Enhancer Dependence of Cell-Type–Specific Gene Expression Increases with Developmental Age

Total Page:16

File Type:pdf, Size:1020Kb

Enhancer Dependence of Cell-Type–Specific Gene Expression Increases with Developmental Age Enhancer dependence of cell-type–specific gene expression increases with developmental age Wenqing Caia,1, Jialiang Huanga,b,c,1, Qian Zhua,b, Bin E. Lia, Davide Seruggiaa, Pingzhu Zhoud, Minh Nguyena, Yuko Fujiwaraa, Huafeng Xiea, Zhenggang Yangc, Danni Hongc, Pengfei Renc, Jian Xue, William T. Pud, Guo-Cheng Yuanb,2, and Stuart H. Orkina,f,2 aCancer and Blood Disorders Center, Boston Children’s Hospital and Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; bDepartment of Pediatric Oncology, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115; cState Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; dDepartment of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215; eChildren’s Medical Center Research Institute, Department of Pediatrics, University of Texas at Southwestern Medical Center, Dallas, TX 75390; and fHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115 Contributed by Stuart H. Orkin, July 21, 2020 (sent for review May 4, 2020; reviewed by Hongkai Ji and Ellen V. Rothenberg) How overall principles of cell-type–specific gene regulation (the EryP cells emerge in blood islands and mature as a semi- “logic”) may change during ontogeny is largely unexplored. We synchronous cohort in the circulation. EryD cells, which are adult compared transcriptomic, epigenomic, and three-dimensional (3D) type, are generated within the fetal liver and later in the postnatal genomic profiles in embryonic (EryP) and adult (EryD) erythro- bone marrow (9). Gata1 plays a central role in the regulation of blasts. Despite reduced chromatin accessibility compared to EryP, erythroid-specific genes in both EryP and EryD lineages and is distal chromatin of EryD is enriched in H3K27ac, Gata1, and Myb required for their differentiation (11, 12). Gata1 collaborates with occupancy. EryP-/EryD-shared enhancers are highly correlated other critical TFs, including Scl/Tal1, Ldb1, Fog1, and Lmo2 (7, 9, with red blood cell identity genes, whereas cell-type–specific reg- 13). Knockout of each of these genes leads to defects in EryP and ulation employs different cis elements in EryP and EryD cells. In EryD cells (7, 9, 13). In contrast, the loss of Myb, which is expressed contrast to EryP-specific genes, which exhibit promoter-centric selectively in definitive type cells, impairs proliferation and differ- regulation through Gata1, EryD-specific genes rely more on distal entiation of EryD, sparing EryP cells (8). Given the different reli- enhancers for regulation involving Myb-mediated enhancer acti- ance of EryP and EryD cells on TFs for their development, we have – vation. Gata1 HiChIP demonstrated an overall increased enhancer asked whether these related, but distinct, cell lineages in ontogeny promoter interactions at EryD-specific genes, whereas genome differ in their fundamental regulatory organization and logic. editing in selected loci confirmed distal enhancers are required To address this question, we isolated mouse EryP and EryD for gene expression in EryD but not in EryP. Applying a metric erythroblasts and characterized transcriptomes, chromatin accessi- for enhancer dependence of transcription, we observed a progres- bility, histone modifications, transcription factor (TF) occupancies, sive reliance on cell-specific enhancers with increasing ontogenetic and three-dimensional (3D) chromatin interactions. We observed age among diverse tissues of mouse and human origin. Our find- that distal enhancer-dependent, cell-type–specific gene regulation ings highlight fundamental and conserved differences at distinct developmental stages, characterized by simpler promoter-centric regulation of cell-type–specific genes in embryonic cells and in- Significance creased combinatorial enhancer-driven control in adult cells. Gene regulatory logic reflects the occupancy of cis elements by enhancer | erythropoiesis | HiChIP | GATA1 | Myb transcription factors and the configuration of promoters and en- hancers. As the majority of genome-wide analyses have focused on adult cells, scant attention has been paid to embryonic cells, nteractions between chromatin and nuclear regulatory factors other than embryonic stem cells. Focusing on genome-wide establish gene expression programs during development (1). I comparative analyses of two stages of erythroblasts, we discov- Whereas chromatin landscapes have been elucidated by genome- ered that regulation of embryonic-specific genes is promoter- wide chromatin profiling methods in numerous adult cell types (2, centric through Gata1, whereas adult-specific control is combina- 3), scant attention has been paid to embryonic cell types in human torial enhancer-driven and requires Myb, which is confirmed by and mouse systems, other than embryonic stem cells (ESCs). Despite increased enhancer–promoter interactions of adult specific genes. well-characterized gene regulatory networks (GRNs) in embryos of Extending genome-wide comparative analyses more broadly to some model animals (including Drosophila melanogaster,seaurchin, available datasets of diverse mouse and human cells and tissues, and chick) (4–6), whether the organization, or “logic,” of gene reg- we conclude that the progressively increased enhancer depen- ulation differs between embryonic and adult cells remains to be dence of cell-type–specific genes with developmental age is explored. We began by examining these issues in the context of conserved during development. functionally analogous blood cells of two different stages of ontog- Author contributions: W.C., G.-C.Y., and S.H.O. designed research; W.C., J.H., B.E.L., D.S., eny, and then extended our findings more broadly to other cell types. P.Z., M.N., Y.F., Z.Y., D.H., and P.R. performed research; H.X., J.X., and W.T.P. contributed Primitive (EryP; also referred to as “embryonic”) and defini- new reagents/analytic tools; W.C., J.H., Q.Z., and S.H.O. analyzed data; and W.C., G.-C.Y., tive (EryD; also referred to as “adult”) erythroid cells constitute and S.H.O. wrote the paper. distinct, temporally overlapping lineages with similar in vivo Reviewers: H.J., Johns Hopkins University; and E.V.R., California Institute of Technology. function and provide a unique opportunity to explore chromatin The authors declare no competing interest. state at two different stages of ontogeny. Prior molecular studies This open access article is distributed under Creative Commons Attribution-NonCommercial- NoDerivatives License 4.0 (CC BY-NC-ND). have identified master erythroid-lineage transcription factors 1 — — W.C. and J.H. contributed equally to this work. (TFs) Gata1, Tal1, and Klf1 and several adult-specific fac- 2 – To whom correspondence may be addressed. Email: [email protected] or tors, namely Bcl11a, Sox6, and Myb (7 10). Whereas transcrip- [email protected]. tional mechanisms have been studied extensively in EryD cells, This article contains supporting information online at https://www.pnas.org/lookup/suppl/ we are unaware of analyses in EryP cells, which arise in the yolk doi:10.1073/pnas.2008672117/-/DCSupplemental. sac as a distinct lineage. First published August 19, 2020. 21450–21458 | PNAS | September 1, 2020 | vol. 117 | no. 35 www.pnas.org/cgi/doi/10.1073/pnas.2008672117 Downloaded by guest on October 1, 2021 is overall greater in EryD than in EryP, while cell-type–specific To evaluate whether the different accessibility at distal regions gene regulation in EryP is relatively promoter-centric, using in EryP and EryD relates to putative enhancer activity, we per- Gata1. We hypothesized that these features reflect inherent dif- formed chromatin immunoprecipitation sequencing (ChIP-seq) ferences between embryonic cells and more diverse, long-lived for H3K27ac. As expected, H3K27ac distributed across both adult cells. Analyses of available datasets of diverse mouse and proximal and distal regions (SI Appendix, Fig. S1 E and F). In human cells and tissues provided further support for the unex- contrast to the greater overall accessibility in EryP, we identified pected finding that cell-type–specific regulatory logic changes 5,137 EryP-specific H3K27ac peaks and 7,164 EryD-specific with ontogeny. peaks (Fig. 2A and SI Appendix, Fig. S2A). While the numbers of cell-type–specific H3K27ac peaks at proximal regions were Results comparable between EryD and EryP (1,652 vs. 1,841), we ob- EryD-Specific Distal Accessible Chromatin Is Enriched for Active served more cell-type–specific distal H3K27ac peaks in EryD Enhancers. CD71+/Ter119+ EryP and EryD cells were isolated than in EryP (5,512 vs. 3,296) (Fig. 2A). We categorized the by FACS from embryonic day (E)10.5 embryonic peripheral blood distal accessible regions based on H3K27ac peaks into two sub- and E13.5 fetal liver, respectively (14). We profiled transcriptomes, groups, active (with H3K27ac) or open only (without H3K27ac). chromatin accessibility, histone modifications, and TF occupancies A small fraction (22%) of EryP-specific distal accessible regions (Fig. 1A). Identity of the respective cell populations was assessed by were active, which was similar to that in shared distal accessible the expression of globin and TFs characteristic of each lineage regions (25%) (Fig. 2B). In contrast, the percentage was much (SI Appendix, Figs. S1 A–C). Transcriptome analyses revealed greater (65%) in EryD-specific distal accessible regions (Fig. 2B 943 EryP-specific
Recommended publications
  • Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis
    Hindawi Disease Markers Volume 2019, Article ID 3521746, 10 pages https://doi.org/10.1155/2019/3521746 Research Article Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis Wei Liu,1 Jishi Ye,2 and Hong Yan 1 1Department of Anesthesiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China 2Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China Correspondence should be addressed to Hong Yan; [email protected] Received 2 November 2018; Accepted 31 December 2018; Published 10 February 2019 Academic Editor: Hubertus Himmerich Copyright © 2019 Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. The neurobiological mechanisms underlying the chemotherapy-induced neuropathic pain are only partially understood. Among them, microglia activation was identified as the key component of neuropathic pain. The aim of this study was to identify differentially expressed genes (DEGs) and pathways associated with vincristine-induced neuropathic pain by using bioinformatics analysis and observe the effects of oxycodone on these DEG expressions in a vincristine-induced microglia activation model. Methods. Based on microarray profile GSE53897, we identified DEGs between vincristine-induced neuropathic pain rats and the control group. Using the ToppGene database, the prioritization DEGs were screened and performed by gene ontology (GO) and signaling pathway enrichment. A protein-protein interaction (PPI) network was used to explore the relationship among DEGs.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • A Draft Map of the Human Proteome
    ARTICLE doi:10.1038/nature13302 A draft map of the human proteome Min-Sik Kim1,2, Sneha M. Pinto3, Derese Getnet1,4, Raja Sekhar Nirujogi3, Srikanth S. Manda3, Raghothama Chaerkady1,2, Anil K. Madugundu3, Dhanashree S. Kelkar3, Ruth Isserlin5, Shobhit Jain5, Joji K. Thomas3, Babylakshmi Muthusamy3, Pamela Leal-Rojas1,6, Praveen Kumar3, Nandini A. Sahasrabuddhe3, Lavanya Balakrishnan3, Jayshree Advani3, Bijesh George3, Santosh Renuse3, Lakshmi Dhevi N. Selvan3, Arun H. Patil3, Vishalakshi Nanjappa3, Aneesha Radhakrishnan3, Samarjeet Prasad1, Tejaswini Subbannayya3, Rajesh Raju3, Manish Kumar3, Sreelakshmi K. Sreenivasamurthy3, Arivusudar Marimuthu3, Gajanan J. Sathe3, Sandip Chavan3, Keshava K. Datta3, Yashwanth Subbannayya3, Apeksha Sahu3, Soujanya D. Yelamanchi3, Savita Jayaram3, Pavithra Rajagopalan3, Jyoti Sharma3, Krishna R. Murthy3, Nazia Syed3, Renu Goel3, Aafaque A. Khan3, Sartaj Ahmad3, Gourav Dey3, Keshav Mudgal7, Aditi Chatterjee3, Tai-Chung Huang1, Jun Zhong1, Xinyan Wu1,2, Patrick G. Shaw1, Donald Freed1, Muhammad S. Zahari2, Kanchan K. Mukherjee8, Subramanian Shankar9, Anita Mahadevan10,11, Henry Lam12, Christopher J. Mitchell1, Susarla Krishna Shankar10,11, Parthasarathy Satishchandra13, John T. Schroeder14, Ravi Sirdeshmukh3, Anirban Maitra15,16, Steven D. Leach1,17, Charles G. Drake16,18, Marc K. Halushka15, T. S. Keshava Prasad3, Ralph H. Hruban15,16, Candace L. Kerr19{, Gary D. Bader5, Christine A. Iacobuzio-Donahue15,16,17, Harsha Gowda3 & Akhilesh Pandey1,2,3,4,15,16,20 The availability of human genome sequence has transformed biomedical research over the past decade. However, an equiv- alent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry.
    [Show full text]
  • Atypical Chromosome Abnormalities in Acute Myeloid Leukemia Type M4
    Genetics and Molecular Biology, 30, 1, 6-9 (2007) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Short Communication Atypical chromosome abnormalities in acute myeloid leukemia type M4 Agnes C. Fett-Conte1, Roseli Viscardi Estrela2, Cristina B. Vendrame-Goloni3, Andréa B. Carvalho-Salles1, Octávio Ricci-Júnior4 and Marileila Varella-Garcia5 1Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil. 2Austa Hospital, São José do Rio Preto, SP, Brazil. 3Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil. 4Hemocentro, São José do Rio Preto, SP, Brazil. 5Comprehensive Cancer Center, University of Colorado, Denver, CO, USA. Abstract This study reports an adult AML-M4 patient with atypical chromosomal aberrations present in all dividing bone mar- row cell at diagnosis: t(1;8)(p32.1;q24.2), der(9)t(9;10)(q22;?), and ins(19;9)(p13.3;q22q34) that may have origi- nated transcripts with leukemogenic potential. Key words: acute myeloid leukemia, chromosomal abnormalities, chromosomal translocations. Received: February 10, 2006; Accepted: June 22, 2006. Acute non-lymphocytic or myelogenous leukemia (Mitelman Database of Chromosome Aberration in Cancer (ANLL or AML) represents a hematopoietic malignancy 2006). Karyotype is generally an important prognostic fac- characterized by abnormal cell proliferation and stalled dif- tor in AML, a favorable prognosis being associated with ferentiation leading to the accumulation of immature cells minor karyotypic changes, low frequency of abnormal in the marrow itself, in peripheral blood and eventually in bone marrow cells and changes specifically involving the other tissues.
    [Show full text]
  • Whole Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants Associated with Diabetic Nephropathy
    Supplementary Data Whole genome sequencing of Finnish type 1 diabetic siblings discordant for kidney disease reveals DNA variants associated with diabetic nephropathy Jing Guo, Owen J.L. Rackham, Bing He, Anne-May Österholm, Niina Sandholm, Erkka Valo, Valma Harjutsalo, Carol Forsblom, Iiro Toppila, Maikki Parkkonen, Qibin Li, Wenjuan Zhu, Nathan Harmston, Sonia Chothani, Miina K. Öhman, Eudora Eng, Yang Sun, Enrico Petretto, Per-Henrik Groop, Karl Tryggvason Supplementary Material: Whole Genome Sequencing on Finnish Diabetic Nephropathy Sibling cohort Table of contents Supplementary Methods ............................................................ 3 Supplementary Results .............................................................. 9 Supplementary Tables ............................................................. 11 Supplementary Table 1. Comparison of DNA sequencing quality using the Illumina and Complete Genomics platforms. ......................................................................11 Supplementary Table 2. Annotation of SNVs and indels identified in 161 genomes in the Discovery cohort by RefSeq. ......................................................................12 Supplementary Table 3. Frameshift-causing small insertions and deletions (indels) found in DN cases-only or controls-only individuals of the Finnish T1D DSP discovery cohort ...................................................................................................13 Supplementary Table 4. Recurrently mutated regions (RMR) significantly overrepresented
    [Show full text]
  • Expression Profiling of Sexually Dimorphic Genes in the Japanese
    www.nature.com/scientificreports OPEN Expression profling of sexually dimorphic genes in the Japanese quail, Coturnix japonica Miki Okuno1,5, Shuntaro Miyamoto2,5, Takehiko Itoh1, Masahide Seki3, Yutaka Suzuki3, Shusei Mizushima2,4 & Asato Kuroiwa2,4* Research on avian sex determination has focused on the chicken. In this study, we established the utility of another widely used animal model, the Japanese quail (Coturnix japonica), for clarifying the molecular mechanisms underlying gonadal sex diferentiation. In particular, we performed comprehensive gene expression profling of embryonic gonads at three stages (HH27, HH31 and HH38) by mRNA-seq. We classifed the expression patterns of 4,815 genes into nine clusters according to the extent of change between stages. Cluster 2 (characterized by an initial increase and steady levels thereafter), including 495 and 310 genes expressed in males and females, respectively, contained fve key genes involved in gonadal sex diferentiation. A GO analysis showed that genes in this cluster are related to developmental processes including reproductive structure development and developmental processes involved in reproduction were signifcant, suggesting that expression profling is an efective approach to identify novel candidate genes. Based on RNA-seq data and in situ hybridization, the expression patterns and localization of most key genes for gonadal sex diferentiation corresponded well to those of the chicken. Our results support the efectiveness of the Japanese quail as a model for studies gonadal sex diferentiation in birds. In birds, males are homogametic (ZZ) and females are heterogametic (ZW). Te sex determination mechanism involving gene(s) on the sex chromosome is highly conserved among birds. In chickens, sex determination is thought to occur afer embryonic day (E) 4.5, corresponding to Hamburger and Hamilton stage1 24 (HH24).
    [Show full text]
  • Downloaded from the App Store and Nucleobase, Nucleotide and Nucleic Acid Metabolism 7 Google Play
    Hoytema van Konijnenburg et al. Orphanet J Rare Dis (2021) 16:170 https://doi.org/10.1186/s13023-021-01727-2 REVIEW Open Access Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app Eva M. M. Hoytema van Konijnenburg1†, Saskia B. Wortmann2,3,4†, Marina J. Koelewijn2, Laura A. Tseng1,4, Roderick Houben6, Sylvia Stöckler‑Ipsiroglu5, Carlos R. Ferreira7 and Clara D. M. van Karnebeek1,2,4,8* Abstract Background: The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disabil‑ ity (collectively ‘treatable IDs’). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identifcation of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. Methods: Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classifcation of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is avail‑ able. Data on clinical symptoms, diagnostic testing, treatment strategies, efects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. Results: Our review identifed 116 treatable IDs (139 genes), of which 44 newly identifed, belonging to 17 ICIMD categories.
    [Show full text]
  • Genome-Wide Identification and Analysis of Mirnas Complementary to Upstream Sequences of Mrna Transcription Start Sites
    In: Gene Silencing: Theory, Techniques and Applications ISBN: 978-1-61728-276-8 Editor: Anthony J. Catalano © 2010 Nova Science Publishers, Inc. The exclusive license for this PDF is limited to personal printing only. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter XIII Genome-wide Identification and Analysis of miRNAs Complementary to Upstream Sequences of mRNA Transcription Start Sites Kenta Narikawa1, Kenji Nishi2, Yuki Naito2, Minami Mazda2 and Kumiko Ui-Tei1,2,* 1Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-8561, Japan 2Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Abstract Small regulatory RNAs including short interfering RNAs (siRNAs) and microRNAs (miRNAs) are crucial regulators of gene expression at the posttranscriptional level. Recently, additional roles for small RNAs in gene activation and suppression at the transcriptional level were reported; these RNAs were shown to have sequences that closely or completely match to their respective promoter regions.
    [Show full text]
  • Germline PTPRT Mutation Potentially Involved in Cancer Predisposition
    Germline PTPRT mutation potentially involved in cancer predisposition Lorena Martin1, Victor Lorca2, Pedro P´erez-Segura2, Patricia Llovet1, Vanesa Garc´ıa-Barber´an3, Maria Luisa Gonzalez-Morales2, Sami Belhad4, Gabriel Capell´a5, Laura Valle4, Miguel de la Hoya2, Pilar Garre6, and Trinidad Caldes2 1Hospital Clinico San Carlos. IdISCC 2Hospital Clinico San Carlos. IdISSC 3Hospital Cl´ınicoSan Carlos, IdISCC, CIBERONC 4IDIBELL 5ICO-IDIBELL 6Hospital clinico San Carlos. IdISSC September 17, 2020 Abstract Familial Colorectal Cancer Type X (FCCTX) is a term used to describe a group of families with an increased predisposition to colorectal and other related cancers, but an unknown genetic basis. Whole-exome sequencing in two cancer-affected and one healthy members of a FCCTX family revealed a truncating germline mutation in PTPRT [c.4090dup, p.(Asp1364GlyfsTer24)]. PTPRT encodes a receptor phosphatase and is a tumor suppressor gene found to be frequently mutated at somatic level in many cancers, having been proven that these mutations act as drivers that promote tumor development. This germline variant shows a compatible cosegregation with cancer in the family and results in the loss of a significant fraction of the second phosphatase domain of the protein, which is essential for PTPRT's activity. In addition, the tumors of the carriers exhibit epigenetic inactivation of the wild-type allele and an altered expression of PTPRT downstream target genes, consistent with a causal role of this germline mutation in the cancer predisposition of the family. Although PTPRT's role cancer initiation and progression has been well studied, this is the first time that a germline PTPRT mutation is linked with cancer susceptibility and hereditary cancer, which highlights the relevance of the present study.
    [Show full text]
  • Is Chemically Dispersed Oil More Toxic to Atlantic Cod
    Olsvik et al. BMC Genomics 2012, 13:702 http://www.biomedcentral.com/1471-2164/13/702 RESEARCH ARTICLE Open Access Is chemically dispersed oil more toxic to Atlantic cod (Gadus morhua) larvae than mechanically dispersed oil? A transcriptional evaluation Pål A Olsvik1*, Kai K Lie1, Trond Nordtug2 and Bjørn Henrik Hansen2 Abstract Background: The use of dispersants can be an effective way to deal with acute oil spills to limit environmental damage, however very little is known about whether chemically dispersed oil have the same toxic effect on marine organisms as mechanically dispersed oil. We exposed Atlantic cod larvae to chemically and mechanically dispersed oil for four days during the first-feeding stage of development, and collected larvae at 14 days post hatch for transcriptional analysis. A genome-wide microarray was used to screen for effects and to assess whether molecular responses to chemically and mechanically dispersed oil were similar, given the same exposure to oil (droplet distribution and concentration) with and without the addition of a chemical dispersant (Dasic NS). Results: Mechanically dispersed oil induced expression changes in almost three times as many transcripts compared to chemically dispersed oil (fold change >+/−1.5). Functional analyses suggest that chemically dispersed oil affects partly different pathways than mechanically dispersed oil. By comparing the alteration in gene transcription in cod larvae exposed to the highest concentrations of either chemically or mechanically dispersed oil directly, the chemically dispersed oil affected transcription of genes involved nucleosome regulation, i.e. genes encoding proteins participating in DNA replication and chromatin formation and regulation of cell proliferation, whereas the mechanically dispersed oil most strongly affected genes encoding proteins involved in proteasome-mediated protein degradation.
    [Show full text]