Octocorals (Coelenterata: Anthozoa: Octocorallia) of Isla Del Coco, Costa Rica

Total Page:16

File Type:pdf, Size:1020Kb

Octocorals (Coelenterata: Anthozoa: Octocorallia) of Isla Del Coco, Costa Rica Octocorals (Coelenterata: Anthozoa: Octocorallia) of Isla del Coco, Costa Rica Odalisca Breedy1, 2 & Jorge Cortés1 1. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San José 11501-2060, Costa Rica; [email protected] 2. Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama. Received 04-II-2008. Corrected 29-IV-2008. Accepted 11-VI-2008. Abstract: The published literature on Isla del Coco (Cocos Island), Costa Rica reveals that until recent years the octocorals were among the least known marine invertebrates. Two of the three orders within the subclass Octocorallia, the Pennatulacea (sea pens) and Alcyonacea (soft corals, gorgonians and telestids) occur in Isla del Coco. From recent collections and research, the total octocorallian fauna presently accounts to three pennatu- laceans, seven gorgonians, a soft coral, and one telestid. A sea pen, a telestid, and three of the gorgonians have been collected recently, and two of them are probably new species. The genus Pacifigorgia includes one species: P. curta, presently considered as endemic. There are two species of the genus Leptogorgia, one which presents a large distributional range along the Pacific coast of Costa Rica, L. alba, and another which is a new species only found in Isla del Coco and is yet to be described. Finally, an undescribed species related to the genus Rhodelinda was found attached to rodoliths. The other species cited in the literature, the gorgonian, Psammogorgia vari- abilis, and the pennatulacean, Ptilosarcus undulatus, need to be corroborated since we have not found them yet. Other species, including alcyoniians (soft corals), have been observed by submarine submersibles from 50 m down to 450 m. Some deep water species were collected during a Harbor Branch Oceanographic Institution expedition in 1986 with their research submersible the Johnson Sea Link, and four of them have been identified to genera. Several are expected to represent species new to science. Twelve species of octocorals are recorded here. Rev. Biol. Trop. 56 (Suppl. 2): 71-77. Epub 2008 August 29. Key words: Isla del Coco, Cocos Island, Costa Rica, eastern Pacific, octocorals, gorgonians, soft corals, Octocorallia. Oceanic islands have fascinated explorers Isla del Coco has been the target of numer- and scientists since the earliest times because ous expeditions to explore the island’s species of their spectacular geological settings and the richness (Cortés 2008); nevertheless the octoc- extravagant and exotic life forms found there. orals were virtually unknown until recent years. Isla del Coco, Costa Rica, is one of the oceanic This paper summarises the present knowledge islands in the eastern tropical Pacific. The marine of the octocoral fauna at Isla del Coco, showing faunas of these islands have been the subject of both achievements and needs in this field to be scientific interest especially for the biogeograph- considered in future comprehensive biodiver- ic relevance (e.g. dispersal patterns, endemism) sity studies. and biodiversity. Islands are bounded ecosystems and serve as excellent laboratories for assessing Characteristics of octocorals: Octocorals, changes in community structure and biodiversity known as soft corals, sea fans and sea pens are (Sadler 1999), and evolutionary tendencies might sedentary, mostly colonial marine animals. be understood through comparisons to the main- Octocorals belong to the anthozoan subclass land faunas (Quammen 1996). Octocorallia; which is comprised of colonies of Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 56 (Suppl. 2): 71-77, August 2008 71 polyps that bear eight tentacles, almost always fans. They present very diverse growth forms: pinnate, and eight mesenteries in the gastro- incrusting colonies, upright fans, bushes with vascular cavity. The colonies present skeletal slender branches, and simple whips. Gorgonian elements of calcium carbonate, called sclerites, colonies have a central axial skeletons com- embedded in their tissue. Many taxa also have posed of a collagenous matrix, called gorgonin, proteinaceous and calcified axial skeletons. and calcifications within the collagen intersti- Octocorallia is composed of three orders: tial spaces (Jeyasuria & Lewis 1987). A layer Helioporacea (blue coral), Pennatulacea (sea of coenenchyme with sclerites and polyps sur- pens), and Alcyonacea (soft corals, gorgonians rounds it. and telestids) (Fabricius & Alderslade 2000, Species of octocorals are identified Daly et al. 2007). Pennatulaceans and alcyo- according to colony and sclerite morphology. naceans are found in Isla del Coco. Their diver- A combination of characteristics of the colony: sity and abundance is at present being studied. branching pattern, color and shape, and of the The pennatulaceans are colonies that show sclerites: sizes, colors, forms and abundance of bilateral symmetry and polyp dimorphism. the different types of sclerites in the samples, They are formed by a very large polyp called determine the species. Even though these char- the oozooid, on the wall of which the coenen- acteristics can be modified by the environment, chyme spreads with numerous small (second- they are sufficiently consistent to diagnose a ary) polyps; the large primary polyp may be species (Breedy & Guzman 2003, 2007). additionally supported by a horny or calcium Bayer (1981) estimated that there are carbonate axis. Part of the oozooid forms the 3,000 valid species of octocorals worldwide, peduncle that anchors the colony in sand or soft although new species and even genera continue substrates. The other part of the oozooid forms to be described at a rapid rate. In the Isla del the rachis, which bears other kinds of polyps: Coco three shallow water (<50 m) octocoral autozooids and siphonozooids. In some species species, and one from deep waters have been the emergent part looks like a feather (thus the reported in the literature and eight more are name sea pens) (Williams 1990, Fabricius & reported herein (Table 1). Alderslade 2000). The alcyonaceans include the soft corals Octocoral diversity: The first octocor- in the group Alcyoniina, stoloniferous octocor- al report for Isla del Coco came from the als in the group Stolonifera and the gorgonians collection gathered by dredging during the in the suborder Holaxonia. Alcyonians (soft “Albatross Expedition” in 1891 (Studer 1894), corals) form fleshy colonies characterized by the plexaurid (gorgonian octocoral) species having polyps aggregated or concentrated into Psammogorgia variabilis Studer, 1894, that polyparies. An internal medulla or axis is was described with two specimens from locali- absent and the polyps are embedded into a soft ties around the island at 95 and 183 m in depth. coenenchymal tissue, which may or may not Deichmann (1941) mentioned that Studer´s contain sclerites (Williams 1992). specimens in some way fitted Muricea galapa- Stolonifera include a group of octocorals gensis Deichmann, 1941, but she could not find that consist of individual tubular polyps that the specimens to corroborate the identification. arise separately from ribbon-like stolons. They Beebe (1926) mentioned a big purple sea fan present a series of transitional forms, from in his book, which does not match anything those where the polyps are not united to those seen recently in the island. As a matter of fact, where they are joined at their bases in a com- with the exception of L. alba, the octocoral mon coenenchyme (Williams 1993, Fabricius species presently recorded for Isla del Coco do & Alderslade 2000). not reach more than 5 cm in height. However, Gorgonians include sea rods, sea whips, it is interesting to notice that in some other sea candelabra, sea feather plumes, and sea time, less than a century ago, the octocoral 72 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 56 (Suppl. 2): 71-77, August 2008 TABLE 1 Two other species of pennatulids in the Octocorals known from Isla del Coco: * = new records genus Stylatula were observed during the first (this publication), ** = deep-water species >50 m (2006) and second (2007) “Proteus” expedi- Subclass Octocorallia tions (Cortés 2008). One was collected from Order Pennatulacea 14 m deep, and identified as Stylatula cf. Family Pennatulidae elongata (Gabb, 1862), and the other was Ptilosarcus longate (Verrill, 1865) just photographed (Fig. 3). A new species of Family Virgulariidae gorgoniid in the genus Leptogorgia Milne Stylatula cf. longate (Gabb, 1862)* Stylatula sp.* Edwards & Haime, 1857 was collected during Order Alcyonacea the “Proteus” expeditions, which is currently Alcyoniina group under study. Finally, a species of a genus relat- Family Alcyoniidae ed to Rhodelinda (stoloniferous octocoral) was , Anthomastus sp. * ** collected by dredging (40-45 m in depth) and Suborder Holaxonia Family Gorgoniidae was found attached to rodoliths. Pacifigorgia curta Breedy & Guzman, 2003 Deep water collections from the 1986 Leptogorgia alba (Duchassaing & Michelotti, Expedition to the Galápagos Islands, Cocos 1864) Island, and Pearl Islands by the Harbor Branch Leptogorgia sp. (a new species)* Oceanographic Institution (HBOI) (Cortés Family Plexauridae Psammogorgia variabilis Studer, 1894** 2008) contain a number of octocorals collected Paramuricea sp. *, ** using the Johnson Sea Link research submers- Suborder Calcaxonia ible. This collection will probably yield new Family Isididae records and new species. We include in Table Isidella sp. *,
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Coelenterata: Anthozoa), with Diagnoses of New Taxa
    PROC. BIOL. SOC. WASH. 94(3), 1981, pp. 902-947 KEY TO THE GENERA OF OCTOCORALLIA EXCLUSIVE OF PENNATULACEA (COELENTERATA: ANTHOZOA), WITH DIAGNOSES OF NEW TAXA Frederick M. Bayer Abstract.—A serial key to the genera of Octocorallia exclusive of the Pennatulacea is presented. New taxa introduced are Olindagorgia, new genus for Pseudopterogorgia marcgravii Bayer; Nicaule, new genus for N. crucifera, new species; and Lytreia, new genus for Thesea plana Deich- mann. Ideogorgia is proposed as a replacement ñame for Dendrogorgia Simpson, 1910, not Duchassaing, 1870, and Helicogorgia for Hicksonella Simpson, December 1910, not Nutting, May 1910. A revised classification is provided. Introduction The key presented here was an essential outgrowth of work on a general revisión of the octocoral fauna of the western part of the Atlantic Ocean. The far-reaching zoogeographical affinities of this fauna made it impossible in the course of this study to ignore genera from any part of the world, and it soon became clear that many of them require redefinition according to modern taxonomic standards. Therefore, the type-species of as many genera as possible have been examined, often on the basis of original type material, and a fully illustrated generic revisión is in course of preparation as an essential first stage in the redescription of western Atlantic species. The key prepared to accompany this generic review has now reached a stage that would benefit from a broader and more objective testing under practical conditions than is possible in one laboratory. For this reason, and in order to make the results of this long-term study available, even in provisional form, not only to specialists but also to the growing number of ecologists, biochemists, and physiologists interested in octocorals, the key is now pre- sented in condensed form with minimal illustration.
    [Show full text]
  • Long-Term Recruitment of Soft-Corals (Octocorallia: Alcyonacea) on Artificial Substrata at Eilat (Red Sea)
    MARINE ECOLOGY - PROGRESS SERIES Vol. 38: 161-167, 1987 Published June 18 Mar. Ecol. Prog. Ser. Long-term recruitment of soft-corals (Octocorallia: Alcyonacea) on artificial substrata at Eilat (Red Sea) Y.Benayahu & Y.Loya Department of Zoology. The George S. Wise Center for Life Sciences, Tel Aviv University, Tel Aviv 69978. Israel ABSTRACT: Recruitment of soft corals (Octocorallia: Alcyonacea) on concrete plates was studied in the reefs of the Nature Reserve of Eilat at depths of 17 to 29 m over 12 yr. Xenia macrospiculata was the pioneering species, appealing on the vast majority of the plates before any other spat. This species remained the most conspicuous inhabitant of the substrata throughout the whole study. Approximately 10 % of the plates were very extensively colonized by X. rnacrospiculata, resembling the percentage of living coverage by the species in the surrounding reef, thus suggesting that during the study X. rnacrospiculata populations reached their maximal potential to capture the newly available substrata. The successive appearance of an additional 11 soft coral species was recorded. The species composition of the recruits and their abundance corresponded with the soft coral community in the natural reef, indicahng that the estabhshed spat were progeny of the local populations. Soft coral recruits utilized the edges and lower surfaces of the plates most successfully, rather than the exposed upper surfaces. Such preferential settling of alcyonaceans allows the spat to escape from unfavourable conditions and maintains their high survival in the established community. INTRODUCTION determine the role played by alcyonaceans in the course of reef colonization and in the reef's space Studies on processes and dynamics of reef benthic allocation.
    [Show full text]
  • Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands
    国立科博専報,(52), pp. 65–94 , 2018 年 3 月 28 日 Mem. Natl. Mus. Nat. Sci., Tokyo, (52), pp. 65–94, March 28, 2018 Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands Yukimitsu Imahara1* and Hiroshi Namikawa2 1Wakayama Laboratory, Biological Institute on Kuroshio, 300–11 Kire, Wakayama, Wakayama 640–0351, Japan *E-mail: [email protected] 2Showa Memorial Institute, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan Abstract. Approximately 400 octocoral specimens were collected from the Ogasawara Islands by SCUBA diving during 2013–2016 and by dredging surveys by the R/V Koyo of the Tokyo Met- ropolitan Ogasawara Fisheries Center in 2014 as part of the project “Biological Properties of Bio- diversity Hotspots in Japan” at the National Museum of Nature and Science. Here we report on 52 lots of these octocoral specimens that have been identified to 42 species thus far. The specimens include seven species of three genera in two families of Stolonifera, 25 species of ten genera in two families of Alcyoniina, one species of Scleraxonia, and nine species of four genera in three families of Pennatulacea. Among them, three species of Stolonifera: Clavularia cf. durum Hick- son, C. cf. margaritiferae Thomson & Henderson and C. cf. repens Thomson & Henderson, and five species of Alcyoniina: Lobophytum variatum Tixier-Durivault, L. cf. mirabile Tixier- Durivault, Lohowia koosi Alderslade, Sarcophyton cf. boletiforme Tixier-Durivault and Sinularia linnei Ofwegen, are new to Japan. In particular, Lohowia koosi is the first discovery since the orig- inal description from the east coast of Australia.
    [Show full text]
  • Cnidaria, Octocorallia) from the Northern Coast of Egypt
    Egyptian Journal of Aquatic Research (2014) 40, 261–268 HOSTED BY National Institute of Oceanography and Fisheries Egyptian Journal of Aquatic Research http://ees.elsevier.com/ejar www.sciencedirect.com FULL LENGTH ARTICLE Faunistic study of benthic Pennatulacea (Cnidaria, Octocorallia) from the Northern coast of Egypt Khaled Mahmoud Abdelsalam * National Institute of Oceanography and Fisheries, Qayet Bey, El-Anfoushy, Alexandria, Egypt Received 10 June 2014; revised 25 August 2014; accepted 28 August 2014 Available online 11 October 2014 KEYWORDS Abstract Using a trawling net, samples of order Pennatulacea (Sea pens) were collected from the Sea pens; northern coast of Egypt. The current work aims to establish taxonomical data about this distinctive Pennatulacea; group of animals that dwell in the Egyptian Mediterranean waters. The current study presents 3 New record; species namely; Cavernularia pusilla (Philippi, 1835), Pennatula rubra Ellis, 1764, and Pteroeides Northern coast; spinosum (Ellis, 1764). The first one pertains to the family of Veretillidae which belongs to the Egypt suborder Sessiliflorae; while the other two species affiliate to two families (Pennatulidae and Pteroeididae) which belong to the suborder Subselliflorae. The present records are the first from the Egyptian Mediterranean waters. A re-description supplied with full structural illustrations of the recorded species is given. ª 2014 Hosting by Elsevier B.V. on behalf of National Institute of Oceanography and Fisheries. Introduction They are colonial organisms that have a featherlike appear- ance, and are the only octocorals that are adapted to spend Sea pens, or pennatulaceans, are a highly specialized group of their entire life in soft sediments (Edwards and Moore, anthozoan cnidarians.
    [Show full text]
  • Table B – Subclass Octocorallia
    Table B – Subclass Octocorallia BINOMEN ORDER SUBORDER FAMILY SUBFAMILY GENUS SPECIES SUBSPECIES COMN_NAMES AUTHORITY SYNONYMS #Records Acanella arbuscula Alcyonacea Calcaxonia Isididae n/a Acanella arbuscula n/a n/a n/a n/a 59 Acanthogorgia armata Alcyonacea Holaxonia Acanthogorgiidae n/a Acanthogorgia armata n/a n/a Verrill, 1878 n/a 95 Anthomastus agassizii Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus agassizii n/a n/a (Verrill, 1922) n/a 35 Anthomastus grandiflorus Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus grandiflorus n/a n/a Verrill, 1878 Anthomastus purpureus 37 Anthomastus sp. Alcyonacea Alcyoniina Alcyoniidae n/a Anthomastus sp. n/a n/a Verrill, 1878 n/a 1 Anthothela grandiflora Alcyonacea Scleraxonia Anthothelidae n/a Anthothela grandiflora n/a n/a (Sars, 1856) n/a 24 Capnella florida Alcyonacea n/a Nephtheidae n/a Capnella florida n/a n/a (Verrill, 1869) Eunephthya florida 44 Capnella glomerata Alcyonacea n/a Nephtheidae n/a Capnella glomerata n/a n/a (Verrill, 1869) Eunephthya glomerata 4 Chrysogorgia agassizii Alcyonacea Holaxonia Acanthogorgiidae Chrysogorgiidae Chrysogorgia agassizii n/a n/a (Verrill, 1883) n/a 2 Clavularia modesta Alcyonacea n/a Clavulariidae n/a Clavularia modesta n/a n/a (Verrill, 1987) n/a 6 Clavularia rudis Alcyonacea n/a Clavulariidae n/a Clavularia rudis n/a n/a (Verrill, 1922) n/a 1 Gersemia fruticosa Alcyonacea Alcyoniina Alcyoniidae n/a Gersemia fruticosa n/a n/a Marenzeller, 1877 n/a 3 Keratoisis flexibilis Alcyonacea Calcaxonia Isididae n/a Keratoisis flexibilis n/a n/a Pourtales, 1868 n/a 1 Lepidisis caryophyllia Alcyonacea n/a Isididae n/a Lepidisis caryophyllia n/a n/a Verrill, 1883 Lepidisis vitrea 13 Muriceides sp.
    [Show full text]
  • Symbionts and Environmental Factors Related to Deep-Sea Coral Size and Health
    Symbionts and environmental factors related to deep-sea coral size and health Erin Malsbury, University of Georgia Mentor: Linda Kuhnz Summer 2018 Keywords: deep-sea coral, epibionts, symbionts, ecology, Sur Ridge, white polyps ABSTRACT We analyzed video footage from a remotely operated vehicle to estimate the size, environmental variation, and epibiont community of three types of deep-sea corals (class Anthozoa) at Sur Ridge off the coast of central California. For all three of the corals, Keratoisis, Isidella tentaculum, and Paragorgia arborea, species type was correlated with the number of epibionts on the coral. Paragorgia arborea had the highest average number of symbionts, followed by Keratoisis. Epibionts were identified to the lowest possible taxonomic level and categorized as predators or commensalists. Around twice as many Keratoisis were found with predators as Isidella tentaculum, while no predators were found on Paragorgia arborea. Corals were also measured from photos and divided into size classes for each type based on natural breaks. The northern sites of the mound supported larger Keratoisis and Isidella tentaculum than the southern portion, but there was no relationship between size and location for Paragorgia arborea. The northern sites of Sur Ridge were also the only place white polyps were found. These polyps were seen mostly on Keratoisis, but were occasionally found on the skeletons of Isidella tentaculum and even Lillipathes, an entirely separate subclass of corals from Keratoisis. Overall, although coral size appears to be impacted by 1 environmental variables and location for Keratoisis and Isidella tentaculum, the presence of symbionts did not appear to correlate with coral size for any of the coral types.
    [Show full text]
  • Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals
    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals Eric Pante1*¤, Scott C. France1, Arnaud Couloux2, Corinne Cruaud2, Catherine S. McFadden3, Sarah Samadi4, Les Watling5,6 1 Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America, 2 GENOSCOPE, Centre National de Se´quenc¸age, Evry, France, 3 Department of Biology, Harvey Mudd College, Claremont, California, United States of America, 4 De´partement Syste´matique et Evolution, UMR 7138 UPMC-IRD-MNHN- CNRS (UR IRD 148), Muse´um national d’Histoire naturelle, Paris, France, 5 Department of Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 6 Darling Marine Center, University of Maine, Walpole, Maine, United States of America Abstract The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ.
    [Show full text]
  • Comprehensive Phylogenomic Analyses Resolve Cnidarian Relationships and the Origins of Key Organismal Traits
    Comprehensive phylogenomic analyses resolve cnidarian relationships and the origins of key organismal traits Ehsan Kayal1,2, Bastian Bentlage1,3, M. Sabrina Pankey5, Aki H. Ohdera4, Monica Medina4, David C. Plachetzki5*, Allen G. Collins1,6, Joseph F. Ryan7,8* Authors Institutions: 1. Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution 2. UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France 3. Marine Laboratory, university of Guam, UOG Station, Mangilao, GU 96923, USA 4. Department of Biology, Pennsylvania State University, University Park, PA, USA 5. Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA 6. National Systematics Laboratory, NOAA Fisheries, National Museum of Natural History, Smithsonian Institution 7. Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA 8. Department of Biology, University of Florida, Gainesville, FL, USA PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3172v1 | CC BY 4.0 Open Access | rec: 21 Aug 2017, publ: 21 Aug 20171 Abstract Background: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including symbiosis, colonial body plans and elaborate life histories, however, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome scale data for each major cnidarian lineage. Results: Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome scale data that includes representatives of all cnidarian classes.
    [Show full text]
  • Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
    'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.
    [Show full text]
  • Research Article Influence of the Blue Coral Heliopora Coerulea on Scleractinian Coral Larval Recruitment
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Journal of Marine Biology Volume 2017, Article ID 6015143, 5 pages https://doi.org/10.1155/2017/6015143 Research Article Influence of the Blue Coral Heliopora coerulea on Scleractinian Coral Larval Recruitment Michael Atrigenio, Porfirio Aliño, and Cecilia Conaco Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines Correspondence should be addressed to Michael Atrigenio; [email protected] Received 16 November 2016; Revised 10 March 2017; Accepted 2 April 2017; Published 12 April 2017 Academic Editor: Yehuda Benayahu Copyright © 2017 Michael Atrigenio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The octocoral Heliopora coerulea has emerged as one of the most dominant reef-building corals in the Bolinao Reef Complex, northern Philippines. One of the possible mechanisms that may contribute to the success of H. coerulea over scleractinian corals is its ability to compete effectively for space on the reef by inhibiting the settlement of coral larvae in its immediate vicinity.To determine whether H. coerulea can indeed inhibit larval recruitment, settlement tiles were deployed inside H. coerulea aggregations or on hard substrate at a distance of about 2 to 3 meters away. After three months of deployment, only a single H. coerulea recruit was observed on tiles placed within aggregations whereas many different coral recruits were observed on tiles placed on substrate away from the blue coral.
    [Show full text]
  • Phylogenetic Relationships Within Chrysogorgia (Alcyonacea
    Phylogenetic Relationships Within Chrysogorgia (Alcyonacea: Octocorallia), a Morphologically Diverse Genus of Octocoral, Revealed Using a Target Enrichment Approach Candice Untiedt, Andrea Quattrini, Catherine Mcfadden, Phil Alderslade, Eric Pante, Christopher Burridge To cite this version: Candice Untiedt, Andrea Quattrini, Catherine Mcfadden, Phil Alderslade, Eric Pante, et al.. Phy- logenetic Relationships Within Chrysogorgia (Alcyonacea: Octocorallia), a Morphologically Diverse Genus of Octocoral, Revealed Using a Target Enrichment Approach. Frontiers in Marine Science, Frontiers Media, 2021, 7, 10.3389/fmars.2020.599984. hal-03154113 HAL Id: hal-03154113 https://hal.sorbonne-universite.fr/hal-03154113 Submitted on 27 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmars-07-599984 January 11, 2021 Time: 10:55 # 1 ORIGINAL RESEARCH published: 12 January 2021 doi: 10.3389/fmars.2020.599984 Phylogenetic Relationships Within Chrysogorgia (Alcyonacea: Octocorallia), a Morphologically Diverse Genus of Octocoral, Revealed Using a Target Enrichment
    [Show full text]