Petition to List 12 Penguin Species Under the Endangered Species Act

Total Page:16

File Type:pdf, Size:1020Kb

Petition to List 12 Penguin Species Under the Endangered Species Act BEFORE THE SECRETARY OF THE INTERIOR PETITION TO LIST 12 PENGUIN SPECIES UNDER THE ENDANGERED SPECIES ACT Macaroni Penguin ©Thomas D. Mangelsen/Imagesofnaturestock.com Submitted November 28, 2006 Petitioned Species COMMON NAME SCIENTIFIC NAME Emperor Penguin Aptenodytes forsteri Southern Rockhopper Penguin Eudyptes chrysocome Southern Rockhopper Penguin Eudyptes chrysocome chrysocome Eastern Rockhopper Penguin Eudyptes chrysocome filholi Northern Rockhopper Penguin Eudyptes moseleyi (E. chrysocome moseleyi) Fiordland Crested Penguin Eudyptes pachyrhynchus Snares Crested Penguin Eudyptes robustus Erect-crested Penguin Eudyptes sclateri Macaroni Penguin Eudyptes chrysolophus Royal Penguin Eudyptes schlegeli White-flippered Penguin Eudyptula albosignata (E. minor albosignata) Yellow-eyed Penguin Megadyptes antipodes African Penguin Spheniscus demersus Humboldt Penguin Spheniscus humboldti On the Cover: Macaroni Penguin ©Thomas D. Mangelsen/Imagesofnaturestock.com Photo taken December 18, 2005, on South Georgia Island Acknowledgments: Many thanks to photographers Thomas D. Mangelsen, Jenny E. Ross, and Peter and Barbara Barham for the generous donation of their penguin images. The decades of research by so many members of the scientific community whose published work is cited herein are also gratefully acknowledged. Protection of these species would not be possible without the hard and selfless efforts of the researchers and managers who have devoted their careers to the understanding and protection of these animals. Authors: Brendan Cummings, Andrew Orahoske, and Kassie Siegel, Center for Biological Diversity Page ii EXECUTIVE SUMMARY The penguins (Order: Sphenisciformes; Family: Spheniscidae) are among the more threatened groups of birds in the world, with over half of the approximately 19 currently recognized species considered imperiled by the IUCN and BirdLife International (BirdLife 2006). Nevertheless, only one species of penguin, the Galápagos Penguin (Spheniscus mendiculus), is actually protected under the United States Endangered Species Act (“ESA”). This Petition requests that 12 additional species of penguin be similarly protected and listed as Threatened or Endangered under the ESA. The petitioned species are the Emperor Penguin (Aptenodytes forsteri), Southern Rockhopper Penguin (Eudyptes chrysocome), Northern Rockhopper Penguin (Eudyptes moseleyi), Fiordland Crested Penguin (Eudyptes pachyrhynchus), Snares Crested Penguin (Eudyptes robustus), Erect-crested Penguin (Eudyptes sclateri), Macaroni Penguin (Eudyptes chrysolophus), Royal Penguin (Eudyptes schlegeli), White-flippered Penguin (Eudyptula albosignata), Yellow-eyed Penguin (Megadyptes antipodes), African Penguin Spheniscus demersus), and Humboldt Penguin (Spheniscus humboldti). Each of the petitioned penguin species faces unique and specific threats, ranging from introduced predators, disease, habitat destruction, disturbance at breeding colonies, oil spills, marine pollution, and in some cases, direct harvest. Additionally, most species are also impacted by fisheries, either directly, such as when individuals are caught and killed in trawls, nets and longlines, or indirectly, through the depletion of essential prey species such as krill. Cumulatively, these threats are for most of the petitioned species already of significant magnitude and impact such that listing under the ESA is warranted. Moreover, an additional overriding threat, affecting each species, makes listing under the ESA all the more urgent. Global warming has already been linked to past, ongoing, and/or projected population declines in numerous species of penguins. Even under the most optimistic emission scenarios, continued warming over the next several decades will dramatically and irreversibly affect Antarctica, the Sub-Antarctic islands, the Southern Ocean, and the penguins dependant on these and adjoining ecosystems. Global warming then represents the most significant and pervasive threat to the continued existence of penguins, and absent prompt action to cut United States and global greenhouse gas emissions, the march of the penguins will be a march towards extinction. The penguin species subject of this Petition are either already endangered or will likely be endangered in the foreseeable future; they therefore meet the criteria for listing as “Endangered” or “Threatened” under the ESA. Although species like the Emperor Penguin may not disappear for several decades, decisions made and actions taken over the next decade will likely dictate whether such species can survive. Only with prompt action to drastically reduce greenhouse gas emissions can the future of the Emperor and all other penguins be assured. The United States must play a leading role in this global effort. Listing the petitioned penguin species under the ESA is a small but significant step in that direction. Page iii Eastern Rockhopper Penguin Eudyptes chrysocome filholi Northern Rockhopper Penguin Eudyptes moseleyi (E. chrysocome moseleyi) Fiordland Crested Penguin Eudyptes pachyrhynchus Snares Crested Penguin Eudyptes robustus Erect-crested Penguin Eudyptes sclateri Macaroni Penguin Eudyptes chrysolophus Royal Penguin Eudyptes schlegeli White-flippered Penguin Eudyptula albosignata (E. minor albosignata) Yellow-eyed Penguin Megadyptes antipodes African Penguin Spheniscus demersus Humboldt Penguin Spheniscus humboldti With the exception of the Emperor Penguin, each of these species is recognized as threatened with extinction (Vulnerable or Endangered) by the World Conservation Union (“IUCN”) and BirdLife International. For each species, the primary threats to its continued existence stem from changing environmental conditions, including reduced food availability, as a result of human-induced global warming and industrial fishing. For many of the species additional threats include introduced predators, disease, habitat destruction, disturbance to breeding colonies, oil spills, marine pollution, and in some cases, direct harvest. The term “species” is defined broadly under the ESA to include “any subspecies of fish or wildlife or plants and any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature.” 16 U.S.C. § 1532 (16). A Distinct Population Segment (“DPS”) of a vertebrate species can be protected as a “species” under the ESA even though it has not formally been described as a “species” in the scientific literature. A species may be composed of several DPSs, some or all of which warrant listing under the ESA. As described in this Petition, penguin taxonomy is rapidly changing, with between 16 and 19 species currently recognized. In the current cases of taxonomic dispute regarding penguins, the primary issue is whether a distinct breeding population should be recognized as a separate species or subspecies or be considered part of a more widely distributed taxon. We have followed the treatments using the most recent genetic data (Baker et al. 2006; Jouventin et al. 2006) and recognize 19 species. However, regardless of whether the petitioned taxa are recognized by FWS as biological species (or subspecies), each of these populations also constitute DPSs under the ESA and FWS’ “Policy Regarding the Recognition of Distinct Vertebrate Population Segments under the Endangered Species Act.” 61 Fed. Reg. 4721. As such, each petitioned taxon is a “species” under the ESA. Petitioners therefore request that FWS evaluate whether each of the penguin taxa described in this petition may warrant listing under the ESA as threatened or endangered. In analyzing whether a species warrants listing under the ESA, FWS must examine whether the species is threatened or endangered throughout all or a significant portion of its range. In the event FWS determines that the Petition fails to demonstrate that listing of any of the petitioned species may be warranted in all of its range, we request that, in the alternative, FWS consider whether the species is imperiled in “a significant portion of its range.” Page v FWS has jurisdiction over this Petition. This Petition sets in motion a specific process, placing definite response requirements on FWS. Specifically, FWS must issue an initial finding as to whether the Petition “presents substantial scientific or commercial information indicating that the petitioned action may be warranted.” 16 U.S.C. § 1533(b)(3)(A). FWS must make this initial finding “[t]o the maximum extent practicable, within 90 days after receiving the petition.” Id. Petitioners need not demonstrate that listing of each species is warranted, rather, Petitioners must only present information demonstrating that such listing may be warranted. While Petitioners believe that the best available science demonstrates that listing each of the petitioned species of penguin as threatened or endangered is in fact warranted, there can be no reasonable dispute that the available information indicates that listing each species as either threatened or endangered may be warranted. As such, FWS must promptly make a positive initial finding on the petition and commence a status review as required by 16 U.S.C. § 1533(b)(3)(B). As each of the Petitioned species occurs in areas outside of the United States, Petitioners believe this petition should be processed by FWS’s Division of Scientific Authority pursuant to the agency’s current policy for listing foreign species. See 69 Fed. Reg. 29354 (May 21, 2004)(Annual Notice of Findings on Resubmitted Petitions for Foreign Species; Annual Description of Progress
Recommended publications
  • Fidelity to Nest Site and Mate in Fiordland Crested Penguins 37
    1999 St Clair et al.: Fidelity to nest site and mate in Fiordland Crested Penguins 37 FIDELITY TO NEST SITE AND MATE IN FIORDLAND CRESTED PENGUINS EUDYPTES PACHYRHYNCHUS COLLEEN CASSADY ST CLAIR1, IAN G. McLEAN2,3, JAN O. MURIE1, STEPHEN M. PHILLIPSON4 & BELINDA J.S. STUDHOLME5 1Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada ([email protected]) 2Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch 1, New Zealand 3Current Address: Natural Heritage Division, Kings Park and Botanic Gardens, West Perth, WA 6005, Australia 4Department of Conservation, PO Box 8, Arthur’s Pass, New Zealand 546A Hackthorne Road, Christchurch 2, New Zealand SUMMARY ST CLAIR, C.C., McLEAN, I.G., MURIE, J.O., PHILLIPSON, S.M. & STUDHOLME, B.J.S. 1999. Fidelity to nest site and mate in Fiordland Crested Penguins Eudyptes pachyrhynchus. Marine Ornithology 27: 37–41. Fiordland Crested Penguins Eudyptes pachyrhynchus are the least gregarious of the crested penguins, breed- ing in caves, burrows, and under dense vegetation along the coast of Fiordland, New Zealand. A popula- tion on Open Bay Island was monitored, with varying degrees of intensity, from 1988 to 1995. During this period, 175 adults were banded in three semi-contiguous areas and their returns to 46 mapped nest sites were recorded. In 1989, reproductive success to the crèche stage was also known. Return rates (used here as minimum annual survival estimates) ranged from 53–83% with means of 71% for both sexes. Mean nest fidelity averaged 76% for males and 72% for females with slightly lower values for mate fidelity (64% for males, 62% for females).
    [Show full text]
  • African Penguin Colony
    An Innovative and Inspiring Space for a Growing African Penguin Colony enguins are among the most iconic and beloved avian groups, and the PCincinnati Zoo & Botanical Garden is embarking on an opportunity to further their engagement in care and conservation of African Penguins. This species in particular is endangered in their native range and requires the collective focus of zoos, aquariums, and other conservation organizations to ensure its survival into the future. The Cincinnati Zoo is seeking to construct a new habitat space for African Penguins that will allow for our colony to grow from 11 birds to 30+, which will contribute immensely to ex-situ conservation efforts, not to mention inspiring our visitors to care more about the species’ plight. A brand new habitat offers the opportunity to dream and innovate and truly bring the best experience to its animal residents. The new African Penguin habitat at the Cincinnati Zoo will be three times larger than the current space and offer a variety of new habitat feature to maximize their welfare, including: a dynamic pool area to encourage natural swimming behavior and exercise, natural substrates to dig into and to promote improved foot health, outdoor heating and cooling so that penguins can stay outside longer in the year, and a dramatically larger indoor bedroom area with a pool and UV-transmitting skylights to ensure health and comfort during our Cincinnati winter. African Penguin reproduction will be a key goal of this new habitat, and the new habitat and bedroom area will offer the opportunity to expand our nesting sites and maximize successful rearing of chicks.
    [Show full text]
  • Two Independent Methods for Mapping the Grounding Line of an Outlet Glacier – Example from the Astrolabe Glacier, Terre Adélie, Antarctica” by E
    The Cryosphere Discuss., 7, C3398–C3407, 2014 Open Access www.the-cryosphere-discuss.net/7/C3398/2014/ The Cryosphere TCD © Author(s) 2014. This work is distributed under Discussions the Creative Commons Attribute 3.0 License. 7, C3398–C3407, 2014 Interactive Comment Interactive comment on “Two independent methods for mapping the grounding line of an outlet glacier – example from the Astrolabe Glacier, Terre Adélie, Antarctica” by E. Le Meur et al. E. Le Meur et al. [email protected] Received and published: 10 March 2014 Full Screen / Esc We here reconsider the main scientific comments of the 2 reviewers (in quotes) and reply to each of them and make reference to the changes done in the new version Printer-friendly Version of the paper when necessary. The new figure 7 (now figure 8) is presented as it re- Interactive Discussion veals the major changes effectuated on the hydrostatic grounding line mainly resulting from a smaller average density for the ice column. Also added is a new figure (fig.15) Discussion Paper which explains one important aspect of the paper (the difference between kinematic and hydrostatic GL points) C3398 ************* Referee 1 ** ************* TCD This manuscript of Le Meur et al. is about the mapping of the Astrolabe glacier ground- ing line (GL) using radar profiles and GPS data (static and dynamic methods respec- 7, C3398–C3407, 2014 tively). Static groundings lines from imagery are available for this glacier but there are known issues associated with these datasets for outlet glaciers. Their study manages to better constrain the Astrolabe glacier grounding line position to 2-20 km downstream Interactive of the latest GL from Bindschadler et al.
    [Show full text]
  • Colour Aberrations in African Penguins 19 COLOUR ABERRATIONS in AFRICAN PENGUINS SPHENISCUS DEMERSUS
    Traisnel et al.: Colour aberrations in African Penguins 19 COLOUR ABERRATIONS IN AFRICAN PENGUINS SPHENISCUS DEMERSUS GWENDOLINE TRAISNEL1, LORIEN PICHEGRU1, HENVIK J. VISSER2 & LLOYD C. EDWARDS3 1 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research and Department of Zoology at the Nelson Mandela University, Port Elizabeth, South Africa ([email protected]) 2 Addo Elephant Marine Section, South African National Parks, Port Elizabeth, South Africa 3 Raggy Charters, Port Elizabeth, South Africa Received 31 July 2017, accepted 3 October 2017 ABSTRACT TRAISNEL, G., PICHEGRU, L., VISSER, H.J. & EDWARDS, L.C. 2018. Colour aberrations in African Penguins Spheniscus demersus. Marine Ornithology 46: 19–22. Colour aberrations among wild birds are of long-time interest because they are uncommon, particularly in seabirds, although recent publications have revealed varying forms of aberrations in cormorants and penguins. In African Penguins Spheniscus demersus, there have been previous sightings of abnormal plumages, particularly in Algoa Bay, South Africa. This paper reveals new cases of plumage aberrations in African Penguins: leucism, “brown,” and phaeomelanism, all within Algoa Bay. While all aberrations seemed of natural origin, one in the shape of a number eight may have resulted from human actions. Key words: African Penguin, abnormal plumages, Algoa Bay, leucism, phaeomelanism, “brown” INTRODUCTION but also an effort on the part of the scientific community to report these rare observations. For example, albinism has been recently Production of melanin pigments eumelanin and phaeomelanin recorded in shags and cormorants (Cook et al. 2012, Crossland can be subject to alterations, both of heritable and non-heritable 2012), as has isabel (incorrect term, as the mutation involved was origin, resulting in abnormalities in plumage colour (van Grouw “brown”) (Oosthuizen & De Bruyn, 2009) and ino (Juàres et al.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • SPIRIT-IPY: List of Publications
    SPIRIT-IPY: List of Publications SPOT 5 stereoscopic survey of Polar Ice: Reference Images & Topographies during the fourth International Polar Year (2007-2009) Do not know what is the SPIRIT project? Then, read the scientific paper below: http://etienne.berthier.free.fr/download/Korona_et_al_ISPRS_2009.pdf or this short 3-page summary written for the COSPAR: http://etienne.berthier.free.fr/download/Berthier_et_al_COSPAR_2010.pdf 2008 (#1) Stearns, L. A., Smith, B. E. and Hamilton, G. S.: Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods, Nature Geoscience, 1(12), 827–831, 2008. ------ 2009 (#2) Korona, J., Berthier, E., Bernard, M., Remy, F. and Thouvenot, E.: SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009), ISPRS J Photogramm, 64, 204–212, doi:10.1016/j.isprsjprs.2008.10.005, 2009. Memin, A., Rogister, Y., Hinderer, J., Llubes, M., Berthier, E. and Boy, J.-P.: Ground deformation and gravity variations modelled from present-day ice-thinning in the vicinity of glaciers, Journal of Geodynamics, 48(3-5), 195–203, doi:10.1016/j.jog.2009.09.006, 2009. ------ 2010 (#8) Berthier, E.: Volume loss from Bering Glacier (Alaska), 1972 – 2003: comment on Muskett and others (2009), J Glaciol, 56(197), 555–557, 2010. Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B. and Remy, F.: Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery, Nat Geosci, 3(2), 92–95, doi:10.1038/ngeo737, 2010. Moholdt, G., Nuth, C., Hagen, J. O. and Kohler, J.: Recent elevation changes of Svalbard glaciers derived from repeat track ICESat altimetry, Remote Sensing of the Environment, 114(11), 2756–2767, 2010.
    [Show full text]
  • Aranhas (Araneae, Arachnida) Do Estado De São Paulo, Brasil: Diversidade, Esforço Amostral E Estado Do Conhecimento
    Biota Neotrop., vol. 11(Supl.1) Aranhas (Araneae, Arachnida) do Estado de São Paulo, Brasil: diversidade, esforço amostral e estado do conhecimento Antonio Domingos Brescovit1,4, Ubirajara de Oliveira2,3 & Adalberto José dos Santos2 1Laboratório de Artrópodes, Instituto Butantan, Av. Vital Brasil, n. 1500, CEP 05503-900, São Paulo, SP, Brasil, e-mail: [email protected] 2Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antonio Carlos, n. 6627, CEP 31270-901, Belo Horizonte, MG, Brasil, e-mail: [email protected], [email protected] 3Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG 4Autor para correspondência: Antonio Domingos Brescovit, e-mail: [email protected] BRESCOVIT, A.D., OLIVEIRA, U. & SANTOS, A.J. Spiders (Araneae, Arachnida) from São Paulo State, Brazil: diversity, sampling efforts, and state-of-art. Biota Neotrop. 11(1a): http://www.biotaneotropica.org. br/v11n1a/en/abstract?inventory+bn0381101a2011. Abstract: In this study we present a database of spiders described and registered from the Neotropical region between 1757 and 2008. Results are focused on the diversity of the group in the State of São Paulo, compared to other Brazilian states. Data was compiled from over 25,000 records, published in scientific papers dealing with Neotropical fauna. These records enabled the evaluation of the current distribution of the species, the definition of collection gaps and priority biomes, and even future areas of endemism for Brazil. A total of 875 species, distributed in 50 families, have been described from the State of São Paulo.
    [Show full text]
  • Longevity in Little Penguins Eudyptula Minor
    71 LONGEVITY IN LITTLE PENGUINS EUDYPTULA MINOR PETER DANN1, MELANIE CARRON2, BETTY CHAMBERS2, LYNDA CHAMBERS2, TONY DORNOM2, AUSTIN MCLAUGHLIN2, BARB SHARP2, MARY ELLEN TALMAGE2, RON THODAY2 & SPENCER UNTHANK2 1 Research Group, Phillip Island Nature Park, PO Box 97, Cowes, Phillip Island, Victoria, 3922, Australia ([email protected]) 2 Penguin Study Group, PO Box 97, Cowes, Phillip Island, Victoria, 3922, Australia Received 17 June 2005, accepted 18 November 2005 Little Penguins Eudyptula minor live around the mainland and Four were females, two were males and one was of unknown sex offshore islands of southern Australia and New Zealand (Marchant (Table 1). The oldest of the birds was a male that was banded by the & Higgins 1990). They are the smallest penguin species extant, Penguin Study Group as a chick before fledging on Phillip Island breeding in burrows and coming ashore only after nightfall. Most on 2 January 1976 in a part of the colony known as “the Penguin of their mortality appears to result from processes occurring at sea Parade.” This bird was not recorded again after initial banding (Dann 1992). The average life expectancy of breeding adult birds until it was five years old and was found raising two chicks at the is approximately 6.5 years (Reilly & Cullen 1979, Dann & Cullen Penguin Parade. This individual had a bill depth measurement 12% 1990, Dann et al. 1995); however, some individuals in southeastern less than the mean for male penguins from Phillip Island (Arnould Australia have lived far in excess of the average life expectancy. et al. 2004), but was classified as a male based on the sex of its mates (sexed as females from the presence of cloacal distension Approximately 44 000 birds have been flipper-banded on Phillip following egg-laying or from their bill-depth measurements).
    [Show full text]
  • Introducing the Emperor of Antarctica
    Read the passage. Then answer the question below. Introducing the Emperor of Antarctica A plump five-foot figure, wearing what looks like a tuxedo, walks across a frozen landscape. Suddenly, the figure drops to its belly and paddles its limbs as if swimming. Sound strange? Actually, it is the emperor of Antarctica…the emperor penguin, that is. One could easily argue that the emperor penguin is the king of survival. These amazing creatures live in the harshest climate on earth. Temperatures in Antarctica regularly reach –60°C and blizzards can last for days. But in this frigid world, the emperors swim, play, breed, and raise their chicks. Although emperor penguins are birds, they are unable to take flight. Rather, they do their “flying” in the water. Their flipper-like wings and sleek bodies make them expert swimmers. Emperors are able to dive deeper than any other bird and can stay under water for up to 22 minutes. The emperors are so at home in the water that young penguins enter the water when they are just six months old. Like many birds, the emperor penguins migrate during the winter. This migration, however, is very different. Each year, as winter approaches, the penguins leave the comfort—and food supply—of the ocean to begin a 70-mile journey across the ice. Walking single file, the penguins waddle along for days, flopping to their bellies and pushing themselves along with their flippers when their feet get tired. Along the way, colonies of penguins meet up with other colonies all headed for the same place—the safety of their breeding grounds.
    [Show full text]
  • Table 1 Comprehensive International Points List
    Table 1 Comprehensive International Points List FCC ITU-T Country Region Dialing FIPS Comments, including other 1 Code Plan Code names commonly used Abu Dhabi 5 971 TC include with United Arab Emirates Aden 5 967 YE include with Yemen Admiralty Islands 7 675 PP include with Papua New Guinea (Bismarck Arch'p'go.) Afars and Assas 1 253 DJ Report as 'Djibouti' Afghanistan 2 93 AF Ajman 5 971 TC include with United Arab Emirates Akrotiri Sovereign Base Area 9 44 AX include with United Kingdom Al Fujayrah 5 971 TC include with United Arab Emirates Aland 9 358 FI Report as 'Finland' Albania 4 355 AL Alderney 9 44 GK Guernsey (Channel Islands) Algeria 1 213 AG Almahrah 5 967 YE include with Yemen Andaman Islands 2 91 IN include with India Andorra 9 376 AN Anegada Islands 3 1 VI include with Virgin Islands, British Angola 1 244 AO Anguilla 3 1 AV Dependent territory of United Kingdom Antarctica 10 672 AY Includes Scott & Casey U.S. bases Antigua 3 1 AC Report as 'Antigua and Barbuda' Antigua and Barbuda 3 1 AC Antipodes Islands 7 64 NZ include with New Zealand Argentina 8 54 AR Armenia 4 374 AM Aruba 3 297 AA Part of the Netherlands realm Ascension Island 1 247 SH Ashmore and Cartier Islands 7 61 AT include with Australia Atafu Atoll 7 690 TL include with New Zealand (Tokelau) Auckland Islands 7 64 NZ include with New Zealand Australia 7 61 AS Australian External Territories 7 672 AS include with Australia Austria 9 43 AU Azerbaijan 4 994 AJ Azores 9 351 PO include with Portugal Bahamas, The 3 1 BF Bahrain 5 973 BA Balearic Islands 9 34 SP include
    [Show full text]
  • ISO Country Codes
    COUNTRY SHORT NAME DESCRIPTION CODE AD Andorra Principality of Andorra AE United Arab Emirates United Arab Emirates AF Afghanistan The Transitional Islamic State of Afghanistan AG Antigua and Barbuda Antigua and Barbuda (includes Redonda Island) AI Anguilla Anguilla AL Albania Republic of Albania AM Armenia Republic of Armenia Netherlands Antilles (includes Bonaire, Curacao, AN Netherlands Antilles Saba, St. Eustatius, and Southern St. Martin) AO Angola Republic of Angola (includes Cabinda) AQ Antarctica Territory south of 60 degrees south latitude AR Argentina Argentine Republic America Samoa (principal island Tutuila and AS American Samoa includes Swain's Island) AT Austria Republic of Austria Australia (includes Lord Howe Island, Macquarie Islands, Ashmore Islands and Cartier Island, and Coral Sea Islands are Australian external AU Australia territories) AW Aruba Aruba AX Aland Islands Aland Islands AZ Azerbaijan Republic of Azerbaijan BA Bosnia and Herzegovina Bosnia and Herzegovina BB Barbados Barbados BD Bangladesh People's Republic of Bangladesh BE Belgium Kingdom of Belgium BF Burkina Faso Burkina Faso BG Bulgaria Republic of Bulgaria BH Bahrain Kingdom of Bahrain BI Burundi Republic of Burundi BJ Benin Republic of Benin BL Saint Barthelemy Saint Barthelemy BM Bermuda Bermuda BN Brunei Darussalam Brunei Darussalam BO Bolivia Republic of Bolivia Federative Republic of Brazil (includes Fernando de Noronha Island, Martim Vaz Islands, and BR Brazil Trindade Island) BS Bahamas Commonwealth of the Bahamas BT Bhutan Kingdom of Bhutan
    [Show full text]
  • Advisory Committee on Reactor Safeguards (ACRS)
    Federal Register / Vol. 77, No. 95 / Wednesday, May 16, 2012 / Notices 28903 FOR FURTHER INFORMATION CONTACT: Dates Detailed meeting agendas and meeting Polly A. Penhale at the above address or October 1, 2012 to December 30, 2012. transcripts are available on the NRC (703) 292–7420. Web site at http://www.nrc.gov/reading- Nadene G. Kennedy, rm/doc-collections/acrs. Information SUPPLEMENTARY INFORMATION: The Permit Officer, Office of Polar Programs. regarding topics to be discussed, National Science Foundation, as [FR Doc. 2012–11840 Filed 5–15–12; 8:45 am] changes to the agenda, whether the directed by the Antarctic Conservation BILLING CODE 7555–01–P meeting has been canceled or Act of 1978 (Pub. L. 95–541), as rescheduled, and the time allotted to amended by the Antarctic Science, present oral statements can be obtained Tourism and Conservation Act of 1996, from the Web site cited above or by has developed regulations for the NUCLEAR REGULATORY contacting the identified DFO. establishment of a permit system for COMMISSION Moreover, in view of the possibility that various activities in Antarctica and the schedule for ACRS meetings may be designation of certain animals and Advisory Committee on Reactor adjusted by the Chairman as necessary certain geographic areas requiring Safeguards (ACRS) Meeting of the to facilitate the conduct of the meeting, special protection. The regulations ACRS Subcommittee on Fukushima; persons planning to attend should check establish such a permit system to Notice of Meeting with these references if such designate Antarctic Specially Protected The ACRS Subcommittee on rescheduling would result in a major Areas.
    [Show full text]