Author's Personal Copy

Total Page:16

File Type:pdf, Size:1020Kb

Author's Personal Copy Author's personal copy Lithos 109 (2009) 223–239 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Petrology of the eclogites from western Tasmania: Insights into the Cambro-Ordovician evolution of the paleo-Pacific margin of Gondwana R. Palmeri a,⁎, R. Chmielowski b, S. Sandroni c, F. Talarico c, C.A. Ricci a,c a Museo Nazionale dell'Antartide, via Laterina 8, 53100 Siena, Italy b Centre for Ore Deposit Research, University of Tasmania, Private Bag 79, Hobart, Australia c Dipartimento di Scienze della Terra, via Laterina 8, 53100 Siena, Italy ARTICLE INFO ABSTRACT Article history: Eclogite facies rocks along the Paleozoic active margin of Gondwana are rare. They are limited to isolated segments Received 28 January 2008 of Northern Victoria Land (Antarctica), western Tasmania, and southeastern Australia. New petrological data for Accepted 27 June 2008 mafic rocks and their host garnet-kyanite schists from the Franklin Metamorphic Complex (western Tasmania) Available online 8 July 2008 permit reconstruction of six main stages of mineral growth for the eclogite. Stages I and II occurred at greenschist/ amphibolite-facies conditions (ca. 500–600 °C; 0.55–0.7 GPa for stage II) before attaining high-pressure Keywords: conditions (at ≈600–650 °C; N1.5 GPa for stage III). The following stages, IV and V, record the decompression from Eclogite – – High-pressure metamorphism high-pressure conditions to amphibolite-facies (ca. 500 600 °C; 0.4 1.0 GPa). Finally, stage VI represents the late Tasmania greenschist-facies retrogression. However, the pelitic schist surrounding the eclogite records only the medium- Antarctica pressure amphibolite-facies stage. The P–T evolution over time outlines a clockwise path that is quite steep in both Gondwana the prograde and retrograde segments. The latter shows a nearly isothermal decompression between the eclogite Ross/Tyennan orogen and the high-pressure amphibolite-facies stage IV, which was achieved at deep crustal levels (≈30 km), and a final decrease in both pressure and temperature from deep/intermediate to shallow crustal levels, with a typical cooling-unloading path. The lack of a complete re-equilibration during the different stages and the high dP/dT for both the prograde and retrograde paths are indicative of a rapid burial and initially rapid exhumation. The similarity of the mafic whole-rock chemical composition, including N, T to E-MORB and of the peak metamorphic age (≈500 Ma) between the Tasmanian eclogites and the UHP rocks from Northern Victoria Land, supports the idea that they formed in the context of the same contractional event. However, the different P–T conditions and dP/dT point to different tectono-metamorphic settings for the two sectors of the paleo-PacificmarginofGondwana during the Ross/Tyennan orogeny. © 2008 Elsevier B.V. All rights reserved. 1. Introduction mania and southeastern Australia, and they formed at an early Paleo- zoic convergent plate boundary close to the eastern margin of From the late Precambrian to the early Paleozoic, the East Gond- Gondwana (Turner et al., 1998; Palmeri et al., 2007 and reference wana margin changed from a passive to an active margin. Subduction- therein; Och et al., 2003). related orogenic activity produced the Cambrian/Ordovician deforma- Tyennan Orogeny rocks of Tasmania represent an important link tion, metamorphism, and magmatism known as the Ross, Delamerian, between the Cambro-Ordovician rocks in Antarctica and southern and Tyennan orogeny in Antarctica, southern Australia, and Tasmania, Australia. According to Meffre et al. (2000), there is no agreement respectively (Kleinschmidt and Tessensohn, 1987; Flöttmann et al., among various authors as to whether Tasmania should be displaced — 1993; Borg and DePaolo, 1994; Ricci et al., 1997; Foster et al., 2005; from its present position — westwards to line up the western edge of Squire and Wilson, 2005). Eclogite facies rocks in metamorphic the Lachlan Fold Belt in both Tasmania and the mainland Australia, or terrains are important indicators of paleo-plate sutures and provide eastwards, so that Tasmania becomes an allochthonous terrane. valuable constraints on tectonic and thermal models for the evolution The aim of this paper is to define the metamorphic character of the of plate subduction/collision zones (Carswell, 1990). Eclogite facies eclogites and of their hosting pelitic schists cropping out in the rocks along the paleo-Pacific margin of Gondwana are rare. They have Franklin Metamorphic Complex of western Tasmania through fabric been described in Northern Victoria Land (Antarctica), western Tas- relationships, mineral compositions, assemblages, and thermobaro- metric estimates. These characteristics, and the comparison with similar coeval rocks from Northern Victoria Land (Di Vincenzo et al., 1997; Palmeri et al., 2003) form the basis of a discussion about the ⁎ Corresponding author. Tel.: +39 577 233893; fax: +39 577 233890. E-mail addresses: [email protected] (R. Palmeri), [email protected] (R. Chmielowski), tectono-metamorphic evolution of high-pressure rocks along the [email protected] (S. Sandroni), [email protected] (F. Talarico), [email protected] (C.A. Ricci). early Paleozoic paleo-Pacific margin of Gondwana. 0024-4937/$ – see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.lithos.2008.06.016 Author's personal copy 224 R. Palmeri et al. / Lithos 109 (2009) 223–239 2. Geological setting of Tasmania areas contain eclogite facies rocks, which are rare along the Paleozoic active margin of Gondwana (Goodge, 2007; Foster et al., 2005). Tasmania is a key region located between the Cambro-Ordovician In Tasmania, the Neoproterozoic–Cambrian metamorphic rocks rocks of the Ross Orogen in Northern Victoria Land and the Lachlan Fold involved in the Tyennan Orogeny are confined to the western and Belt in southern mainland Australia (Fig.1A, B, C). In addition, these three northern areas (Fig. 1C). In western Tasmania, the Neoproterozoic–early Fig. 1. (A) Configuration of Antarctica, Australia, and Tasmania during Cambro-Ordovician times (modified after Foden et al., 2006); (B) tectonic sketch map showing the different structural zones of Northern Victoria Land (Antarctica), Tasmania, and southeast Australia (after Flöttmann et al., 1993, Foden et al., 2006); (C) geological map of western Tasmania (modified after Meffre et al., 2000). Author's personal copy R. Palmeri et al. / Lithos 109 (2009) 223–239 225 Cambrian passive margin consists of continental-derived turbidite (Crawford & Berry, 1992; Foster et al., 2005; Foden et al., 2006). The intercalated with basalt and intruded by dolerite dykes and sills, and it collision generated a Tethyan-style ophiolite complex containing overlies early Neoproterozoic shallow-water sedimentary rocks (Fig. 2C; abundant mafic–ultramafic rocks including boninities. High-pressure Meffre et al., 2000). The passive margin of Tasmania was involved in a metamorphic rocks in this complex formed from fragments of the collision with an island arc system at the beginning of the convergent continental margin (Berry and Crawford, 1988; Crawford and Berry, stage of the Delamerian-Tyennan-Ross Orogeny (520 to 505 Ma) 1992; Turner et al., 1998; Meffre et al., 2000; Foster et al., 2005). This Fig. 2. Geological sketch map of the Collingwood River–Lyell Highway area of the Franklin Metamorphic Complex showing sample locations. A–B: Location of the geological section. Map adapted from (Brown et al., 2005). Author's personal copy 226 R. Palmeri et al. / Lithos 109 (2009) 223–239 Fig. 3. Photomicrographs of microstructures in eclogite from the Collingwood River (Tasmania). Mineral symbols after Kretz (1983) and Phe for phengite. (A) Euhedral porphyroblastic garnet with abundant inclusions in a partly retrogressed matrix. Crossed nicols, sample RCO611. (B) Fine-grained layer showing textural equilibrium among Grt, Omp, Cam, and Ep. Crossed nicols, sample RO380. (C) Backscattered scanning electron microscope (BSE-SEM) image showing the good textural equilibrium among the mineral phases defining the eclogite facies stage III. Sample RO380. (D) Porphyroblastic garnet and the Di+Pl symplectite after omphacite. Crossed nicols, sample RCO611. (E) BSE-SEM image of a phengite relic surrounded by its destabilization products (Bt+Pl symplectite). Sample RO380. (F) Anhedral garnet relics, together with abundant porphyroblastic amphiboles. Crossed nicols, sample RO289. (G) BSE image of a porphyroblastic amphibole with a garnet relic as inclusion. Sample RO380. (H) BSE image of a late vein cross-cutting a porphyroblastic amphibole. The vein consists of an association of chlorite, tremolite, and calcite. Sample RO380. Author's personal copy Table 1 Representative garnet analyses for eclogite. Sample RC611 RO380 Grt1 Grt2 Grt3 No. P3-r P11-r P24-m P41-m P70-c P83-c P102-m P144-r P13-rim P24-m P37-c P40-c P49-m P74-m P85-r P4-r P15-m P37-c P55-m P78-r R. Palmeri et al. / Lithos 109 (2009) 223 SiO2 39.77 39.86 39.09 39.11 38.03 38.25 38.89 39.49 39.39 38.31 39.00 39.00 39.07 38.46 39.63 39.82 39.28 39.55 39.65 39.93 Al2O3 22.34 22.37 21.87 21.85 21.60 21.45 22.01 22.16 22.23 21.81 22.01 22.27 22.06 21.78 22.54 22.34 22.09 21.88 22.08 22.33 TiO2 0.09 0.03 0.09 0.15 0.06 0.08 0.14 0.09 0.07 0.03 0.14 0.09 0.26 0.08 0.00 0.09 0.06 0.22 0.13 0.02 Cr2O3 0.02 0.04 0.07 0.06 0.01 0.07 0.05 0.12 0.09 0.04 0.02 0.03 0.00 0.02 0.07 0.09 0.07 0.02 0.03 0.06 FeO 20.58 21.03 21.75 20.51 25.39 25.58 21.86 22.18 18.50 23.43 20.80 19.27
Recommended publications
  • Cold Subduction and the Formation of Lawsonite Eclogite – Constraints from Prograde Evolution of Eclogitized Pillow Lava from Corsica
    J. metamorphic Geol., 2010, 28, 381–395 doi:10.1111/j.1525-1314.2010.00870.x Cold subduction and the formation of lawsonite eclogite – constraints from prograde evolution of eclogitized pillow lava from Corsica E. J. K. RAVNA,1 T. B. ANDERSEN,2 L. JOLIVET3 AND C. DE CAPITANI4 1Department of Geology, University of Tromsø, N-9037 Tromsø, Norway ([email protected]) 2Department of Geosciences and PGP, University of Oslo, PO Box 1047, Blindern, 0316 Oslo, Norway 3ISTO, UMR 6113, Universite´ dÕOrle´ans, 1A Rue de la Fe´rollerie, 45071 Orle´ans, Cedex 2, France 4Mineralogisch-Petrographisches Institut, Universita¨t Basel, Bernoullistrasse 30, 4056 Basel, Switzerland ABSTRACT A new discovery of lawsonite eclogite is presented from the Lancoˆne glaucophanites within the Schistes Lustre´ s nappe at De´ file´ du Lancoˆne in Alpine Corsica. The fine-grained eclogitized pillow lava and inter- pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter-pillow matrix consist of zoned idiomorphic Mg-poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth-type zoning with a Mn-rich core. In the inter-pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites.
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • Chapter 5. the Eclogite Engine
    Chapter 5 The eclogite engine The World's great age begins anew, being recognized that large blocks of eclogite in The golden years return, the mantle may be an important fertility source. Delaminated continental crust differs in many The Earth doth like a snake renew important respects from recycled MORB. It does Her winter weeds outgrown not go through subduction zone and seafloor pro­ Shelley cessing, it starts out hotter than MORB, it may occur in bigger blobs, and it is not accompanied by the same amount, if any, of buoyant infer­ The water cycle drives geological processes at tile harzburgite. Figure 5.1 illustrates the lower the surface. TI1e fact that water coexists as fluid, crust delamination cycle. The crust thickens by vapor and solid is crucial in shaping the Earth's tectonic or igneous processes, eventually forming surface. The fact that conditions in the upper dense eclogite that detaches and sinks into the mantle can readily convert eclogite to magma to mantle. It reaches a level of neutral buoyancy and basalt, and back, with enormous density changes, starts to warm up. Eventually it rises and forms a is crucial in global magmatism and tectonics. warm fertile patch in the mantle. If the overlying Phase changes in the mafic components of the continents have moved off, a midplate magmatic upper mantle are larger than thermal expansion province is the result. effects and they drive the eclogite engine. Thermal expansion is the main source of There are several ways to generate massive buoyancy in thermal convection of simple flu­ melting in the mantle; one is to bring hot mate­ ids.
    [Show full text]
  • What We Know About Subduction Zones from the Metamorphic Rock Record
    What we know about subduction zones from the metamorphic rock record Sarah Penniston-Dorland University of Maryland Subduction zones are complex We can learn a lot about processes occurring within active subduction zones by analysis of metamorphic rocks exhumed from ancient subduction zones Accreonary prism • Rocks are exhumed from a wide range of different parts of subduction zones. • Exhumed rocks from fossil subduction zones tell us about materials, conditions and processes within subduction zones • They provide complementary information to observations from active subduction systems Tatsumi, 2005 The subduction interface is more complex than we usually draw Mélange (Bebout, and Penniston-Dorland, 2015) Information from exhumed metamorphic rocks 1. Thermal structure The minerals in exhumed rocks of the subducted slab provide information about the thermal structure of subduction zones. 2. Fluids Metamorphism generates fluids. Fossil subduction zones preserve records of fluid-related processes. 3. Rheology and deformation Rocks from fossil subduction zones record deformation histories and provide information about the nature of the interface and the physical properties of rocks at the interface. 4. Geochemical cycling Metamorphism of the subducting slab plays a key role in the cycling of various elements through subduction zones. Thermal structure Equilibrium Thermodynamics provides the basis for estimating P-T conditions using mineral assemblages and compositions Systems act to minimize Gibbs Free Energy (chemical potential energy) Metamorphic facies and tectonic environment SubduconSubducon zone metamorphism zone metamorphism Regional metamorphism during collision Mid-ocean ridge metamorphism Contact metamorphism around plutons Determining P-T conditions from metamorphic rocks Assumption of chemical equilibrium Classic thermobarometry Based on equilibrium reactions for minerals in rocks, uses the compositions of those minerals and their thermodynamic properties e.g.
    [Show full text]
  • Eclogite Formation and the Rheology, Buoyancy, Seismicity, and H2O
    Eclogite Formationand the Rheology,Buoyancy, Seismicity,and H20 Contentof OceanicCrust BradleyR. Hacker1 Departmentof Geologicaland EnvironmentalSciences, Stanford University, Stanford, California A broad spectrumof variably altered igneous rocks with a wide range of grain sizes are compressedand heated over a wide range of pressure-temperaturepaths in subductionzones. Although experimentalkinetic data cannotbe extrapolatedto predict the rates of blueschistand eclogite formation in nature, textural data from rocks indicate that transformationbelow temperaturesof 150øCis minimal. Completetransformation of volcanicrocks occurs by •-250øC, but incompletetransformation of gabbroicrocks heatedto 800øC has been observed.There are important consequencesto the rapid transformation of volcanic rocks and the metastable persistenceof gabbroicrocks into the blueschistand eclogite stability fields. Fast seismic velocities shouldbe evident first in the upper oceaniccrust and may be substantiallyretarded in the lower oceaniccrust. The upper oceaniccrust will be denserthan asthenospherebefore the lower oceanic crust.Early in the processof eclogiteformation, volcanic rocks will be placedin deviatorictension and the underlyingcoarser grained rocks in compression;with furtherreaction, the stateof stressin gabbroicrocks will changefrom compressiveto tensile.Earthquakes at shallowdepths should be extensional in basalt and contractionalin gabbro, changing at deeper levels to extensional throughoutthe crust. INTRODUCTION This paper summarizes the rates and
    [Show full text]
  • Metasomatic Evolution of Coesite-Bearing Diamondiferous Eclogite from the Udachnaya Kimberlite
    minerals Article Metasomatic Evolution of Coesite-Bearing Diamondiferous Eclogite from the Udachnaya Kimberlite Denis Mikhailenko 1,2,* , Alexander Golovin 1, Andrey Korsakov 1 , Sonja Aulbach 3,4 , Axel Gerdes 3,4 and Alexey Ragozin 1 1 Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; [email protected] (A.G.); [email protected] (A.K.); [email protected] (A.R.) 2 State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China 3 Institut für Geowissenschaften, Goethe-Universität, Frankfurt am Main, 60323 Frankfurt, Germany; [email protected] (S.A.); [email protected] (A.G.) 4 Frankfurt Isotope and Element Research Center (FIERCE), Goethe- Universität Frankfurt, Frankfurt am Main, 60323 Frankfurt, Germany * Correspondence: [email protected] Received: 4 December 2019; Accepted: 19 April 2020; Published: 24 April 2020 Abstract: A coesite-bearing diamondiferous eclogite from the Udachnaya kimberlite (Daldyn field, Siberian craton) has been studied to trace its complex evolution recorded in rock-forming and minor mineral constituents. The eclogite sample is composed of rock-forming omphacite (60 vol%), garnet (35 vol%) and quartz/coesite (5 vol%) and contains intergranular euhedral zoned olivine crystals, up to 200 µm long, coexisting with phlogopite, orthopyroxene, clinopyroxene (secondary), K-feldspar, plagioclase, spinel, sodalite and djerfisherite. Garnet grains are zoned, with a relatively homogeneous core and a more magnesian overgrowth rim. The rim zones further differ from the core in having higher Zr/Y (6 times that in the cores), ascribed to interaction with, or precipitation from, a kimberlite-related melt.
    [Show full text]
  • Inhibited Eclogite Formation: the Key to the Rapid Growth of Strong and Buoyant Archean Continental Crust
    Inhibited eclogite formation: The key to the rapid growth of strong and buoyant Archean continental crust M.G. Bjùrnerud Geology Department, Lawrence University, Appleton, Wisconsin 54912, USA H. Austrheim Physics of Geological Processes Project and Department of Earth Sciences, Postbox 1047, University of Oslo, Oslo N-0316, Norway ABSTRACT Subduction is the principal mechanism by which the hydrosphere and interior of Earth interact. Today, subduction involves the dehydration of ocean crust at depths of 60±120 km depending on the age of the slab. Release of the water leads to generation of arc magmas (future continental crust), and the slab is then transformed into denser eclo- gite that helps to pull more of the slab into the trench. However, it is unlikely that the ®rst continental crust formed this way. Growing geochemical evidence indicates that large volumes of continental crust were produced over a short period of time in the Archean, when the planet was probably too hot for modern plate tectonics to operate. A signi®cant increase in the kinetics of eclogite-forming reactions may have been the key to the tran- sition from Archean to modern tectonics. Under the higher geothermal gradients of the Archean, tectonically buried ocean crust would have been severely dehydrated before reaching eclogite facies pressures. Because rapid eclogitization is dependent on water as a medium for advective ion transport, the very shallow dehydration in the Archean may have inhibited the formation of eclogite facies minerals. The importance of water in eclo- gite metamorphism is illustrated by a complex of partly eclogitized ma®c granulites in Holsnùy, western Norway, in which reaction progress was limited by the availability of water.
    [Show full text]
  • Petrogenesis of Eclogite and Mafic Granulite Xenoliths from South
    Petrogenesis of eclogite and mafic granulite xenoliths from South Australian Jurassic kimberlitic intrusions: Tectonic Implications Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology Angus Tod November 2012 1 PETROGENESIS OF GITE ECLO AND MAFIC GRANULITE XENOLITHS FROM SOUTH AUSTRALIAN JURASSIC KIMBERLITIC TRUSIONS: IN TECTONIC IMPLICATIONS ANGASTON, EL ALAMEIN AND PITCAIRN ECLOGITES AND MAFIC TES GRANULI ABSTRACT Jurassic kimberlites in South Australia have entrained sub lithospheric mafic granulites and eclogites from the eastern margin of the Australian Craton. This thesis looks at these rocks as a unique window into the sub-lithospheric mantle beneath the south eastern margin of Gondwana. Samples collected from Angaston, El Alamein and Pitcairn included eclogites, amphibole eclogites, amphibole granulites and feldspar rich granulites. These samples were prepared for analytical work at the University of Adelaide. Whole rock geochemistry was collected from x-ray fluorescence in the Mawson Laboratories. Mineral identification and geochemistry was determined by the Cameca SX 51 microprobe at Adelaide Microscopy. Geothermobarometry showed pressures between 6-30kbar, which represent 15-90km of depth and temperatures between 620-1200oC. These rocks experience very high pressure and temperatures and show petrological evidence of isobaric cooling path from the adiabat to the stable geotherm. Magma crystallisation models using MELTS program helped to determine the protoliths that appear to represent mafic underplates. The cumulate and melts that make up these xenoliths have been shown in this thesis to most likely have been derived from a MORB source that crystallised at high pressures (up to 30kbar). Pseudosections produced with the Theriak-Domino program were used to produce a metamorphic path and show that rock type is closely linked to emplacement depth and bulk composition.
    [Show full text]
  • Eclogite and Blueschist in the Southern New England Fold Belt: P–T–T Conditions and Long-Lived Subduction on the Gondwanan Eastern Margin
    Eclogite and blueschist in the Southern New England Fold Belt: P–T–t conditions and long-lived subduction on the Gondwanan eastern margin Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology Renée Jade Tamblyn November 2016 Renée Jade Tamblyn Eclogite and blueschist in eastern Gondwana ECLOGITE AND BLUESCHIST IN THE SOUTHERN NEW ENGLAND FOLD BELT: P–T–T CONDITIONS AND LONG-LIVED SUBDUCTION ON THE GONDWANAN EASTERN MARGIN RUNNING TITLE: Eclogite and blueschist in eastern Gondwana ABSTRACT Eclogite and blueschist in the Tasminides represent clear evidence for subduction- related metamorphism on the Gondwanan eastern margin during the Palaeozoic. These eclogites and blueschists are located in the serpentinite-bearing Peel Manning Fault System in the Southern New England Fold Belt (SNEFB) of eastern Australia. U–Pb zircon and Lu–Hf and Sm–Nd multimineral geochronology give ages of ca. 490 Ma for lawsonite-bearing eclogite and ca. 470 Ma for garnet-bearing blueschist at Port Macquarie in the SNEFB, in agreement with Cambro-Ordovician dates for eclogite metamorphism across the eastern Gondwanan margin. In combination with this, Ar–Ar data dates exhumation and cooling in the subduction channel at ca. 460 Ma, suggesting that high-pressure metamorphism at Port Macquarie was continuously active for upwards of 40 Ma. This is supported by mineral equilibria forward modeling, which demonstrates that 24–27 kbar eclogite from Port Macquarie and Pigna Barney in the SNEFB experienced high-pressure but low-temperature retrograde paths, consistent with their residence in the subduction channel. Geochemical and isotopic results suggest that MORB as well as oceanic arc-related material was subducted and metamorphosed in a westwards dipping subduction system on the Australian cratonic margin during the ca.
    [Show full text]
  • Eclogitization and Exhumation of Caledonian Continental Basement in Lofoten, North Norway
    Eclogitization and exhumation of Caledonian continental basement in Lofoten, North Norway Mark G. Steltenpohl1, Gabriel Kassos1, Arild Andresen2, Emma F. Rehnström3, and Willis E. Hames1 1Department of Geology and Geography, Auburn University, Auburn, Alabama 36849, USA 2Department of Geosciences, University of Oslo, Box 1047, Oslo 3, Norway 3Geological Survey of Denmark and Greenland, Ø Voldgade 10, DK-1450 Copenhagen, Denmark ABSTRACT and Bergen Arcs allochthons that were later INTRODUCTION thrust onto Baltica during the main Scandian U-Pb and 40Ar/39Ar isotopic data com- (Siluro–Devonian) collision. Lofoten eclogites Eclogites are important indicators of plate bine with structural and petrological infor- appear to be ca. 50 m.y. older than the “late” tectonic processes but constitute only a very mation to allow insights into the timing of group of autochthonous, Scandian (ca. 425– minor volume of continental basement exposed Caledonian tectonic burial and exhumation 400 Ma) high-pressure and ultrahigh-pressure today at the Earth’s surface. The Western Gneiss of lower crustal rocks now exposed in the (UHP) eclogites of the Western Gneiss Region (WGR) of west Norway (Fig. 1) is argu- Lofoten Islands of North Norway (latitude Region (WGR), and the former preserve a ably the largest, best exposed, most accessible, 68° N). Severely retrogressed eclogites occur much longer (ca. 100 m.y.) exhumation his- and now best studied eclogitized continental in rare lenses or, even more rarely, hydrated tory. To date, there is no evidence to indicate basement terrane in the world (Dobrzhinetskaya shear zones within Archaean and Proterozoic either UHP or Scandian eclogite-facies meta- et al., 1995; Hacker et al., 2003; Hacker, 2007; granulite-facies Baltic basement gneisses.
    [Show full text]
  • THE PRECAMBRIAN ROCKS of TASMANIA, PART VII NOTES on the PETROLOGY of SOME ROCKS from the PORT DAVEY-BATHURST HARBOUR AREA by A
    PAPERS AND PROCEEDINGS OF THE ROYAL SOCIETY OF TASMANIA, VOLUME 99. THE PRECAMBRIAN ROCKS OF TASMANIA, PART VII NOTES ON THE PETROLOGY OF SOME ROCKS FROM THE PORT DAVEY-BATHURST HARBOUR AREA By A. SPRY' and W. E. BAKER' (With two plates and two text figurea.) ABSTRACT No formal stratigraphic terms will be used in Petrological examination SUggests ,that the rocks this paper and it seems that, until formal strati­ of the Port Davey-Bathurst HaDbour area may be graphic terms can be useti in an ,accurate, under­ divided into .two main groups: the regionally meta­ standable manner, the stratigraphic names for this morphosed schists, quartzites, phyllites and amphi­ area may have to be abandoned. bolites which are probably older Precambrian, and the essentially unmetamorphosed sediments which PRINCIPLES are probably younger Precambrian. The latter can be divided into three main types; subgreywacke The rocks are divided into a number of litho­ sandstones and slates (Ua. Bay, Bramble Cove and logical assemblages using the amount of meta­ north eastern Bathurst Harbour), greywacke sand­ morphism and deformation as criteria following stones, slates and conglomerates (Joe Page Bay) Spry (1962a) because the structural and strati­ and orthoconglomerates and quartzites (Mts. graphic relations are not yet clear from field Rugby, Berry, &c.). studies. The low ,to medium-grade metamorphics strongly resemble rocks at Frenchmans Cap, the upper Mersey-Forbh area and Ulverstone, and INTRODUCTION are assigned to the Older Precambrian (Spry The geology of the remote south-western corner 1962a) , Moderately deformed but unmeta­ of Tasmania is complex 'and observations by morphosed sediments resemble rocks between Twelvetrees (1906, 1908, 1909), Baker (957), Zeehan and Corinna and along the North-West Stefanski (1957), and Taylor (1959) have left Coast (Spry 1957a, 1964) and may be Younger major problems of structure and stratigraphy un­ Precambrian.
    [Show full text]
  • Subduction Interface Processes Recorded by Eclogite-Facies Shear Zones (Monviso, W. Alps)
    Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps) Samuel Angiboust, Philippe Agard, Hugues Raimbourg, Philippe Yamato, Benjamin Huet To cite this version: Samuel Angiboust, Philippe Agard, Hugues Raimbourg, Philippe Yamato, Benjamin Huet. Subduc- tion interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps). Lithos, Elsevier, 2011, 127 (1-2), pp.222-238. 10.1016/j.lithos.2011.09.004. insu-00624611 HAL Id: insu-00624611 https://hal-insu.archives-ouvertes.fr/insu-00624611 Submitted on 24 Oct 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps) Angiboust, S., Agard, P. ISTEP, Université Paris 06-UPMC, UMR CNRS 7193, 75252 Cedex 05 PARIS, France Raimbourg, H. ISTO, UMR CNRS 6113, Campus Géosciences, 1A rue de la Férolerie, 45071 ORLEANS cedex 2, France Yamato, P. Geosciences Rennes, UMR CNRS 6118, Université de Rennes1 Campus Beaulieu CS 74205, F-35 042 Rennes Cedex France Huet, B. Department for Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Corresponding author: Samuel ANGIBOUST ISTeP, Université Pierre et Marie Curie, Case 129, 46-00 3e, 4, place Jussieu, 75252 PARIS Cedex 05, France 00 33 1 44274904 (Tel) / 00 33 1 44275085 (Fax) [email protected] Abstract The Monviso ophiolite Lago Superiore Unit constitutes a well-preserved, almost continuous upper fragment of oceanic lithosphere subducted at c.
    [Show full text]