A Study on SIMD Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2.5 Classification of Parallel Computers
52 // Architectures 2.5 Classification of Parallel Computers 2.5 Classification of Parallel Computers 2.5.1 Granularity In parallel computing, granularity means the amount of computation in relation to communication or synchronisation Periods of computation are typically separated from periods of communication by synchronization events. • fine level (same operations with different data) ◦ vector processors ◦ instruction level parallelism ◦ fine-grain parallelism: – Relatively small amounts of computational work are done between communication events – Low computation to communication ratio – Facilitates load balancing 53 // Architectures 2.5 Classification of Parallel Computers – Implies high communication overhead and less opportunity for per- formance enhancement – If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation. • operation level (different operations simultaneously) • problem level (independent subtasks) ◦ coarse-grain parallelism: – Relatively large amounts of computational work are done between communication/synchronization events – High computation to communication ratio – Implies more opportunity for performance increase – Harder to load balance efficiently 54 // Architectures 2.5 Classification of Parallel Computers 2.5.2 Hardware: Pipelining (was used in supercomputers, e.g. Cray-1) In N elements in pipeline and for 8 element L clock cycles =) for calculation it would take L + N cycles; without pipeline L ∗ N cycles Example of good code for pipelineing: §doi =1 ,k ¤ z ( i ) =x ( i ) +y ( i ) end do ¦ 55 // Architectures 2.5 Classification of Parallel Computers Vector processors, fast vector operations (operations on arrays). Previous example good also for vector processor (vector addition) , but, e.g. recursion – hard to optimise for vector processors Example: IntelMMX – simple vector processor. -
SIMD Extensions
SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel. -
An Introduction to Gpus, CUDA and Opencl
An Introduction to GPUs, CUDA and OpenCL Bryan Catanzaro, NVIDIA Research Overview ¡ Heterogeneous parallel computing ¡ The CUDA and OpenCL programming models ¡ Writing efficient CUDA code ¡ Thrust: making CUDA C++ productive 2/54 Heterogeneous Parallel Computing Latency-Optimized Throughput- CPU Optimized GPU Fast Serial Scalable Parallel Processing Processing 3/54 Why do we need heterogeneity? ¡ Why not just use latency optimized processors? § Once you decide to go parallel, why not go all the way § And reap more benefits ¡ For many applications, throughput optimized processors are more efficient: faster and use less power § Advantages can be fairly significant 4/54 Why Heterogeneity? ¡ Different goals produce different designs § Throughput optimized: assume work load is highly parallel § Latency optimized: assume work load is mostly sequential ¡ To minimize latency eXperienced by 1 thread: § lots of big on-chip caches § sophisticated control ¡ To maXimize throughput of all threads: § multithreading can hide latency … so skip the big caches § simpler control, cost amortized over ALUs via SIMD 5/54 Latency vs. Throughput Specificaons Westmere-EP Fermi (Tesla C2050) 6 cores, 2 issue, 14 SMs, 2 issue, 16 Processing Elements 4 way SIMD way SIMD @3.46 GHz @1.15 GHz 6 cores, 2 threads, 4 14 SMs, 48 SIMD Resident Strands/ way SIMD: vectors, 32 way Westmere-EP (32nm) Threads (max) SIMD: 48 strands 21504 threads SP GFLOP/s 166 1030 Memory Bandwidth 32 GB/s 144 GB/s Register File ~6 kB 1.75 MB Local Store/L1 Cache 192 kB 896 kB L2 Cache 1.5 MB 0.75 MB -
Cuda C Programming Guide
CUDA C PROGRAMMING GUIDE PG-02829-001_v10.0 | October 2018 Design Guide CHANGES FROM VERSION 9.0 ‣ Documented restriction that operator-overloads cannot be __global__ functions in Operator Function. ‣ Removed guidance to break 8-byte shuffles into two 4-byte instructions. 8-byte shuffle variants are provided since CUDA 9.0. See Warp Shuffle Functions. ‣ Passing __restrict__ references to __global__ functions is now supported. Updated comment in __global__ functions and function templates. ‣ Documented CUDA_ENABLE_CRC_CHECK in CUDA Environment Variables. ‣ Warp matrix functions now support matrix products with m=32, n=8, k=16 and m=8, n=32, k=16 in addition to m=n=k=16. www.nvidia.com CUDA C Programming Guide PG-02829-001_v10.0 | ii TABLE OF CONTENTS Chapter 1. Introduction.........................................................................................1 1.1. From Graphics Processing to General Purpose Parallel Computing............................... 1 1.2. CUDA®: A General-Purpose Parallel Computing Platform and Programming Model.............3 1.3. A Scalable Programming Model.........................................................................4 1.4. Document Structure...................................................................................... 5 Chapter 2. Programming Model............................................................................... 7 2.1. Kernels......................................................................................................7 2.2. Thread Hierarchy........................................................................................ -
Threading SIMD and MIMD in the Multicore Context the Ultrasparc T2
Overview SIMD and MIMD in the Multicore Context Single Instruction Multiple Instruction ● (note: Tute 02 this Weds - handouts) ● Flynn’s Taxonomy Single Data SISD MISD ● multicore architecture concepts Multiple Data SIMD MIMD ● for SIMD, the control unit and processor state (registers) can be shared ■ hardware threading ■ SIMD vs MIMD in the multicore context ● however, SIMD is limited to data parallelism (through multiple ALUs) ■ ● T2: design features for multicore algorithms need a regular structure, e.g. dense linear algebra, graphics ■ SSE2, Altivec, Cell SPE (128-bit registers); e.g. 4×32-bit add ■ system on a chip Rx: x x x x ■ 3 2 1 0 execution: (in-order) pipeline, instruction latency + ■ thread scheduling Ry: y3 y2 y1 y0 ■ caches: associativity, coherence, prefetch = ■ memory system: crossbar, memory controller Rz: z3 z2 z1 z0 (zi = xi + yi) ■ intermission ■ design requires massive effort; requires support from a commodity environment ■ speculation; power savings ■ massive parallelism (e.g. nVidia GPGPU) but memory is still a bottleneck ■ OpenSPARC ● multicore (CMT) is MIMD; hardware threading can be regarded as MIMD ● T2 performance (why the T2 is designed as it is) ■ higher hardware costs also includes larger shared resources (caches, TLBs) ● the Rock processor (slides by Andrew Over; ref: Tremblay, IEEE Micro 2009 ) needed ⇒ less parallelism than for SIMD COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 1 COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 3 Hardware (Multi)threading The UltraSPARC T2: System on a Chip ● recall concurrent execution on a single CPU: switch between threads (or ● OpenSparc Slide Cast Ch 5: p79–81,89 processes) requires the saving (in memory) of thread state (register values) ● aggressively multicore: 8 cores, each with 8-way hardware threading (64 virtual ■ motivation: utilize CPU better when thread stalled for I/O (6300 Lect O1, p9–10) CPUs) ■ what are the costs? do the same for smaller stalls? (e.g. -
Thread-Level Parallelism I
Great Ideas in UC Berkeley UC Berkeley Teaching Professor Computer Architecture Professor Dan Garcia (a.k.a. Machine Structures) Bora Nikolić Thread-Level Parallelism I Garcia, Nikolić cs61c.org Improving Performance 1. Increase clock rate fs ú Reached practical maximum for today’s technology ú < 5GHz for general purpose computers 2. Lower CPI (cycles per instruction) ú SIMD, “instruction level parallelism” Today’s lecture 3. Perform multiple tasks simultaneously ú Multiple CPUs, each executing different program ú Tasks may be related E.g. each CPU performs part of a big matrix multiplication ú or unrelated E.g. distribute different web http requests over different computers E.g. run pptx (view lecture slides) and browser (youtube) simultaneously 4. Do all of the above: ú High fs , SIMD, multiple parallel tasks Garcia, Nikolić 3 Thread-Level Parallelism I (3) New-School Machine Structures Software Harness Hardware Parallelism & Parallel Requests Achieve High Assigned to computer Performance e.g., Search “Cats” Smart Phone Warehouse Scale Parallel Threads Computer Assigned to core e.g., Lookup, Ads Computer Core Core Parallel Instructions Memory (Cache) >1 instruction @ one time … e.g., 5 pipelined instructions Input/Output Parallel Data Exec. Unit(s) Functional Block(s) >1 data item @ one time A +B A +B e.g., Add of 4 pairs of words 0 0 1 1 Main Memory Hardware descriptions Logic Gates A B All gates work in parallel at same time Out = AB+CD C D Garcia, Nikolić Thread-Level Parallelism I (4) Parallel Computer Architectures Massive array -
SIMD: Data Parallel Execution J
ERLANGEN REGIONAL COMPUTING CENTER SIMD: Data parallel execution J. Eitzinger PATC, 12.6.2018 Stored Program Computer: Base setting for (int j=0; j<size; j++){ Memory sum = sum + V[j]; } 401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4] Arithmetic Control 401d0d: 48 83 c0 01 add rax,1 Logical 401d11: 39 c7 cmp edi,eax Unit CPU 401d13: 77 f3 ja 401d08 Unit Input Output Architect’s view: Make the common case fast ! Execution and memory . Improvements for relevant software Strategies . What are the technical opportunities? . Increase clock speed . Parallelism . Economical concerns . Specialization . Marketing concerns 2 Data parallel execution units (SIMD) for (int j=0; j<size; j++){ Scalar execution A[j] = B[j] + C[j]; } Register widths • 1 operand = + • 2 operands (SSE) • 4 operands (AVX) • 8 operands (AVX512) 3 Data parallel execution units (SIMD) for (int j=0; j<size; j++){ A[j] = B[j] + C[j]; SIMD execution } Register widths • 1 operand • 2 operands (SSE) = + • 4 operands (AVX) • 8 operands (AVX512) 4 History of short vector SIMD 1995 1996 1997 1998 1999 2001 2008 2010 2011 2012 2013 2016 VIS MDMX MMX 3DNow SSE SSE2 SSE4 VSX AVX IMCI AVX2 AVX512 AltiVec NEON 64 bit 128 bit 256 bit 512 bit Vendors package other ISA features under the SIMD flag: monitor/mwait, NT stores, prefetch ISA, application specific instructions, FMA X86 Power ARM SPARC64 Intel 512bit IBM 128bit A5 upward Fujitsu 256bit AMD 256bit 64bit / 128bit K Computer 128bit 5 Technologies Driving Performance Technology 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 -
Implementing Elliptic Curve Cryptography (A Narrow Survey)
Implementing Elliptic Curve Cryptography (a narrow survey) Institute of Computing – UNICAMP Campinas, Brazil April 2005 Darrel Hankerson Auburn University Implementing ECC – 1/110 Overview Objective: sample selected topics of practical interest. Talk will favor: I Software solutions on general-purpose processors rather than dedicated hardware. I Techniques with broad applicability. I Methods targeted to standardized curves. Goals: I Present proposed methods in context. I Limit coverage of technical details (but “implementing” necessarily involves platform considerations). Implementing ECC – 2/110 Focus: higher-performance processors “Higher-performance” includes processors commonly associated with workstations, but also found in surprisingly small portable devices. Sun and IBM workstations RIM pager circa 1999 SPARC or Intel x86 (Pentium) Intel x86 (custom 386) 256 MB – 8 GB 2 MB “disk”, 304 KB RAM 0.5 GHz – 3 GHz 10 MHz, single AA battery heats entire building fits in shirt pocket Implementing ECC – 3/110 Optimizing ECC Elliptic Curve Digital Signature Algorithm (ECDSA) Random number Big number and Curve generation modular arithmetic arithmetic Fq field arithmetic General categories of optimization efforts: 1. Field-level optimizations. 2. Curve-level optimizations. 3. Protocol-level optimizations. Constraints: security requirements, hardware limitations, bandwidth, interoperability, and patents. Implementing ECC – 4/110 Optimizing ECC... 1. Field-level optimizations. I Choose fields with fast multiplication and inversion. I Use special-purpose hardware (cryptographic coprocessors, DSP, floating-point, SIMD). 2. Curve-level optimizations. I Reduce the number of point additions (windowing). I Reduce the number of field inversions (projective coords). I Replace point doubles (endomorphism methods). 3. Protocol-level optimizations. I Develop efficient protocols. I Choose methods and protocols that favor your computations or hardware. -
Effectiveness of the MAX-2 Multimedia Extensions for PA-RISC 2.0 Processors
Effectiveness of the MAX-2 Multimedia Extensions for PA-RISC 2.0 Processors Ruby Lee Hewlett-Packard Company HotChips IX Stanford, CA, August 24-26,1997 Outline Introduction PA-RISC MAX-2 features and examples Mix Permute Multiply with Shift&Add Conditionals with Saturation Arith (e.g., Absolute Values) Performance Comparison with / without MAX-2 General-Purpose Workloads will include Increasing Amounts of Media Processing MM a b a b 2 1 2 1 b c b c functionality 5 2 5 2 A B C D 1 2 22 2 2 33 3 4 55 59 A B C D 1 2 A B C D 22 1 2 22 2 2 2 2 33 33 3 4 55 59 3 4 55 59 Distributed Multimedia Real-time Information Access Communications Tool Tool Computation Tool time 1980 1990 2000 Multimedia Extensions for General-Purpose Processors MAX-1 for HP PA-RISC (product Jan '94) VIS for Sun Sparc (H2 '95) MAX-2 for HP PA-RISC (product Mar '96) MMX for Intel x86 (chips Jan '97) MDMX for SGI MIPS-V (tbd) MVI for DEC Alpha (tbd) Ideally, different media streams map onto both the integer and floating-point datapaths of microprocessors images GR: GR: 32x32 video 32x64 ALU SMU FP: graphics FP:16x64 Mem 32x64 audio FMAC PA-RISC 2.0 Processor Datapath Subword Parallelism in a General-Purpose Processor with Multimedia Extensions General Regs. y5 y6 y7 y8 x5 x6 x7 x8 x1 x2 x3 x4 y1 y2 y3 y4 Partitionable Partitionable 64-bit ALU 64-bit ALU 8 ops / cycle Subword Parallel MAX-2 Instructions in PA-RISC 2.0 Parallel Add (modulo or saturation) Parallel Subtract (modulo or saturation) Parallel Shift Right (1,2 or 3 bits) and Add Parallel Shift Left (1,2 or 3 bits) and Add Parallel Average Parallel Shift Right (n bits) Parallel Shift Left (n bits) Mix Permute MAX-2 Leverages Existing Processing Resources FP: INTEGER FLOAT GR: 16x64 General Regs. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
2 the VIS Instruction Set Pdist Instruction
The VISTM Instruction Set Version 1.0 June 2002 A White Paper This document provides an overview of the Visual Instruction Set. ® 4150 Network Circle Santa Clara, CA 95054 USA www.sun.com Copyright © 2002 Sun Microsystems, Inc. All Rights reserved. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED"AS IS" WITHOUT ANY EXPRESS REPRESENTATIONS OR WARRANTIES. IN ADDITION, SUN MICROSYSTEMS, INC. DISCLAIMS ALL IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. This document contains proprietary information of Sun Microsystems, Inc. or under license from third parties. No part of this document may be reproduced in any form or by any means or transferred to any third party without the prior written consent of Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo, VIS, Java, and mediaLib are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through x/Open Company Ltd. The information contained in this document is not designed or intended for use in on-line control of aircraft, air traffic, aircraft navigation or aircraft communications; or in the design, construction, operation or maintenance of any nuclear facility. Sun disclaims any express or implied warranty of fitness for such uses. -
Pengju Ren@XJTU 2021
Computer Architecture Lecture 10 – Vector Machine (Data Level Parallel) Pengju Ren Institute of Artificial Intelligence and Robotics PengjuXi’an Ren@XJTU Jiaotong University 2021 http://gr.xjtu.edu.cn/web/pengjuren SISD、MIMD、SIMD and MIMD Data Streams Single Multiple Instruction Single SISD: Intel Pentium 4 SIMD: SSE instruction of x86 Streams Multiple MISD: No example today MIMD: Intel Core i7 SISD: Single Instruction stream, Single Data Stream MIMD: Multiple Instruction streams, Multiple Data Streams SPMD (SinglePengju Program Ren@XJTU multiple data) GPU 2021 SIMD: Single Instruction stream, Multiple Data Streams MISD: Multiple Instruction streams, Single Data Stream 2 Agenda . Vector Processors . Single Instruction Multiple Data (SIMD) . Instruction Set Extensions (Neon@ARM, AVX@Intel, etc.) Pengju Ren@XJTU 2021 3 Modern SIMD Processors SIMD architectures can exploit significant data-level parallelism for: Matrix-oriented scientific computing Media-oriented image and sound processors Machine Learning Algorithms Most modern CPUs have SIMD architectures Intel SSE and MMX, AVX, AVX2 (Streaming SIMD Extension, Multimedia extensions、Advanced Vector extensions) ARM NEON, MIPS MDMX These architectures include instruction set extensions which allow both sequential and parallel instructions to be executed Some architectures include separate SIMD coprocessors for handling these instructions ARM NEON Pengju Ren@XJTU 2021 Included in Cortex-A8 and Cortex-A9 processors Intel SSE and AVX Introduced in 1999 in the Pentium III processor AVX512 currently used in Xeon Core series 4 Vector Processor Basic idea: Read sets of data elements into “vector registers” Operate on those registers Disperse the results back into memory Registers are controlled by compiler Used to hide memory latency Leverage memory bandwidth Overcoming limitations of ILP: – Dramatic reduction in fetch and decode bandwidth.