. Once aligned, the Real Voice Output feature will really shine anytime the enter key is depressed when an object name or number is displayed at the bottom right of the LCD viewscreen. That object description will be spoken to you as you follow along with the scrolling text description. If at anytime you wish to disable the speaking feature, you can cancel the speech by pressing the “Back” button on the remote control keypad. It is our sincere hope that you will enjoy this telescope for years to come! NEVER LOOK DIRECTLY AT THE SUN ❂ WITH YOUR TELESCOPE PERMANENT DAMAGE TO YOUR EYES MAY OCCUR WHERE DO I START? Your Bushnell telescope can bring the wonders of the universe to your eye.
    [Show full text]
  • The Milky Way the Milky Way's Neighbourhood
    The Milky Way What Is The Milky Way Galaxy? The.Milky.Way.is.the.galaxy.we.live.in..It.contains.the.Sun.and.at.least.one.hundred.billion.other.stars..Some.modern. measurements.suggest.there.may.be.up.to.500.billion.stars.in.the.galaxy..The.Milky.Way.also.contains.more.than.a.billion. solar.masses’.worth.of.free-floating.clouds.of.interstellar.gas.sprinkled.with.dust,.and.several.hundred.star.clusters.that. contain.anywhere.from.a.few.hundred.to.a.few.million.stars.each. What Kind Of Galaxy Is The Milky Way? Figuring.out.the.shape.of.the.Milky.Way.is,.for.us,.somewhat.like.a.fish.trying.to.figure.out.the.shape.of.the.ocean.. Based.on.careful.observations.and.calculations,.though,.it.appears.that.the.Milky.Way.is.a.barred.spiral.galaxy,.probably. classified.as.a.SBb.or.SBc.on.the.Hubble.tuning.fork.diagram. Where Is The Milky Way In Our Universe’! The.Milky.Way.sits.on.the.outskirts.of.the.Virgo.supercluster..(The.centre.of.the.Virgo.cluster,.the.largest.concentrated. collection.of.matter.in.the.supercluster,.is.about.50.million.light-years.away.).In.a.larger.sense,.the.Milky.Way.is.at.the. centre.of.the.observable.universe..This.is.of.course.nothing.special,.since,.on.the.largest.size.scales,.every.point.in.space. is.expanding.away.from.every.other.point;.every.object.in.the.cosmos.is.at.the.centre.of.its.own.observable.universe.. Within The Milky Way Galaxy, Where Is Earth Located’? Earth.orbits.the.Sun,.which.is.situated.in.the.Orion.Arm,.one.of.the.Milky.Way’s.66.spiral.arms..(Even.though.the.spiral.
    [Show full text]
  • Aids to Individualize the Teaching of Science, Mini-Course Units for Grades 7, 8, and 9.] INSTITUTION Frederick County Board of Education, Md
    DOCUMENT RESUME ED 130 911 SE 021 653 AUTHOR Geist, John E. TITLE An Attempt Towards Independent Study in Astronomy. [Aids to Individualize the Teaching of Science, Mini-Course Units for Grades 7, 8, and 9.] INSTITUTION Frederick County Board of Education, Md. PUB DATE 73 NOTE 84p.; For related Mini-Course Units, see SE 021 624-656; Not available in hard copy due to marginal legibility of original document AVAILABLE FROMFrederick County Board of Education, 115 Fast Church St., Frederick, MD 21701 (no price quoted) EDRS PRICE MF-$0.83 Plus Postage. HC Not Available from EDRS. DESCRIPTORS *Astronomy; Individualized Instruction; Instructional Materials; Junior High School Students; Process Education; *Science Education; Science Materials; Secondary Education; *Secondary School Science; *Space Sciences IDENTIFIERS Maryland (Frederick County) ; Minicourses ABSTRACT This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, providesan instruction module for an individualizedor flexible approach to 7th, 8th, and 9th grade science teaching. Subjects and activities in this series of booklets are designed to supplementa basic curriculum or to form a total curriculum, and relate to practicalprocess oriented science instruction rather than theoryor module building. Included in each booklet is a student section withan introduction, performance objectives, and science activities whichcan be performed individually or as a class, and a teacher section containingnotes on the science activities, resource lists, and references. This booklet presents independent study of astronomy, astronomical instruments, the solar system, Earth time zones, and stars. The estimated timefor completing the activities in this module is 8-9 weeks. (SL) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources.
    [Show full text]
  • The Detectability of Nightside City Lights on Exoplanets
    Draft version September 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The Detectability of Nightside City Lights on Exoplanets Thomas G. Beatty1 1Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721; [email protected] ABSTRACT Next-generation missions designed to detect biosignatures on exoplanets will also be capable of plac- ing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nightside city lights on habitable, Earth-like, exoplan- ets around nearby stars using direct-imaging observations from the proposed LUVOIR and HabEx observatories. I use data from the Soumi National Polar-orbiting Partnership satellite to determine the surface flux from city lights at the top of Earth's atmosphere, and the spectra of commercially available high-power lamps to model the spectral energy distribution of the city lights. I consider how the detectability scales with urbanization fraction: from Earth's value of 0.05%, up to the limiting case of an ecumenopolis { or planet-wide city. I then calculate the minimum detectable urbanization fraction using 300 hours of observing time for generic Earth-analogs around stars within 8 pc of the Sun, and for nearby known potentially habitable planets. Though Earth itself would not be detectable by LUVOIR or HabEx, planets around M-dwarfs close to the Sun would show detectable signals from city lights for urbanization levels of 0.4% to 3%, while city lights on planets around nearby Sun-like stars would be detectable at urbanization levels of & 10%. The known planet Proxima b is a particu- larly compelling target for LUVOIR A observations, which would be able to detect city lights twelve times that of Earth in 300 hours, an urbanization level that is expected to occur on Earth around the mid-22nd-century.
    [Show full text]
  • Foundations of Interstellar Studies NY Issue
    Journal of the British Interplanetary Society VOLUME 71 NO.8 AUGUST 2018 Foundations of Interstellar Studies NY Issue FIRST STOP ON THE INTERSTELLAR JOURNEY The Solar Gravity Lens Focus Louis Friedman & Slava G. Turyshev EXPERIMENTAL SIMULATION OF DUST IMPACTS at Starflight Velocities Andrew J. Higgins PLASMA DYNAMICS in Firefly's Z-pinch Fusion Engine Robert M. Freeland II GRAM-SCALE NANO-SPACECRAFT Entry into Star Systems Albert Allen Jackson IV THE INTERSTELLAR FUSION FUEL RESOURCE BASE of our Solar System Robert G. Kennedy TESTS OF FUNDAMENTAL PHYSICS in Interstellar Flight Roman Ya. Kezerashvili www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 4 JANUARY 2019 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, Te University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W.
    [Show full text]
  • One of the Most Useful Accessories an Amateur Can Possess Is One of the Ubiquitous Optical Filters
    One of the most useful accessories an amateur can possess is one of the ubiquitous optical filters. Having been accessible previously only to the professional astronomer, they came onto the marker relatively recently, and have made a very big impact. They are useful, but don't think they're the whole answer! They can be a mixed blessing. From reading some of the advertisements in astronomy magazines you would be correct in thinking that they will make hitherto faint and indistinct objects burst into vivid observ­ ability. They don't. What the manufacturers do not mention is that regardless of the filter used, you will still need dark and transparent skies for the use of the filter to be worthwhile. Don't make the mistake of thinking that using a filter from an urban location will always make objects become clearer. The first and most immediately apparent item on the downside is that in all cases the use of a filter reduces the amount oflight that reaches the eye, often quite sub­ stantially. The brightness of the field of view and the objects contained therein is reduced. However, what the filter does do is select specific wavelengths of light emitted by an object, which may be swamped by other wavelengths. It does this by suppressing the unwanted wavelengths. This is particularly effective in observing extended objects such as emission nebulae and planetary nebulae. In the former case, use a filter that transmits light around the wavelength of 653.2 nm, which is the spectral line of hydrogen alpha (Ha), and is the wavelength oflight respons­ ible for the spectacular red colour seen in photographs of emission nebulae.
    [Show full text]
  • Starry Nights Typeset
    Index Antares 104,106-107 Anubis 28 Apollo 53,119,130,136 21-centimeter radiation 206 apparent magnitude 7,156-157,177,223 57 Cygni 140 Aquarius 146,160-161,164 61 Cygni 139,142 Aquila 128,131,146-149 3C 9 (quasar) 180 Arcas 78 3C 48 (quasar) 90 Archer 119 3C 273 (quasar) 89-90 arctic circle 103,175,212 absorption spectrum 25 Arcturus 17,79,93-96,98-100 Acadia 78 Ariadne 101 Achernar 67-68,162,217 Aries 167,183,196,217 Acubens (star in Cancer) 39 Arrow 149 Adhara (star in Canis Major) 22,67 Ascella (star in Sagittarius) 120 Aesculapius 115 asterisms 130 Age of Aquarius 161 astrology 161,196 age of clusters 186 Atlantis 140 age of stars 114 Atlas 14 Age of the Fish 196 Auriga 17 Al Rischa (star in Pisces) 196 autumnal equinox 174,223 Al Tarf (star in Cancer) 39 azimuth 171,223 Al- (prefix in star names) 4 Bacchus 101 Albireo (star in Cygnus) 144 Barnard’s Star 64-65,116 Alcmene 52,112 Barnard, E. 116 Alcor (star in Big Dipper) 14,78,82 barred spiral galaxies 179 Alcyone (star in Pleiades) 14 Bayer, Johan 125 Aldebaran 11,15,22,24 Becvar, A. 221 Alderamin (star in Cepheus) 154 Beehive (M 44) 42-43,45,50 Alexandria 7 Bellatrix (star in Orion) 9,107 Alfirk (star in Cepheus) 154 Algedi (star in Capricornus) 159 Berenice 70 Algeiba (star in Leo) 59,61 Bessel, Friedrich W. 27,142 Algenib (star in Pegasus) 167 Beta Cassiopeia 169 Algol (star in Perseus) 204-205,210 Beta Centauri 162,176 Alhena (star in Gemini) 32 Beta Crucis 162 Alioth (star in Big Dipper) 78 Beta Lyrae 132-133 Alkaid (star in Big Dipper) 78,80 Betelgeuse 10,22,24 Almagest 39 big
    [Show full text]