Radiologic Assessment of Maxillofacial, Mandibular, and Skull

Total Page:16

File Type:pdf, Size:1020Kb

Radiologic Assessment of Maxillofacial, Mandibular, and Skull View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Eur Radiol (2005) 15: 560–568 DOI 10.1007/s00330-004-2631-7 NEURO Bernhard Schuknecht Radiologic assessment of maxillofacial, Klaus Graetz mandibular, and skull base trauma Abstract Cranio-maxillofacial inju- categories central, lateral, or com- Received: 1 September 2004 Accepted: 13 December 2004 ries affect a significant proportion of bined centrolateral fractures. The last Published online: 21 January 2005 trauma patients either in isolation or frequently encompass orbital trauma # Springer-Verlag 2005 concurring with other serious injuries. as well. CT is the imaging technique Contrary to maxillofacial injuries that of choice to display the multiplicity of result from a direct impact, central fragments, the degree of dislocation skull base and lateral skull base and rotation, or skull base involve- (petrous bone) fractures usually are ment. Transsphenoid skull base frac- caused by a lateral or sagittal directed tures are classified into transverse and force to the skull and therefore are oblique types; lateral base (temporal indirect fractures. The traditional bone) trauma is subdivided into lon- strong role of conventional images in gitudinal and transverse fractures. patients with isolated trauma to the Supplementary MR examinations are B. Schuknecht (*) Institute of Neuroradiology, viscerocranium is decreasing. Spiral required when a cranial nerve palsy University Hospital of Zurich, multislice CT is progressively re- occurs in order to recognize neural Frauenklinikstr. 10, placing the panoramic radiograph, compression. Early and late compli- 8091 Zurich, Switzerland Waters view, and axial films for cations of trauma related to the orbit, e-mail: [email protected] maxillofacial trauma, and is increas- anterior cranial fossa, or lateral skull Tel.: +41-1-2572090 Fax: +41-1-2516911 ingly being performed in addition to base due to infection, brain concus- conventional films to detail and sion, or herniation require CT to B. Schuknecht classify trauma to the mandible as visualize the osseous prerequisites MRI-Medizinisch Radiodiagnostisches well. Imaging thus contributes to of complications, and MR to define Institut, Toblerstrasse 51, accurately categorizing mandibular the adjacent brain and soft tissue 8044 Zurich, Switzerland fractures based on location, into involvement. alveolar, mandibular proper, and K. Graetz condylar fractures—the last are sub- Keywords Computed tomography . Department of Maxillofacial Surgery, divided into intracapsular and extra- Cranial nerve . Magnetic resonance . University Hospital of Zurich, . Frauenklinikstr. 10, capsular fractures. In the midface, CT Mandibula Maxillofacial injury 8091 Zurich, Switzerland facilitates attribution of trauma to the Orbit . Temporal bone . Trauma Introduction In a large trauma series of 3,578 patients with 7,061 facial bone fractures, 24.3% affected the mandible and Head trauma may affect the skull and the viscerocranium. 71.5% were attributed to the midface. In the same series, The skull includes the cranial vault, the central skull base supraorbital and frontobasal fractures were present in 4.2% (clivus), and the lateral skull base which refers to the of cases [1]. petrous bone. Anteriorly attached to the skull is the vis- Osseous trauma becomes relevant when fractures of cerocranium which consists of the mandible and the max- the craniomandibular facial skeleton lead to pain, facial illofacial region, with the paranasal sinuses included. deformity, functional deficits, cranial nerve palsy, or dural 561 tears [2]. The area of the bone that fractures under trau- axial and coronal plane displayed in high resolution bone matic impact is determined by a dynamic factor consisting window (w/l 3,200:700) and in soft tissue settings (w/l of the nature of the force (energy, impact area) and a static 300:100). Additional sagittal reconstructions are reserved factor which depends on the anatomic predisposition of for central midface and mandibular condylar fractures. the bone involved to fractures. A small impact area results Trauma affecting the optic nerve canal and the temporal in a localized direct fracture, in contrast to a force that is bone is displayed with 1-mm bone window images. Three- transmitted over a larger area of bone leading to indirect dimensional surface reconstructions of the viscerocranium “burst” fractures. The latter are common at the skull base, add the third dimension at one glance and are particularly the petrous bone in particular. In the viscerocranium man- helpful for treatment in cases of multiple fragments and/or dibular condylar fractures are indirect transmitted fractures severe fragment dislocation. Three-dimensional CT may in the majority of cases, while trimalar midface fractures make a significant contribution in up to 29% of patients [8]. typically are due to direct trauma. The classification of MR imaging is required when cranial nerve deficits fractures that affect the viscerocranium traditionally relied are present that are not sufficiently explained by high- on LeFort’s[3] original description of “the great lines of resolution thin-slice bone window algorithm CT. CT serves weakness” according to fracture patterns he experimentally to detect a fracture-related compression of cranial nerves produced. The LeFort classification has been modified and along the exit foramina. MR imaging is more sensitive extended as it did not apply to the more severely commi- to detect nerve compression due to hematoma, nerve nuted and combination maxillary fractures and occlusal transsection, or axonal injury. The cranial nerves most fre- segment trauma [4]. In a review of 87 fractures patterns only quently affected are the facial, optic, abducens, and hypo- 25 (28.7%) met the criteria of LeFort fractures, and only 11 glossal nerves. were identified as bilateral LeFort fractures of the same level [5]. Due to the fact that the complexity and extent of fractures often extends beyond the original LeFort classi- Fractures of the mandible fication, the diagnostic evaluation and treatment strategies include the mandible, nasoethmoid and clivus, and the Imaging Isolated trauma affecting the mandible is evalu- lateral skull base (temporal bone) as well. ated by an orthopanoramic radiograph and a mandible pos- teroanterior (PA) view with maximal mouth opening (Clementschitsch). If required, dental films are performed Imaging strategy for better definition of the alveolar ridge and the condition of the teeth. CT is being increasingly applied to define the The objective of imaging in patients with trauma to the fracture location and the degree of dislocation not only in viscerocranium, skull base, and temporal bone is to depict fractures accompanying cranio-maxillofacial trauma but in the presence, location, and extent of fractures, to recognize isolated mandibular trauma as well. Multiple fractures of cranial nerve compromise, and to delineate involvement of the mandible are present in about half of cases [6]. Non- the skull base and dura. Radiologic visualization of the displaced symphyseal (mental) fractures are better visual- involvement of key anatomic structures is essential to clas- ized by CT, as overlap with the spine on panoramic and sify the trauma and subsequently apply a differentiated posteroanterior (PA) radiographs may preclude recognition treatment strategy. The objective of treatment is to stabilize of these fractures. The same holds true for fractures of the and restore the three-dimensional facial anatomy and to ramus mandibulae when restricted mouth opening pre- provide skeletal support for the proper function of mas- cludes adequate projection of the condylar process on a tication and the function and appearance of the overlying mandible PA view. facial soft tissue [2, 5]. Early treatment is directed toward CT image interpretation is facilitated when axial MPR relief of early complications and prevention of potential images are aligned along the (anteriorly descending) plane secondary late complications. of the body of the mandible. Coronal images should be The trauma of the viscerocranium may occur as an iso- angulated slightly posterior according to the course of lated injury due to a blow or fall, and it is then usually the ascending ramus and condyle (Fig. 1a). Sagittal images investigated by conventional X-rays first. When trauma to are displayed in an anterior converging oblique sagittal the lower and midface is a concomitant injury in severe head plane perpendicular to the axis of the mandibular condyle trauma or poly-traumatized patients, CT is the imaging (Fig. 1b). CT reconstruction along the alveolar ridge en- modality of choice frequently applied within “trauma pro- ables acquisition of images similar to panoramic radiographs. tocols” [6, 7]. Cranio-maxillofacial trauma with suspicion of osseous involvement of the lower and midface, skull Classification Classification of mandibular fractures is of base, or temporal bone requires thin collimation of slices relevance with respect to treatment and therefore should (0.75–1 mm) to detail the location and course of fracture assign the location of the fracture(s) to the anatomic region lines. The data set provides high-resolution 2D multiplanar involved: (para)-symphyseal, body, angle, and ramus man- reconstructions (MPR) with contiguous 2-mm slices in the dibulae [2, 9, 10]. Fractures are classified as to whether 562 Fig. 1 A 28-year-old male, after
Recommended publications
  • Mandibular Fractures, Diagnostics, Postoperative Complications
    Journal of Medical Sciences. March 23, 2020 - Volume 8 | Issue 13. Electronic-ISSN: 2345-0592 Medical Sciences 2020 Vol. 8 (13), p. 45-52 e-ISSN: 2345-0592 Medical Sciences Online issue Indexed in Index Copernicus Official website: www.medicsciences.com Mandibular fractures, diagnostics, postoperative complications Shahaf Givony1 1 Lithuanian University of Health Sciences. Academy of Medicine. Faculty of Odonthology. ABSTRACT Mandibular fractures usually happen among young males at the age of 16-30 years old. The mandible which has been rated as the second facial bone with the highest rate of injuries, tends to break much more often compared to any other bone of the cranium and represent up to 70% of the cases. This tendency to fracture may be explained by the protruded position, mobility and particular shape of it. The tendency for a mandibular fracture may also be explained by the common risk factors such as vehicle accidents and physical violence that are part of our daily life. There are many other risk factors according to the literature which differ between individuals due to the different socio-economic status, culture, technology and environment. Before the clinical examination of the fracture, it is obligatory to make sure that a clear airway path presents with no other fatal injuries. The examination may be supported by imaging methods which together will approve the diagnosis and method of treatment. Patients with a fracture of the mandible may suffer from post-operative complications which may occur after a short or long duration of the treatment. Those complications may be malocclusion, infections, trismus, damaged teeth and soft tissue, esthetic disfiguration, functional problems, pain and many more.
    [Show full text]
  • Pattern of Skeletal Injuries in Child Physical Abuse
    1 Bahrain Medical Bulletin, Vol. 33, No. 2, June 2011 Pattern of Skeletal Injuries in Physically Abused Children Fadheela Al-Mahroos, MD, MHPE* Eshraq A Al-Amer, MD, ABMS (Ped)** Nabar J Umesh, MD, DMRE*** Ali I Alekri, FRCSI, CABS (Ortho)**** Objective: The aim of this study is to identify the frequency and patterns of skeletal injuries among victims of child abuse in Bahrain. Design: Retrospective. Setting: Child Protection Unit at Salmaniya Medical Complex. Method: Child’s characteristics, type of skeletal injuries, location, pattern, radiological findings, and associated other injuries of 36 children were reviewed. Data management and analysis was done using SPSS for Windows, version 18. Result: Thirty-six children with skeletal injuries resulting from child physical abuse were seen from 1991 to 2009. Twenty-three (64%) were males and 13 (36%) were females; the mean age was 3.8 years. Twenty-three (64%) were ≤ 3 years old. Multiple fractures were documented in 19 (53%) children. Bone fracture types and frequency were as follow: 10 (28%) affecting the femur, 9 (25%) skull, 8 (22%) humerus, 6 (17%) rib, 4 (11%) radius, 4 (11%) ulna and 2 (6%) tibia. Other bones less frequently affected were mandible, nasal bone, vertebral, metatarsals, and calcaneus fractures. In addition, other injuries included slipped femoral epiphysis, large bilateral hematoma in vastus lateralis, and full thickness tendon Achilles tear. Hundred percent of rib, ulnar, radial and tibial fractures were in children under one year old. In addition, 7 (78%) of skull fractures, 5 (62%) of humerus fractures, and 5 (50) of femur fractures were under one year old.
    [Show full text]
  • Results Description of the SKULLS. the Overall Size of Both Skulls Was Considered to Be Within Normal Limits for Their Ethnic
    Ossification Defects and Craniofacial Morphology In Incomplete Forms of Mandibulofacial Dysostosis A Description of Two Dry Skulls ERIK DAHL, D.D.S., DR. ODONT. ARNE BJORK, D.D.S., ODONT. DR. Copenhagen, Denmark The morphology of two East Indian dry skulls exhibiting anomalies which were suggested to represent incomplete forms of mandibulofacial dysostosis is described. Obvious although minor ossification anomalies were found localized to the temporal, sphenoid, the zygomatic, the maxillary and the mandibular bones. The observations substantiate the concept of the regional and bilateral nature of this malformation syndrome. Bilateral orbital deviations, hypoplasia of the malar bones, and incomplete zygomatic arches appear to be hard tissue aberrations which may be helpful in exami- nation for subclinical carrier status. Changes in mandibular morphology seem to be less distinguishing features in incomplete or abortive types of mandibulofacial dysostosis. KEY WORDS craniofacial problems, mandible, mandibulofacial dysostosis, maxilla, sphenoid bone, temporal bone, zygomatic bone Mandibulofacial dysostosis (MFD) often roentgencephalometric examinations were results in the development of a characteristic made of the skulls, and tomograms were ob- facial disfigurement with considerable simi- tained of the internal and middle ear. Com- larity between affected individuals. However, parisons were made with normal adult skulls the symptoms may vary highly in respect to and with an adult skull exhibiting the char- type and degree, and both incomplete and acteristics of MFD. All of the skulls were from abortive forms of the syndrome have been the same ethnic group. ' reported in the literature (Franceschetti and Klein, 1949; Moss et al., 1964; Rogers, 1964). Results In previous papers, we have shown the DEsCRIPTION OF THE SKULLS.
    [Show full text]
  • Anatomy Review Upper Extremity WARNING: the Content in This Slideshow Contains Some Sports Footage That May Be Gross
    BONES Anatomy Review Upper Extremity WARNING: The content in this slideshow contains some sports footage that may be gross. If you don’t like bodily injuries be warned! SKULL/ FACE Four major bones fuse together to create our cranium . → parietal,temporal,occipital and frontal bones Two major bones of the jaw . → Mandible and Maxilla INJURIES TO THE SKULL & FACE This is raccoon eyes, and battle sign which indicate a skull fracture. Common cause is blunt force trauma to the head, for example, getting hit in the head with a baseball. Often seen in individuals who are beaten or abused. INJURIES TO THE SKULL & FACE This is a picture of Victor Hedman a top defenseman in the NHL. INJURY: laceration to the face. CAUSE: helmet visor was pushed into his face. Lacerations are common during sports and either treated with stitches or glue INJURIES TO THE SKULL & FACE Mandibular Fracture Video Link above is for a Fracture to the mandible Sidney Crosby was hit in the face by a 90 mph slapshot! INJURY: Mandibular Fracture TREATMENT: Surgery ( Jaw was wired shut) He was also provided with a Jaw shield ANTERIOR TORSO Ribs- Remember ribs are discussed in pairs True ribs vs. False ribs- true ribs connect directly to the sternum false ribs do not. Sternum- Broken down into three parts: 1. Manubrium 2. Body 3. Xiphoid process INJURIES TO THE ANTERIOR TORSO INJURY: Fractured Ribs CAUSE: A direct blow or trauma to the ribs Usually detected on x-ray POSTERIOR TORSO Vertebrae → 7 cervical 12 thoracic 5 lumbar BONES OF THE ARM 3 Major bones make up the shoulder: 1.
    [Show full text]
  • Coleman Sign: a Hallmark for Mandibular Fracture? a Rare Case Exception
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 10, 2020 Coleman Sign: A Hallmark For Mandibular Fracture? A Rare Case Exception Dr Premalatha Shetty(MDS)1, Dr Aditya Nandan, 2, Dr Mahabalesh Shetty3, Dr Suraj Shetty4 1Associate Dean, Professor, Oral and Maxillofacial department, Manipal College of Dental sciences, Mangalore, Manipal Academy of Higher Education, Manipal 2 Postgraduate(BDS), Oral and Maxillofacial department, Manipal College of dental sciences, Mangalore, Manipal Academy of Higher Education, Manipal 3Professor& Head of Department, Department of Forensic Medicine & Toxicology K S Hegde Medical Academy, NIITE (Deemed to be University) 4Associate Professor, Department of Forensic Medicine & Toxicology, K S Hegde Medical Academy, NIITE (Deemed to be University) Email ID:[email protected], [email protected], [email protected], [email protected] Abstract: Mandibular fracture involving the parasymphysis region is one of the most common fractures of mandible. Majority of parasymphysis fractures are due to direct blow or injury to the chin region. Specific signs and symptoms for parasymphysis fracture are pain, swelling, tenderness in the chin region, deranged occlusion, soft tissue injury to chin and the lower lip and sublingual hematoma. Frank Coleman considered a sublingual hematoma as “almost pathognomonic of fracture of the mandible”. We present a case that fails to replicate this hallmark sign associated with a mandibular fracture, as the patient had all the signs and symptoms of parasymphysis fracture except sublingual hematoma which is very rare and unusual to observe. The final diagnosis was made on the basis of radiographic examination using CBCT scan. On surgical exposure the mandibular parasymphysis fracture in the region of right lateral incisor and canine was confirmed.
    [Show full text]
  • Imaging of Mandibular Fractures: a Pictorial Review
    Nardi et al. Insights into Imaging (2020) 11:30 https://doi.org/10.1186/s13244-020-0837-0 Insights into Imaging EDUCATIONAL REVIEW Open Access Imaging of mandibular fractures: a pictorial review Cosimo Nardi1, Chiara Vignoli1, Michele Pietragalla1, Paolina Tonelli1, Linda Calistri1, Lorenzo Franchi2,3, Lorenzo Preda4,5* and Stefano Colagrande1 Abstract Mandibular fractures are among the most common maxillofacial fractures observed in emergency rooms and are mainly caused by road accidents. The clinical features of mandibular fractures include malocclusion and loss of mandibular function. Panoramic radiography is usually limited to isolated lesions, whereas computed tomography is the tool of choice for all other facial traumatic events. No reference standard classification system for the different types of mandibular fractures is defined. Therapeutic options include a conservative approach or surgical treatment based on the anatomic area and the severity of fracture. The main purpose of this pictorial review is to illustrate a practical description of the pathophysiology of mandibular fractures and describe both the imaging techniques to recognise them and the therapeutic indications. Keywords: Mandible, Condyle, Fracture, Trauma, Panoramic radiography Key points maxillofacial fractures varies according to geographical Mandibular fractures represent two thirds of all areas and socio-economic factors. The most common maxillofacial fractures. causes of maxillofacial fractures are road traffic accidents X-ray films, including panoramic radiography, are (40–42%), falls, assaults, sports, and work injuries [3]. usually limited to mild traumatic events. The average age of patients with mandibular fracture is Computed tomography is the tool of choice for the 38 years for men and 40 years for women [4].
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • MORPHOMETRIC STUDY of PTERION in DRY ADULT HUMAN SKULLS Pratima Kulkarni 1, Shivaji Sukre 2, Mrunal Muley *3
    International Journal of Anatomy and Research, Int J Anat Res 2017, Vol 5(3.3):4365-68. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2017.337 MORPHOMETRIC STUDY OF PTERION IN DRY ADULT HUMAN SKULLS Pratima Kulkarni 1, Shivaji Sukre 2, Mrunal Muley *3. 1 Associate Professor, Department of Anatomy, G.M.C. Aurangabad, Maharashtra, India. 2 Professor and Head of department, Department of Anatomy, G.M.C. Aurangabad, Maharashtra, India. *3 Assistant Professor, Department of Anatomy, G.M.C. Aurangabad, Maharashtra, India. ABSTRACT Introduction: The pterion corresponds to the site of anterolateral fontanelle of the neonatal skull which closes at third month after birth. In the pterional fractures the anterior and middle meningeal arterial ramus ruptures commonly which results in extradural hemorrhage. Pterional approach is most suitable and minimally invasive approach in neurosurgery. Materials and Methods: The present study was carried out on the pterion of 36 dry adult skulls of known sex from department of anatomy GMC Aurangabad Maharashtra. Results: The mean and standard deviation of the distance between the centre of pterion to various anatomical landmarks. The distance between Pterion- frontozygomatic (P-FZ) suture 29.81±4.42mm on right side, 29.81±4.07mm on left side; Pterion-Zygomatic arch (P-Z) 37.16±3.77mm on right side, 37.56±3.71mm on left side, Pterion-asterion (P-A) 89.73±6.16mm on right side, 89.46±6.35mm on left side; Pterion-external acoustic meatus (P- EAM) 53.40±7.28mm on right side, 53.57±6.73mm on left side, Pterion- Mastoid process (P-M) 80.35±3.44mm on right side, 80.96±3.79mm on left side and Pterion- Pterion (P-P) 194.54±16.39mm were measured.
    [Show full text]
  • Delayed Post Traumatic Facial Nerve Palsy on Contra Lateral Side of Isolated Mandibular Fracture: a Rare Case Report
    International Journal of Dental and Health Sciences Case Report Volume 01,Issue 01 DELAYED POST TRAUMATIC FACIAL NERVE PALSY ON CONTRA LATERAL SIDE OF ISOLATED MANDIBULAR FRACTURE: A RARE CASE REPORT Monika Khangwal1, Ravinder Solanki2, Amit Bali3, Yashanshi Khanna4, Davender Kumar5, Rajiv Tanwar6 1.Post Graduate Student,Department Of Endodontics, King George Medical University, Lucknow. 2.Assistant Professor, Department Of Facio-Maxillary Surgery, Post Graduate Institute Of Dental Sciences, University Of Health Sciences, Rohtak ,Haryana. 3.Reader, MM Dental College, Mullana, Haryana 4.BDS Student, Sudha Rustogi Dental College, Faridabad, Haryana. 5.Assistant Professor,Post Graduate Institute Of Dental Sciences, Rohtak Haryana. 6.Post Graduate Student, Oral & Maxillofacial Surgery,Post Graduate Institute Of Dental Sciences,Rohtak,Haryana. ABSTRACT Post traumatic facial nerve paralysis is not a common complication. Only 5% of all the facial palsies are due to trauma. Moreover, it is common due to fracture of the temporal bone with transaction or compression of the facial nerve. Less commonly facial paralysis due to isolated mandibular fracture without temporal bone fracture have been reported in literature. Rarely, mandibular fractures can present with concomitant facial nerve injury. In cases where the nerve injury is incomplete or delayed, prognosis is excellent. This article reports a case of delayed onset of facial paralysis with isolated mandibular fracture. Key words: Delayed, Bell's palsy, Mandibular fracture, Aetiology, Trauma INTRODUCTION: agreement on definition, there is no consensus regarding the aetiology, Idiopathic peripheral facial nerve paralysis diagnostic approach, or management of is the most common cause of facial nerve this condition .[2] The aetiology of the palsy.
    [Show full text]
  • Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement
    Article Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement Gerardo Pellegrino 1,* , Francesco Grande 2 , Agnese Ferri 1, Paolo Pisi 3, Maria Giovanna Gandolfi 4 and Claudio Marchetti 1 1 Oral and Maxillofacial Surgery Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] (A.F.); [email protected] (C.M.) 2 Oral Surgery Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 3 Dental Radiology Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 4 Medical-technical Science, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; mgiovanna.gandolfi@unibo.it * Correspondence: [email protected]; Tel.: +39-051-208-8157 Received: 11 June 2020; Accepted: 21 July 2020; Published: 22 July 2020 Abstract: Zygomatic implant rehabilitation is a challenging procedure that requires an accurate prosthetic and implant plan. The aim of this study was to evaluate the malar bone available for three-dimensional zygomatic implant placement on the possible trajectories exhibiting optimal occlusal emergence. After a preliminary analysis on 30 computed tomography (CT) scans of dentate patients to identify the ideal implant emergencies, we used 80 CT scans of edentulous patients to create two sagittal planes representing the possible trajectories of the anterior and posterior zygomatic implants. These planes were rotated clockwise on the ideal emergence points and three different hypothetical implant trajectories per zygoma were drawn for each slice.
    [Show full text]
  • Anthropometric Evaluation of Pterion in Dry Human Skulls Found in Southern India
    Jemds.com Original Research Article Anthropometric Evaluation of Pterion in Dry Human Skulls Found in Southern India Pretty Rathnakar1, Remya Vinod2, Swathi3, Anuja Sinha4 1Associate Professor, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. 2Lecturer, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. 3Associate Professor, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. 4Assistant Professor, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. ABSTRACT BACKGROUND Pterion is a H- shaped sutural convergence seen in the Norma Lateralis of skull. After Corresponding Author: 2-3 months of birth, the anterolateral fontanelle in the neonatal skulls close to form Remya Vinod, Department of Anatomy, the pterion. It is the meeting point of four bones sphenoid, parietal, temporal and K. S. Hegde Medical Academy, frontal. Four types have been noted- spheno-parietal, fronto-temporal, epipteric and Deralakatte, Mangalore-575018, stellate. Pterional approach is commonly undertaken in surgical management of Karnataka, India. tumours involving inferior aspects of frontal lobe, like olfactory meningiomas, orbital, E-mail: [email protected] retro-orbital, sellar, chiasmatic, subfrontal, prepontine areas, anterior circulation and basilar artery aneurysm. The knowledge regarding the various shapes and distances DOI: 10.14260/jemds/2019/541 from different points to pterion (distance of centre of pterion was calculated from mid-point of superior margin of zygomatic arch (PZA), Frontozygomatic suture (PFZ), Financial or Other Competing Interests: None. tip of the mastoid process (PMP), and anterosuperior margin of external acoustic meatus (PEAM)) is useful for treating number of pathologies in brain. So, this is also How to Cite This Article: useful for neurosurgeons, anatomists, anthropologists and forensic medicine Rathnakar P, Vinod R, Swathi, et al.
    [Show full text]
  • Zygomatic Fractures
    Without treatment in a timely Zygomatic Fractures manner, many individuals will develop future problems, the severity and consequences of which can be much greater than if the injury had been immediately repaired. However, modern cran- iofacial surgical techniques can now offer hope for patients with pre-existing post-traumatic facial deformities despite considerable delays between injury, diagnosis, Front and lateral three dimensional CT Scans demonstrate and treatment. These innovative displaced fractures of all zygomatic buttresses. techniques establish a higher stan- dard of care for the management of facial injuries. The following sections describe the different areas and types of facial fractures: ZYGOMATIC FRACTURES The zygomatic bone occupies a prominent and important posi- tion in the facial skeleton. It plays a key role in determining facial width as well as acting as a major Patient with a left displaced An open reduction with rigid buttress of the midface. Its anteri- zygomatic fracture. miniplate fixation was performed or projection forms the malar emi- with postoperative result shown. nence and is often referred to as the malar bone. The zygoma has several important articulations in the midface. The zygoma forms a significant portion of the floor and object, or secondary to motor vehicle accidents. Moderate lateral wall of the orbit. In addi- force may result in minimally or nondisplaced fractures at tion, the zygoma meets the lateral the suture lines. More severe blows frequently result in skull to form the zygomatic arch. inferior, medial, and posterior displacement of the zygoma. Comminuted fractures of the body with separation at the The zygoma is the main but- suture lines are most often the result of high-velocity motor tress between the maxilla and the vehicle accidents.
    [Show full text]