Sturnus Vulgaris Linnaeus. European Starling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biomass and Net Primary Productivity of Mangrove Communities Along the Oligohaline Zone of Sundarbans, Bangladesh Md
Kamruzzaman et al. Forest Ecosystems (2017) 4:16 DOI 10.1186/s40663-017-0104-0 RESEARCH Open Access Biomass and net primary productivity of mangrove communities along the Oligohaline zone of Sundarbans, Bangladesh Md. Kamruzzaman1,2*, Shamim Ahmed2 and Akira Osawa1 Abstract Background: The article presents the first estimates of biomass and productivity for mangrove forests along the Oligohaline zone of the Sundarbans Reserve Forest (SRF), Bangladesh. This study was conducted overone year from March 2016 to April 2017. Stand structure, above and below-ground biomass changes, and litterfall production were measured within a 2100 m2 sample plot. Methods: All trees in the study plots were numbered and height (H) and diameter at breast height (DBH) were measured. Tree height (H) and DBH for each tree were measured in March 2016 and 2017. We apply the above and belowground biomass equation for estimating the biomass of the mangrove tree species (Chave et al. Oecologia 145:87−99, 2005; Komiyama et al. J Trop Ecol 21:471–477, 2005). Litterfall was collected using 1-mm mesh litter traps with collection area of 0.42 m2. Net Primary Production (NPP) was estimated by the summation method of Ogawa Primary productivity of Japanese forests: productivity of terrestrial communities, JIBP synthesis (1977) and Matsuura and Kajimoto Carbon dynamics of terrestrial ecosystem: Systems approach to global environment (2013). Results: Heritiera fomes has maintained its dominance of the stand and also suffered the highest tree mortality (2.4%) in the suppressed crown class. The total above-ground biomass (AGB) and below-ground biomass (BGB) of the studied stand was 154.8 and 84.2 Mg∙ha−1, respectively. -
Species Action Plan for the Azores Bullfinch Pyrrhula Murina in the European Union (2009 - 2019)
Species Action Plan for the Azores bullfinch Pyrrhula murina in the European Union (2009 - 2019) Prepared by: On behalf of the European Commission Species action plan for the Azores bullfinch Pyrrhula murina in the European Union The present action plan was commissioned by the European Commission and prepared by BirdLife International as subcontractor to the “N2K Group” in the frame of Service Contract N#070307/2007/488316/SER/B2 “Technical and scientific support in relation to the implementation of the 92/43 ‘Habitats’ and 79/409 ‘Birds’ Directives”. Compilers Joaquim Teodósio, SPEA, [email protected] Ricardo Ceia, [email protected] Luis Costa, SPEA, [email protected] List of Contributors Boris Barov, BirdLife International Nelson Santos DRA Rui Botelho SPEA Frederico Cardigos DRA, Hugo Laborda SPEA Catarina Quintela DRRF Jaime Ramos IMAR/Univ. de Coim- Sheila da Luz Univ. De Açores bra Paulo Cabral CMN Carlos Silva SPEA Filipe Figueiredo SPEA Sérgio Timóteo Univ. de Coim- Miguel Ferreira SPR Açores bra/SPEA Carlos Pato DRT Ruben Heleno Bristol University José Pedro Tavares RSPB Milestones in the Production of the Plan First SAP was adopted by the EU in 1996 Two evaluations of the implementation were made (2001 and 2004) 28 - 30 January 2009, Workshop LIFE Laurissilva Sustentável/ Priolo SAP, Nordeste 26 May 2009, scientific meeting on the SAP, Lisboa First draft submitted to EC: 30 June 2009 Second draft submitted to EC: 01 November 2009 Consultation workshop with main stakeholders, Ponta Delgada: 17 November 2009 Final draft: 31 January 2010 International Species Working Group n/a Reviews This Action Plan should be reviewed and updated every ten years (first review in 2019). -
Phylogeography of Finches and Sparrows
In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls. -
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
High Survival Rate of a Critically Endangered Species, the Azores
High survival rate of a critically endangered species, the Azores Bullfinch , as a contribution to population recovery David Monticelli, Ricardo Ceia, Ruben Heleno, Hugo Laborda, Sergio Timóteo, Daniel Jareño, Geoff M. Hilton, Jaime A. Ramos To cite this version: David Monticelli, Ricardo Ceia, Ruben Heleno, Hugo Laborda, Sergio Timóteo, et al.. High survival rate of a critically endangered species, the Azores Bullfinch , as a contribution to population recov- ery. Journal für Ornithologie = Journal of Ornithology, Springer Verlag, 2010, 151 (3), pp.627-636. 10.1007/s10336-010-0501-4. hal-00570023 HAL Id: hal-00570023 https://hal.archives-ouvertes.fr/hal-00570023 Submitted on 26 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J Ornithol (2010) 151:627–636 DOI 10.1007/s10336-010-0501-4 ORIGINAL ARTICLE High survival rate of a critically endangered species, the Azores Bullfinch Pyrrhula murina, as a contribution to population recovery David Monticelli • Ricardo Ceia • Ruben Heleno • Hugo Laborda • Sergio Timo´teo • Daniel Jaren˜o • Geoff M. Hilton • Jaime A. Ramos Received: 12 May 2009 / Revised: 30 November 2009 / Accepted: 1 February 2010 / Published online: 26 February 2010 Ó Dt. -
Pre-Concept for a Regional Project ______
ADAPTATION FUND BOARD SECRETARIAT TECHNICAL REVIEW OF PROJECT/PROGRAMME PROPOSAL PROJECT/PROGRAMME CATEGORY: Pre-Concept for a Regional Project _________________________________________________________________________________________________________ Countries/Region: Costa Rica and Dominican Republic/ LAC Project Title: Improving the adaptive capacity of coastal communities in Costa Rica and the Dominican Republic through ecosystem-based adaptation strategies Thematic Focal Area: Ecosystem Based Adaptation (EbA) Implementing Entity: Development Bank of Latin America (CAF) Executing Entities: Sistema Nacional de Áreas de Conservación (Costa Rica) and Ministerio de Medio Ambiente y Recursos Naturales (Dominican Republic) AF Project ID: LAC/RIE/EBA/2020/PPC/1 IE Project ID: <IE to fill out> Requested Financing From Adaptation Fund (US Dollars): 13,919,202 Reviewer and contact person: Alyssa Gomes, Martina Dorigo (AFSEC) Co-reviewer(s): Jason Spensley (GEFSEC) IE Contact Person: <IE to fill out> Technical The project “Improving the adaptive capacity of coastal communities in Costa Rica and the Dominican Republic Summary through ecosystem-based adaptation strategies” aims to improve local adaptive capacity to reduce the vulnerability to climate change of Cocos and Catalina islands and the production sectors that depend on their ecosystem services. This will be done through the four components below: Project/Programme Background and Context: Component 1: Reduction oF main anthropogenic pressures (USD 6,590,000). Component 2: Conservation oF coral reefs (USD 525,000). Component 3: Insurance tools for emergency action (USD 3,550,000). Component 4: Knowledge management (USD 710,000). Requested Financing overview: Project/Programme Execution Cost: USD 1,513,150 Total Project/Programme Cost: USD 12,888,150 Implementing Fee: USD 1,031,052 Financing Requested: USD 13,919,202 The proposal does not include a request For a project Formulation grant. -
Winter Bird Highlights 2013
FROM PROJECT FEEDERWAtch 2012–13 Focus on citizen science • Volume 9 Winter BirdHighlights Winter npredictability is one constant as each winter Focus on Citizen Science is a publication highlight- ing the contributions of citizen scientists. This is- brings surprises to our feeders. The 2012–13 sue, Winter Bird Highlights 2013, is brought to you by Project FeederWatch, a research and education proj- season broke many regional records with sis- ect of the Cornell Lab of Ornithology and Bird Studies U Canada. Project FeederWatch is made possible by the kins and nuthatches moving south in record numbers efforts and support of thousands of citizen scientists. to tantalize FeederWatchers across much of the con- Project FeederWatch Staff tinent. This remarkable year also brought a record- David Bonter breaking number of FeederWatchers, with more than Project Leader, USA Janis Dickinson 20,000 participants in the US and Canada combined! Director of Citizen Science, USA Kristine Dobney Whether you’ve been FeederWatching for 26 years or Project Assistant, Canada Wesley Hochachka this is your first season counting, the usual suspects— Senior Research Associate, USA chickadees, juncos, and woodpeckers—always bring Anne Marie Johnson Project Assistant, USA familiarity and enjoyment, as well as valuable data, Rosie Kirton Project Support, Canada even if you don’t observe anything unusual. Whichever Denis Lepage birds arrive at your feeder, we hope they will bring a Senior Scientist, Canada Susan E. Newman sense of wonder that captures your attention. Thanks Project Assistant, USA for sharing your observations and insights with us and, Kerrie Wilcox Project Leader, Canada most importantly, Happy FeederWatching. -
COLOMBIA 2019 Ned Brinkley Departments of Vaupés, Chocó, Risaralda, Santander, Antioquia, Magdalena, Tolima, Atlántico, La Gu
COLOMBIA 2019 Ned Brinkley Departments of Vaupés, Chocó, Risaralda, Santander, Antioquia, Magdalena, Tolima, Atlántico, La Guajira, Boyacá, Distrito Capital de Bogotá, Caldas These comments are provided to help independent birders traveling in Colombia, particularly people who want to drive themselves to birding sites rather than taking public transportation and also want to book reservations directly with lodgings and reserves rather than using a ground agent or tour company. Many trip reports provide GPS waypoints for navigation. I used GoogleEarth/ Maps, which worked fine for most locations (not for El Paujil reserve). I paid $10/day for AT&T to hook me up to Claro, Movistar, or Tigo through their Passport program. Others get a local SIM card so that they have a Colombian number (cheaper, for sure); still others use GooglePhones, which provide connection through other providers with better or worse success, depending on the location in Colombia. For transportation, I used a rental 4x4 SUV to reach places with bad roads but also, in northern Colombia, a subcompact rental car as far as Minca (hiked in higher elevations, with one moto-taxi to reach El Dorado lodge) and for La Guajira. I used regular taxis on few occasions. The only roads to sites for Fuertes’s Parrot and Yellow-eared Parrot could not have been traversed without four-wheel drive and high clearance, and this is important to emphasize: vehicles without these attributes would have been useless, or become damaged or stranded. Note that large cities in Colombia (at least Medellín, Santa Marta, and Cartagena) have restrictions on driving during rush hours with certain license plate numbers (they base restrictions on the plate’s final numeral). -
A Comprehensive Species-Level Molecular Phylogeny of the New World
YMPEV 4758 No. of Pages 19, Model 5G 2 December 2013 Molecular Phylogenetics and Evolution xxx (2013) xxx–xxx 1 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev 5 6 3 A comprehensive species-level molecular phylogeny of the New World 4 blackbirds (Icteridae) a,⇑ a a b c d 7 Q1 Alexis F.L.A. Powell , F. Keith Barker , Scott M. Lanyon , Kevin J. Burns , John Klicka , Irby J. Lovette 8 a Department of Ecology, Evolution and Behavior, and Bell Museum of Natural History, University of Minnesota, 100 Ecology Building, 1987 Upper Buford Circle, St. Paul, MN 9 55108, USA 10 b Department of Biology, San Diego State University, San Diego, CA 92182, USA 11 c Barrick Museum of Natural History, University of Nevada, Las Vegas, NV 89154, USA 12 d Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14950, USA 1314 15 article info abstract 3117 18 Article history: The New World blackbirds (Icteridae) are among the best known songbirds, serving as a model clade in 32 19 Received 5 June 2013 comparative studies of morphological, ecological, and behavioral trait evolution. Despite wide interest in 33 20 Revised 11 November 2013 the group, as yet no analysis of blackbird relationships has achieved comprehensive species-level sam- 34 21 Accepted 18 November 2013 pling or found robust support for most intergeneric relationships. Using mitochondrial gene sequences 35 22 Available online xxxx from all 108 currently recognized species and six additional distinct lineages, together with strategic 36 sampling of four nuclear loci and whole mitochondrial genomes, we were able to resolve most relation- 37 23 Keywords: ships with high confidence. -
A Birder's Guide to Cook County, Northeastern Minnesota Birding
A Birder’s Guide to Cook County, Northeastern Minnesota This guide will help you find the birds of Cook County, one of the best birding areas in the upper midwest. The shore of Lake Superior and the wildlands of the northeast are natural treasures that are especially rich in birds. Descriptions of the locatoins can be found inside, along with information about how to make the most of your birding during each season of the year. Birding around the year Spring: The migration is always most exciting along the shore of Lake Superior. Spring migration is smaller than fall, but spring specialties include Tundra Swan, Sandhill Crane, Gray-cheeked Thrush, American Tree Sparrow, Harris’ Sparrow, Lapland Longspur and Rusty Blackbird. Boreal species like Black-backed Woodpecker, Boreal Owl and Northern Saw-whet Owl begin nesting during spring, which can begin as early as March and extend until June. Summer: In summer the excitement moves inland where specialties inclue Common Loon, American Black Duck, Bald Eagle, Ruffled Grouse, American Woodcock, Black-billed Cuckoo, Barred Owl, Northern Saw- whet Owl, Whip-poor-will, Olive-sided, Yellow-bellied, and Alder Flycatchers, Gray Jay, Boreal Chickadee, Winter and Sedge Wrens, 20 species of warblers, Le Conte’s Sparrow, and Evening Grosbeak. The summer breeding season extends from late May through early August. Autumn: the fall migration along the Norht Shore of Lake Superior is not to be missed! Beginning with the sight of thousands of Common Nighthawks in late August, the sheer quantity of birds moving down the shore makes this area a world-class migration route. -
European Red List of Birds 2015
Carpodacus erythrinus (Common Rosefinch) European Red List of Birds Supplementary Material The European Union (EU27) Red List assessments were based principally on the official data reported by EU Member States to the European Commission under Article 12 of the Birds Directive in 2013-14. For the European Red List assessments, similar data were sourced from BirdLife Partners and other collaborating experts in other European countries and territories. For more information, see BirdLife International (2015). Contents Reported national population sizes and trends p. 2 Trend maps of reported national population data p. 4 Sources of reported national population data p. 6 Species factsheet bibliography p. 9 Recommended citation BirdLife International (2015) European Red List of Birds. Luxembourg: Office for Official Publications of the European Communities. Further information http://www.birdlife.org/datazone/info/euroredlist http://www.birdlife.org/europe-and-central-asia/european-red-list-birds-0 http://www.iucnredlist.org/initiatives/europe http://ec.europa.eu/environment/nature/conservation/species/redlist/ Data requests and feedback To request access to these data in electronic format, provide new information, correct any errors or provide feedback, please email [email protected]. THE IUCN RED LIST OF THREATENED SPECIES™ BirdLife International (2015) European Red List of Birds Carpodacus erythrinus (Common Rosefinch) Table 1. Reported national breeding population size and trends in Europe1. Country (or Population estimate Short-term -
Differentially Expressed Genes Match Bill Morphology and Plumage Despite Largely Undifferentiated Genomes in a Holarctic Songbird
Molecular Ecology (2015) doi: 10.1111/mec.13140 Differentially expressed genes match bill morphology and plumage despite largely undifferentiated genomes in a Holarctic songbird NICHOLAS A. MASON*† and SCOTT A. TAYLOR*† *Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd., Ithaca, NY 14853, USA, †Fuller Evolutionary Biology Program, Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA Abstract Understanding the patterns and processes that contribute to phenotypic diversity and speciation is a central goal of evolutionary biology. Recently, high-throughput sequencing has provided unprecedented phylogenetic resolution in many lineages that have experienced rapid diversification. The Holarctic redpoll finches (Genus: Acanthis) provide an intriguing example of a recent, phenotypically diverse lineage; traditional sequencing and genotyping methods have failed to detect any genetic differences between currently recognized species, despite marked variation in plumage and mor- phology within the genus. We examined variation among 20 712 anonymous single nucleotide polymorphisms (SNPs) distributed throughout the redpoll genome in com- bination with 215 825 SNPs within the redpoll transcriptome, gene expression data and ecological niche modelling to evaluate genetic and ecological differentiation among currently recognized species. Expanding upon previous findings, we present evidence of (i) largely undifferentiated genomes among currently recognized species; (ii) substantial niche