<<

CatherineL. Rose,USDA Forest Service, Paciflc Northwest Research Stat on Bend Oregon97701

ForestCanopy-Atmosphere Interactions

Abstract

[xch.rnges ol nuteri.ris (sases.nutrents. lvrter pollutants.rnd )bei\\'een forest canopiesand thc armosphcrcdrile inpor lxnl cco!)stcln processestrrd ll]tluencenlrln)_ meteorological phenomena. Tfees mrstexchange !l ater,carbon dioxidc. and cncrgy r!ilh lhc rlrnosphcrc to sur!ivc. As ncw irstrunents .rnd quutitative t(xts eDrergefor mersufing rbfest and atnrosphericcondi tion\. lhc conrplexi!ic! ol crnopy almosphcrcinlcrrclions can be nore uccuratelyunder\lmd rnd nndeled. Improved kno\lledgc of ca. opv atmosph erc inlcraction s i\ bccoming norc inpor hnr as hunar uctivities .rlterbofi dre struclLueand function of ibrcn c,lnopies.as $cll as fic chcnicll and phlsicrl prcperlies of the atnosphere. The increaseclscieniific focus on slructural and functional altribuLcsof lbrest crnopies in fecent ]ears pf(nni\es to ]ield nex insights into the eitects of human dinurbrncc on environmeDtsm tbrest canopies nd the rtmosphere. Impofi.Lni opics for future researchin carropr-almosphcrc inteftcrions inclLrde:(1) the mfluence ofele\ rtion. fore\t edge.and canop! roughnesson armosphcricdcposition ofpolluunts;(2) the dyn m- ics of cr$oD sequestrarionin forest bidrass in felation to foreri managernenrpracticcs and olhcr dislurbanccsi(l) the efiects of anthropogenicpollut.rnts on fbrest functioning and rnnospheric feedbacksrand (,1)the functional changcsin lbllrn canopies associ.rted$ith structuralchanges. aDd eonsequences for \\'atefshedh)drology and nutrieni cycling.

Introduction physiology,function. and structure,with cmpha- sison conileroustbrests. An oven'iew ofcanop),- The forest fonns a major inlert'acewilh amrosphericfunctions and interactions is provided. the atorosphereover much of Earth's surlace. including the interception.retention, modifica- Canopy-nediatedcxchan,ecs of massand ener-ey tion, andconductanca ofenergy (light, heat), gases largely detineecosystem productivity. Key inter- (pdmarily ). , and nutrients actioDsbetween the canop),and lhc atmosphcrc (Figure1). Canopyinteractions with wind and areinlluenced by environmentalconditions such pollutantsalso are briefly discussed. as . moislurc.and nutricnt availability (Mooneyand Gulmon t982.VanCleveetal. 1983). Anthropogenicdisturbances such as defores- In turn. u,ind velocity, energy budgets,raintall. tation, stratosphericozone depletion.pollution, andothcr cnvironmental conditions are variably biomassburning, water shoftages, and other lac modified by the canopyand can affect forest hy tors associatedwith expanding human popula- drology (Cavclicrand Goldstcin1989). Forest tionsand industrialization pose a growingthreat canopiesmodity locally, regionally. and to tbrest .A better understandingof interactionsbctween ti)rest canopiesand the at -ulob:rl1y(Avisstrr and Pielke1989. Shukla et al. 1990).Changes in the pool sizesand fluxesof mosphereis urgentlyneeded to accuratelyassess. lruffients. water, and carbon through torcst eco nritigute.und perhaps prcvcnl negative inrprcr. systemshrve importantconsequences not only on ccosystemhealth tiom human disturbance. for thcplospcrit5 o[ humancconomie ').tenr.. but alsotir the sustainabilityol lif'eon Earrh. TraceGases As a consequenceofcomplex mctcorological Trace-qases in the atmospher.erange from highly and biological processes, and micro reactivespecies with lifetimcsin sccondsto hours. clirnatesvithin forestcanopies are spatially and to \tahlecornpound. uith lifetime.in 'iriches," learr,rr tcmporallydivcrsc. Within thcsccanopy centuries.The sources,silks. and dynanics of specializedorganisms have evolved that alter the thesegases are imponantfor severalreasons. First, environmentti)r otherspecies and iteratively fbnn many gasesa11ect the chemistry and physics of a trophic chain or " rveb." Complexity and the atmosphereand thcrcby can affect various diversityal onc levelnu urc complcxityand di- naturill processes,such as concentrationsof tlo versity at yet higher levels. This paper explores posphedcoxidants, ultraviolct absorption in the some()f the impoftantinteractions between the stratosphere,and the energybudget ofEarlh. Sec- atnosphereand forestcanopies in ten'nsofcarropy ond. trace gasesor their reiiction productsinter-

NorthwestScicncc, Vrl.70, SpecialIssue. 1996 NHs A, TI

- ' r-f -72. VxFlx^ ^\'L - ,l {.4 r\,. r -HrO' o"-V I -/' d -, ,a-- trYx - tl EF

Fisure L Clonplcx and intcracting proccssesinfluence the exchangeof materialsand energy betweenforeir canopicsand thc atmosphcrc. ucl\\ lthIhe hrrrrr r, ' ciru\cJ mull ll uLlc of clf(cl. in concentration,and seasonaldistribution pat ranging from increasedproductivity to heavy terns are better characterized.Long-term trends rn0rtrlitr.I hrrJ.rhc protluctron or con\umplion in concentrationshave been documentedin icc ofthese gasesser-r,'es as an importantindicator of bubblesfromAntarctic cores(Rasmussen and

Rose in lcaves.In photosynthesis.CO, diftirsesthrough tween the ecosystenand the atmospherewas small pores or stomates,into foliage where it is determinedfiom the sum of thc eddy tlux above bi,\chemic"ll)r'educerl t,' rugrrsusinp enercl in the lbrest and the changein the meanconccntra- the form of adenosinetriphosphate (ATP) pnr- tion of CO. in the fbrest air below the canopy. duccdby thecapture ofsunlightby leilfpigments. Thc CO, exihangepattems were similar in ntany In respiration,the breakdown of sugarsto yield ways to pattems observedat the leaf lcvei. Sea- cnergytbr growth and metabolismproduces sonal changesin the relation of CO, uptakc and CO, as an end product. RespiredCO, then dif- dark respirationvaried however,with other en- lu.e\ backoul ol Ihe leul\tomilles into lhertm(F vironnental and physicalchamcteristics that had sphere. liftle impofianceat thelcaflevel. such as the above- The uptakeof CO. bv forest ecosystemsdur- canopy spatial distribution of PPFD and turbu ing the daytime is controlled primarily by the re- lent transport. sponseoI photosyntheticrate to incrcasinglight This andotherrccent studieshave demonstrated (photosyntheticallyactive photon tlux densit\,.or lhrt in modelinpCO erchangc.lolerr crnupies PPFD) (Hollinger et al. 1994b).The sarurating cannotbe treatedas sinrplednalogs of leavcs.At responscofleafphotosynthesis to light is explained the canopylevel. gas exchange is controllednot by the fact that carbon uptake is limited at low only by biological processesin the lcaf, but also PPFD by insutlicient electon tnnspon and pho- by canopy architecture,temporal changes in the tophosphorylation,and at high PPFD by insulfi- enrironmenl. .ilr ehar-rcleri\tic\.rnd en\ir. 'nmen- cientcarboxylation capacity (Farquhar ct al. 1980. tal gndients that vary spatially around vegeta- Kirchbaumand Farquhar1984). In responseto tion (Norman1993). Modeling effons that attempt temperature.photosynthesis in manyspecies has to scaleatmospheric intcractions to the level of beenlbund to reacha maximumbetween l5 - 30 wholecanopies iue described by Baldocchi(1993), 'C. This resultsftom the differentialeffect of tem- Norman( 1993).and Schimel et al. ( 1993.).Mod- pcratureon the kiletics of RuP. carboxylase- eling of gasexchange in conifercanopies is de- oxygelasefor carbondioxide andbxygen (Berry scribedby Priceand Biack (1990) and Wang and and Raison 1981).Other factorssuch as vapor Jarvis( 1990). pressure saturationdsficit and water stressalso Approachesto modeling whole-canopypho candirectly inhibit photosyntheticmechanisms, tosynthesisare reviewed by Norman(1993). The and indircctly inhibit photosynthesisby reduc- most popular approachesto estimating canopy ing stomatalaperturc (Morison 1987). Similarly. gas exchangeuse the lbllowing variables:(l) thc functional responseof nighttirne respiration absorbed,photosynthctictlly active radiation and production to temperaturedoninates the of car- leaf photosyntheticefiiciency; (2) averageillu bon dioxideby leaves.Respiration during dark- mination and Ieaf areaindex; (3) photosynthetic ness rncrcasesapproximately exponentially with rate and total leaf area; (4) photosyntheticrate the inverseof the absolutetemperature. and leaf area of sun and shadeibliage; and (5) Forestcanopies differ in thcir productiveca leaf energybalance and environmental gradients. pacities and their rates of exchangescasonally Particularllinrprrlxnl 1c'te'aJ'.h topic. in canopl andin rclationto tempcratureand the availablility gas exchangeinclude dynarnicvadations in tur- ofwater andnutrients. For example.humid tropical bulenceand physidogy. fbrestscomprise only 6.6 pcrcent of Earth's sur face area.but accomplish l7 percentof the total l\,4ethane net pdmary production. Anether generalization Troposphericnethane is increasingat about I .1 is that young tbrestsare a morc efficient sink 1br pcrcentper year.a substantiallygreater percent- CO.l howcver.older tbrcstscontain largcr stores age increasethan fbr CO, Methane is produced of carbol. by specializedanaerobic bacteria that reduce COr. A recentstudv by Hollingcret al. ( 1994b)ex Primary sourcesof methaneinclude anaerobic ploledho* environmentalmoditications by aforcst cnvirenments.such as wctlands.digestive sys- canopypotentially alter basic pattcrns of ecosys- tems of cattle and termites.and of fossil ten CO. exchangeconpi:Lred to the cufient un- fuels (Mooneyet al. 1987).Methane may have derstandingof leaf gas exchange.Net llux be- an indirect eflect on foresl canopiesthfough its

Canopy-AtmosphereInteractions inlluence on clirrate anclrtmospheric chemistry. primarilyfrom combustiolrand. to a lesserex A strong greenhousegas. methaneabsorbs out- tent.from biologicalprocesses ofnitrification and going infrared radiation within the tropospltere denitrificationin .The role ol NO inatmo 20 times morc eftectivelyper moleculcthan does sphericchemistry is complex- undervaryingcon- CO..In addition,by rcactingwith hydroxylmdi ditions,it can catalyzeboth the productionand cals, mcthane can produce compoundsharrnful destructionof ozonc. It also is leadily converted to canopyfoliagc. suchas carbon nonoxide (CO) to nitric i,rcidthat fonns a nlajor component of andozone (O..). acidprecipitation dowlwind of industrialareas. As a fertilizer N deryrsitionto N deficient ti)r- Nitrogen estsmay increase plant productivity or stimulate unhealthychanges in vegetationgrowth pattcrns Although dinitrogen(N.) is the most abundant andnutrition (Aber and Melillo 1991). clcmentin the atnosphere.it is alsothc element Although present lhalmo:l lrIn il\ lh.,l,,\)nlhe\i. and prirnar) pro- in the atmosphcrcat low ductionin manytenest al ccosystems.This pata concentations,ammonia sources have been aug- cloxis explainedby the fact thatN. in the atmo- mentedby irtensive agricultureand livestock spherecan bc c()nveftedto biologically availablc famin-q.Atrnospheric ammonia can bc dissolved fbrms by only a ltrv spccicsof prokarlotes. and or adsorbedby aerosolsor precipitation. or be takcn up beccus

CanopyAtmosphere lntelactions 11 diation. boundaryJayer charactcristics,and the aerosols.During fires,large quantities of nutri- amountofu,ater availablelbr evaporation.These ents also are lost in the gasesand smokc fiom influcncesare evident when fbrest cover over an ibrcst canopies(Waring and Schlesinger1985). entire watershedis renoved and streamflow in- Ecosystemcarbon and nutrient cycles rre creasessubstantially. mutually linked becauscthe chemical composi- Water movementfrom the soil through the lbrest tion andquantity oflitter suppiiedby thecanopy canopyto the atmosphereis driven by a seriesof rrodulrtc the proce.sesol' Jecotnpo:iliLln.min interrelatcd.interdependent proceses. For cxample, eralization.and nitrification (Fogel andCromack the rateofwater absorptionby the soil is affected 1977,Mccntemeyer 1978. Melillo et al. 191J2. both by the ratc of water loss from the leavesto Pastorand Post 1986).Canopy-atmosphere in the atmosphereand by thc rale at which water teractionsinfluence theseprocesses through can movc from the soil to the root surf'acc.Water changesin the carbonand nutrient ratios of foli- loss and interceptionby trce canopiesalso is in- rge mcdiatedby differencesin the availability of fluencedby boLhthe amountand durationoflcaf photosynthateand nutrients.Atmosphedc condi area. For exan]ple. fbrestslose more water tion. lJ\ur.rhlet,' photo.lnthe'i.m11 increu.e to the atmospherethan do hardwoods.owlng to the foliar carbon nutdent mtio, whereascondi- higher leafareaand to the maintenanceofneedles tions limiting gas exchangewould have the op yeal lound. Species-specificdifl'erences m wa- positeefftct, dependingalso on sitenutrient avail- ter loss alsoer.ist. Species with deeproots that ability.Furthermore, the canopy in{luences nutdent can accessabundant $'ater supplies.typically cycling by alteringmoisture and temperature con- sustainhighcr lates of evapotranspiration(War- ditions at the tbrest floor. ing andSchlesinger 1985). The quantity and distribution of water vapor Windand Turbulence conffolsboth and atmospheric dyneunics Air in the lower atmosphereis never completely directly.Changes in Earth'senergy balance in still. There is usually a net horizontal nrotion or responseto greenhouscwam-fng areexpected to wincl,with random movementsof smallerair dranaticallyalter rcgional water budgets (Mooney pockets.In tiee convection.air movementsare et al. 1987).Hollingcr et al. ( 199:la)recently fbund causedby changesin air density.as resultstiom rapid transmittanceof hydraulic pulsesfrom the hertingor cuoling. Tn lbrced conr ectiun..tir m,'r e- top of a Nothofagustree to a mid stcm and basal nent is deternined by an external pressuregm stemposition, respcctively. These pulses were dientcausing wind. Forced convection may lead induccdby changesin atmospherichunlidity as to the generationof eddiesor turbulenccas a re- air of variousmoisture content passed over the sult oftiictional forcesthat develop as wind flovs canopy. These lindings indicatc that the water over an object. Characteristicsof the eddiesand column is undcr tensiol'rgoverned by physical turbulencc over a forest canopy combined with tbrccs and that water storageplays little role. attdbutesof the canopy boundarylayet control Additionalresearch is needeclto clarify the mecha- many aspectsof massand encrgy exchangewith nisns governingcvapotranspiration by forest the atmospherc. cilnoples. Turbulent motion has a controlling influence Nutrients on the distributionand rcdistributionofmass and encrgythrough forest ecosystems.Many aspects Thc forest canopy is a major repositoryof plant of canopy-atmosphereintcractions are influenced andecosystem nutrient capital. Processes within by thetact that windflows and turbulent exchanges the caropy influencc|he retentiol'r,uptake, leach- aboveforestcanopies are poorly describedby flat- ing, and redistributionof nutrientswithin the planeboundary layer models.In addition,physi- canop,vand among thc canopy.the soil. and the iul .rnJbi,'logical influences on canoplmicro- atmosphere.ln addition to the uptake of nutri climate are ofien complementary.For example, ents depositiedin various forms ftom the atmo- seedand pollen dispersaJdepend on a turbulent sphere to the lbrest canopy. canopies also are wind tield. which in turn is affectedby the biom emittersof variouscornpounds, including hydrogen ass profilc. Diumal changesin canopy relative sulfide,ammonia, and K, S . and P-containin-q humidityaffect the movements ofinsects and other

12 Rose organisms.(Murlis et al. 1992, Fitzjarrald and Coniteroustbrests with fine needlesare highly Moore 1995). efficient at collectingwind drivencloud droplets (Unsworthand Wilshaw 1989).Previously de- Consistentwith meanwind protiles,turbulent positedpollutants on leaf surfacescan dissolve, transport of horizontal lnomeDtumdecays rap- more solutions than the idly below the canopy surtace;howevcr. the de creating concentratcd incidentcloudwater. Furthermore, m0istened leaf greeto which the canopy is coupledto the atmo- of particles by re sphercchanges diulnally, with strongercoupling surlacesincrease deposition resuspension.and by pro duringthe day than night (Fitzjarrald et al. 1988). ducing bounce

LiteratureCited Beny,J.A.. andJ. K. Raison.l9El. Restonsesofmrcfophytes to temperature.tl O. L. Lrnge. P S. Nobel, C. B. Osmond, Aber.J. D.. andJ. M. N,lelillo.1991. Tcrcnrial Ecosystems. and H. Ziegler, (eds.), Ph_vsiologicalPlant Ecolog,v. Saunder\College Puhlishirg, Chic.rgo.ll1. ,129p. Volume 12A. Rerponse,iTo The Phlsical En\ ironnenl. A\i\sar. R., and li. A. Pielke.1989. A pannclcnralion of SprnrgeFverlag,. Pp. 277 338. lcterogenous nrdaces fbr atmosphcricnumerl Binkle)'.,D., and D. Richtef. 1987.Nutrient cyclesand H' bud cal models and its rnprct on regiond lnclco(togy. gelsof ibrcslccosyslems. Ad\'. in Ecol.Ites. l6:1-51. \lo I hl\\\e. rher R

Canopy Atmospherelnteractions 13 Bymcro\icz. A.. and N. E. Grulke. 1992.Ph1-siological ef- Morison.J. I. l-. 1987.lntercellular CO, conccrlratronand ltcls ol airpollutrDtson we,iternlrees. tr R. K. Olson. stomahlresponse to CO.. /r Fl.Zicgler c. D. Farquhar D. Binkley. and M. Bihn. (cds.),Ecologicai Studles. and l. R. Co\ran (eds.).Stomalal Functior. Sranlbrd \tt. 97. The Responseof \l'estern Forcsts||) Air Pol- UnivcrsilyPress. St.rnford, CA. Pp.229 151. lution.Springer Verlag. Ne$ York.Pp. 183-233. Murlis..1., J. S. Elkint|)nand R. T.Carde. 1992. Odor plumes Cavelier, .1..and C. Coldstein. 1989.Mist and tbg inlcrccp andho$ in\eclsuse then.Ann. Re\'. Entonol.37:505- in elfin cloud forestsin Clolombiain . 531. J. Trop.Ecol. 5:309-322. Nolmm. J.M. 1993.Scaling processes between leafand clt,rrpy Eilefs, J. N,1..C. I-. Rosc. and T. J. Sulli\' . 199,1.Status of levels./n J.R. EhleringerandC. ts.Flcld. (cds.).Scaling .rir quality .rnd effects of alnospheic pollutants on Ph,v\iologicalProcesses. Academic Pr'ess.Inc.. Ne\| ccosysrens in the Pacific North$esl Rcgion of rhe York PP '11-76 National Park Scrvice.Tech. Rep. NPS/NRAQD/ Olso.. R. K. D. Binkley.and \,1.Bihn. eds.1992. The Rc NRTR 94/160. USDI. Nat. Park Scr!. 288 p. sponscofWtstern Foreststo . Ecologi Ftuquhar,G. D.. S. von Caeme!er. and J. A. Berry. 1980.A cal Sludics.Vol. 97. SpringerVcrlag. New Y)fk. biochcmicll nodel of photosyntheticCO. assir la, Pastor.J.. andW M. Post.1986. lnfluencc ol clinate, soil molsiurc. and successionon foren carbon.rnd nirro- ri,,rir lea\e.ol t Tl1|rr..Plrnr. I ro:-c-qO. gen Fitzjarrald. D. R. and K. E. Nfoore. 1995.Physical necha- cyclcs. Biogeocheni\try 2:3 27. Pearman. nisms ol hcal and massexchange ben\'een ibrcns and G.1..D. Etheridge.F. de Silra.P J. Fraser.1986. E!idence of changing the aimospherc.Clhapter 31, M. D. Lowman. and N. conccnlratiLlnsof almospheric CO. N.O. and CH liom air bubblesinAntarcric icc. NL Nadknrni (eds.). l oren Canopics.Acidemic Pfess. \ature 320:1,18250. Ne$ York. Pp. ,1571. Pncc. D. T..and T. A. B lack. I 990.Ellcrs of shofi-term\ Filzjanald.D., R. B. Stormwi.d,C. Fisch.and O. Cabral. anation in weatheron diurnal CO. flur rnd evaporationof a 1988. Turbul.nl lrursport obseNed just abo\c rhc julcnilc Douglas-firsmnd. Ign c. For Meteorol.50:119 Amazonibrest. J. Geophys.Res. 93(D2): 155 1,1563. 158. Fogel R.. and K. Cromack. i977. Efiect\ of habjtatand sub Ras ussen.R. A.. and NI A. K. Kahlil. 198:1.Atmospheric nrrri,tu:,lr) .r' Ir^uFlJ.lir ,ue Lle.1,n n f.,i.i^r methanein the recentand ancicrl utNrspheresicon $cnern Oregon.Crn. J. Bo!. 55r1632l6'10. centratrons.trends. and inrcrhenispheric gradient.J. Hollinger.D. Y. F.M. Kelliher.E. D. Schulze,and B. M. M. Geoph]-s.Res. 89(D7): l 1599. Kostner. 1994a.Coupling oi tree traDspiralionto a! Rrupach. N,l.R. 1919.Anomalies in flux-gradien! rcladon, mosphcric turbulence.Narure 371r60 62. shipsoverforesls.Boundary LalerMereorol. l6r,f67 Hollinger. D. Y. F M. Kelliher. J. N. B,"-ersJ. E. Hunt. T. l\{. ,186. \{cscvcny. and P L. Weir. l99.lb. Carbon dioxide Salisbury.n B.. rnd C. Ross. 191i5.Plunt Phlsioloe\', Third exchangebetlveen gro\tth an undisturbcdold forest Ed.. \'adsworth Publ. Co.. Bclmonr, CA. andrhc ahosphere. Ec(tog,v 15rl3,1 150. Schimcl.D. S..F W Davis.andl C. F.Kittel. 1993.Spatial Jone\. H. G. 1991. Planls and Vicroclimate. lnd hdilion. inlbrmation for extrapolalion of canopy proccsscs: Cambridge Uni!. Press.Nc$ York. ex.rmplesfrom FIFE.1, J. R. Ehlednger,and C. B. Kirchbau .l!{. U. n aDdG. D. Fafquhar.I984. Tcmperature Field. (eds.). Scaling Ph)siological Proccsscs.Aca- dependenceof lvbolc lcul pholosynthesisin &cd6]rur- denic Press.!nc.. Ne\ York Pp.2l ,10. p.rirctflr,"dSieb. ex Spreng.Aust. J. PlanlPh)s 11:519- ShuklaJ.. C. Nobre.a.dP Sellers.1990. AmaTon dclbresta- 538. tion andclimate change.Science 2'17:l3ll 1325. Loreti. G. IL |99,1.Armospheric depo\ition ofnutrienls and Uns\rorth. M. H., xnd .1.C. Wilshaw. 1989.\\tr. occult. dnd polluunls ir \ofth America: an ecological pebpec dry depositionof polluants oD lbfests.Agr. ind For ri!e. Ecol.APP]. ,l(.1):629 650. Meieor.,ll:221238. N{eentneyer,V 1978.Macroclimate and control of lj1 Vrn Cleve,K.. L. Oliver, R. Schlentner L. A. Viercck. und C. tcr dccompositionfates. Ecolog,v 59t465 ,172. T. Dyrners. 1983. Producti|it] and nutricnt clcling Melillo J. N{. J. D. Aber. and J. F. Muratore. 1982.Nirogen in iaiga ibrc\t ccosystems.Can. J. For Res. l3:7,17- and llgni con(ol ol hardwood leaf litterdecomposi 761. lion dynanics. Ecologl- 6l(3):62 | 626. \\'ang Y P. and P G. Jrrvis. 1990. Descripdon und valida- Mooncv.H. A.. andS. L. Gulmon.1982. Coiltraints on leaf tion of an arra! model N,IAESl'RO. Agric. For. structufeand function in rcitrcnce to hefblvofl. Nleteof.5l:257 180. Bioscience32(3):198 206. \Vrring. R H.. and W H. Schlcsirgef. 1985. ForeslEcosls- Mooney.H. A.. P NI.Vitou\ek, and P A. NIarson.1987. Er- tem\: Conccpts and Nlanagement.Academic Press. changeof materialsbet\lecn ctujstrial ecosvstem\ and Irc.. Ne\\ York. lhe atmosphere.Science 238:926-932.

1,1 Rose