N-Butane Partial Oxidation to Maleic Anhydride: Experimental and Kinetic Studies Under Transient Conditions

Total Page:16

File Type:pdf, Size:1020Kb

N-Butane Partial Oxidation to Maleic Anhydride: Experimental and Kinetic Studies Under Transient Conditions UNIVERSITÉ DE MONTRÉAL N-BUTANE PARTIAL OXIDATION TO MALEIC ANHYDRIDE: EXPERIMENTAL AND KINETIC STUDIES UNDER TRANSIENT CONDITIONS ALI SHEKARI DÉPARTEMENT DE GÉNIE CHIMIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION DU DIPLÔME DE PHILOSOPHIAE DOCTOR (Ph.D.) (GÉNIE CHIMIQUE) AOÛT 2011 © Ali Shekari, 2011. UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Cette thèse intitulée: N-BUTANE PARTIAL OXIDATION TO MALEIC ANHYDRIDE: EXPERIMENTAL AND KINETIC STUDIES UNDER TRANSIENT CONDITIONS présentée par : SHEKARI Ali en vue de l’obtention du diplôme de : Philosophiae Doctor a été dûment accepté par le jury d’examen constitué de : M. BUSCHMANN Michael D., Ph. D., président M. PATIENCE Gregory S., Ph. D., membre et directeur de recherche M. HENRY Olivier, Ph. D., membre M. BERK Dimitrios, Ph. D., membre iii DEDICATION To my family, for their endless care. iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisor, Professor Gregory S. Patience for his continual support, encouragement and friendship. His scientific knowledge and industrial experience helped me choose the right path during my research. Out of the academia, I enjoy being a friend of him and I appreciate his supportive attitude. I would also like to thank the Génie Chimique department staff, our chemists Martine Lamarche and Gino Robin and the technical assistance of Carol Painchaud, Jean Huard and Robert Delisle. Their support helped me pass through the experimental hurdles in the lab. During my studies, I had the opportunity of friendship with Jean-Philippe Laviolette, Mads Kristian Kaarsholm, François-Xavier Chiron, Milad Aghabararnejad, Patrice Perreault, Laurent Spreutels, Sherif Farag, Babak Esmaeili, Omid Ebrahimpour, and many more. Their friendship and interesting discussions on research topics made my PhD studies more prosperous. My appreciation goes to my family for their invaluable support, care and encouragement during my studies and my life. Without having them on my side, I could not have been where I am now. Finally, I would like to thank Nadi, my companion during these years. I appreciate her collaboration, care and support and being with me throughout the path to success. v RÉSUMÉ Cette thèse de doctorat présente l’activité transitoire du pyrophosphate de vanadyle (PPV), catalyseur utilisé par la compagnie Dupont pour la synthèse de l’anhydride maléique (AM) par oxydation partielle du n-butane. Les principaux objectifs de ce travail ont été de caractériser l’influence des paramètres ayant attrait à la nature redox du catalyseur afin d’optimiser la productivité d’AM et de proposer un modèle cinétique transitoire, applicable sur une large plage de conditions opératoires. Les principaux facteurs étudiés ont été : la composition des gaz réactifs, le temps d’oxydation du catalyseur, la température et la pression d’opération. La première partie de cette thèse se focalise sur le comportement du PPV en oxydoréduction, qui a été étudié en régime permanent dans un réacteur lit fluidisé de laboratoire. Des données issues du réacteur type lit fluidisé circulant (LFC) de l’entreprise Dupont ont également été analysées quant à la production d’AM. L’objectif était d’étudier l’influence des configurations d’alimentation ainsi que l’injection d’oxygène supplémentaire (i.e. en excès) pour améliorer les taux de production d’AM, dans des réacteurs de diverses échelles. Le réacteur de laboratoire a été équipé d’un injecteur réglable à différentes hauteurs du lit. Le réacteur commercial avait lui aussi la possibilité d’injecter de l’oxygène supplémentaire dans la zone réactionnelle à l’aide de buses d’injections installées à différentes hauteurs du réacteur. Les expériences à l’échelle du laboratoire ont montré que la sélectivité en AM ainsi que la conversion du n-butane augmentaient lorsque l’on diminuait la distance entre le point d’alimentation du n-butane et celui de l’oxygène. Les rendements en AM les plus élevés ont été observés alors qu’on co-alimentait de l’oxygène avec du n-butane à concentration élevée. La même observation a été réalisée dans le réacteur commercial. Le taux de production d’AM pourrait être augmenté de 15 % en alimentant seulement de l’oxygène supplémentaire dans la section inferieure du réacteur (fast bed). Ces résultats suggèrent que le PPV est extrêmement sensible à la configuration du système d’alimentation des gaz réactifs ainsi qu’à la présence d’oxygène en excès lorsque la concentration en n-butane est élevée. L’augmentation du vi rendement d’AM a été attribuée au maintient d’un état d’oxydation supérieur tout en alimentant suffisamment d’oxygène dans la zone réactionnelle. La majeure partie de cette thèse traite de la caractérisation et de l’optimisation de l’activité transitoire du PPV de Dupont, testées dans un microréacteur (lit fixe). Ces expériences ont eu aussi pour but de proposer un modèle cinétique transitoire. L’opération en LFC a été simulée en alternant les phases d’oxydation et de réduction sur environ 500 mg de catalyseur. Les expériences redox ont été conduites entre 360 et 400 °C et a une pression maximale de 4,1 bar. L’effet de la pression sur la cinétique de cette réaction n’a été que très peu discutée dans la littérature. Un large panel de composition de gaz réactifs et de temps d’oxydation du catalyseur a été étudié dans ce projet, afin de couvrir l’ensemble de la plage opérationnelle communément observée dans les lits fixes industriels, les lits fluidisés ou les réacteurs LFC. Les données transitoires recueillies quant à la production d’AM ont montré que, indépendamment de la composition de l’alimentation, il existe une relation linéaire entre la production d’AM et le temps d’oxydation du catalyseur. Le taux de production d’AM a été amélioré de 50 % en augmentant le temps d’oxydation de 0,3 à 10 minutes, même en condition oxydantes (O2/C4H10 > 3,7). L’amélioration dans les taux d’AM est supposée venir d’une meilleure disponibilité de l’oxygène de surface lorsque le temps d’oxydation est supérieur. Cet effet était même plus prononcé lorsque la concentration de n-butane dans l’alimentation approchait la réduction pure (10 vol. % n-butane dilué dans l’argon). Cependant, en réduction pure, une désactivation majeure du catalyseur a été observée (baisse dans la production d’AM) même après 10 minutes de pré- oxydation. Une faible désactivation a aussi été observée à faible concentration d’oxygène dans l’alimentation. Dans ces conditions, l’oxydation du catalyseur joue un rôle important pour retrouver une activité catalytique. Ces observations, une fois encore, soulèvent l’importance d’une co-alimentation d’oxygène dans le gaz réducteur de façon à conserver une bonne activité catalytique et pour régénérer la surface en permanence. Concernant la composition de l’alimentation, une composition équimolaire de n-butane et d’oxygène (~ 6 vol. %) a été identifiée comme étant la meilleure pour maximiser le taux d’AM. vii Conformément aux tendances observées dans l’installation commerciale, les données recueillies ont reconfirmé que la performance du LFC pourrait être améliorée par une régénération efficace du catalyseur et une composition optimisée des gaz réactifs. La méthodologie présentée dans cette thèse a été développée de façon à être utile pour la conception et l’optimisation de technologies émergentes similaires, telles que la combustion en boucle chimique (CBC) ou d’autres procédés basés sur une technologie à lits transportés. Une analyse approfondie des données expérimentales a montré que dans des conditions oxydantes (alimentation), l’augmentation de la conversion du n-butane était le principal facteur pour l’amélioration du rendement en AM. Par opposition, pendant une opération en conditions réductrices (O2/C4H10 ≤ 1,1), la sélectivité en AM et la conversion du n-butane ont contribué conjointement à l’amélioration des performances du catalyseur. Une forte dépendance de la conversion du n-butane et de la sélectivité en AM sur la composition de l’alimentation ou sur le temps d’oxydation du catalyseur a alors été observée. Une baisse de la conversion du n-butane à de faibles concentrations d’oxygène peut indiquer que la contribution de l’oxygène de structure est très limitée dans la réaction. Par conséquent, l’oxygène de surface (i.e. disponible) absorbé depuis la phase gazeuse pourrait être considéré comme le facteur principal pour l’activation du n-butane. À la fois la température et la pression ont montré un effet améliorant sur le rendement en AM. Ces effets ont été encore plus significatifs lorsque la concentration en oxygène dans l’alimentation était plus grande. La sélectivité en AM a chuté d’environ 20 % lorsque la pression du réacteur a été augmentée à 4,1 bar. Cependant, jusqu’à 60 % d’augmentation dans la conversion du n-butane a entrainé une amélioration du rendement global d’AM d’environ 30 %. Une hausse de température a également un effet positif sur la conversion du n-butane. Cependant, la sélectivité en AM était plus ou moins constante lorsqu’assez d’oxygène était alimenté. Ces observations se sont révélées encore plus vraies à plus haute pression. L’effet négatif de la température sur la sélectivité en AM doit cependant être minimisé. viii La dernière partie de cette thèse présente le modèle cinétique transitoire développé. Malgré la simplicité de son mécanisme, le modèle a pu adéquatement prédire les résultats sur une large gamme de conditions, applicables aux lits fixes, fluidisés et/ou circulants. De plus, l’effet de la pression sur l’activité transitoire du PPV a été inclue dans le modèle, ce qui constitue une avancée majeure, puisque les études précédentes n’en tenaient pas compte. Ce point peut être considéré comme une contribution majeure de cette thèse. Les intervalles de confiance déterminés pour ce modèle, indiquent que ce seul modèle est applicable à pression ambiante ainsi qu’à plus hautes pressions.
Recommended publications
  • Maleic Anhydride ______
    MALEIC ANHYDRIDE ______________________________________________________________________________ _______________ Method no.: 86 Matrix: Air Target concentration: 0.25 ppm (1 mg/m3) Procedure: Samples are collected by drawing air through glass fiber filters coated with 2 mg of 3,4- dimethoxybenzylamine (veratrylamine). Samples are extracted with 90:10 (v/v) acetonitrile/dimethylsulfoxide and analyzed by HPLC using a UV detector. Recommended air volume and sampling rate: 60 L at 0.5 L/min Reliable quantitation limit: 8.3 ppb (33 µg/m3) Standard error of estimate at the target concentration: 8.86% (Section 4.7.) Special requirement: Submit the samples for analysis as soon as possible after sampling. If delay is unavoidable, store the samples in a refrigerator. Store samples in a refrigerator upon receipt at the laboratory. Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: December 1990 C h e m i s t : Yihlin Chan Organic Methods Evaluation Branch OSHA Analytical Laboratory Salt Lake City, Utah 1. General Discussion 1.1. Background 1.1.1. History In OSHA Method 25 (Ref. 5.1.), maleic anhydride is collected and derivatized on p-anisidine-coated XAD-2 tubes. An untreated XAD-2 tube is connected in series to trap the p-anisidine that is partly leached from the first tube during sampling. In trying to develop sampling and analytical methods for a series of anhydrides (acetic, maleic, phthalic, and trimellitic), derivatizing agents other than p-anisidine were investigated to obviate the use of the second tube. 1-(2-Pyridyl)piperazine, the agent used in earlier methods for a series of isocyanates (Refs.
    [Show full text]
  • 469 Subpart D—Exemptions from Tolerances
    Environmental Protection Agency § 180.1001 oxo-1,2,3-benzotriazin-3(4H)-ylmethyl] (1-methylethyl) benzeneacetate in or phosphorodithioate in soybean oil re- on the following raw agricultural com- sulting from application of the insecti- modities: cide to the raw agricultural commodity soybeans. Commodity Parts per million (2) The following tolerances are es- Eggs, whole ................................... 0.03 tablished for residues of the insecticide Lettuce, head ................................. 5.0 O,O- dimethyl S-[4-oxo-1,2,3- Poultry, fat ...................................... 0.3 Poultry, meat .................................. 0.03 benzotriazin-3(4H)-ylmethyl] Poultry, mbyp (except liver) ........... 0.3 phosphorodithioate in the indicated Poultry, liver ................................... 0.03 commodities when used for the feed of Sorghum, fodder ............................ 10.0 Sorghum, forage ............................ 10.0 cattle, goats, and sheep. Such residues Sorghum, grain .............................. 5.0 may be present therein only as a result Sugarbeet, pulp ............................. 2.5 of the application of the insecticide to Sugarbeet, root .............................. 0.5 the growing agricultural crop. Sugarbeet, top ............................... 5.0 (b) Section 18 emergency exemptions. Commodity Parts per million [Reserved] Citrus pulp, dried ............................................... 5 (c) Tolerances with regional registra- Sugarcane bagasse ........................................... 1.5 tions.
    [Show full text]
  • Succinic Acid
    ENVIRONMENTAL FACTSHEET: SUCCINIC ACID PRODUCT INFORMATION Succinic acid (COOH(CH2)2COOH) is a carboxylic acid used in food (as an acidulant), pharmaceutical (as an excipient), personal care (soaps) and chemical (pesticides, dyes and lacquers) industries. Bio-based succinic acid is seen as an important platform chemical for the production of biodegradable plastics and as a substitute of several chemicals (such as adipic acid) [1]. Lignocellulosic Crops and Starch Crops Sugar Crops Today succinic acid is mainly produced Type of Type Biomass Residues from fossil resources through maleic acid hydrogenation. It can also be produced through fermentation of sugars. In that Cultivation and Harvesting case, in addition to succinic acid, other Biomass carboxylic acids (such as lactic acid, formic Production acid, propionic acid) and alcohols (such as ethanol) are also obtained. The production Starch Sugar Pretreatment Extraction & Extraction & ratios of these by-product compounds Separation Separation depend on the microorganism strain used and on the operation conditions. Several Hemicellulose Food Food Feed companies and industrial consortiums Lignin Cellulose Starch Feed Saccharose started bio-based production of succinic acid at demonstration scale (up to 70 ktonnes/year of full capacity, per Hydrolysis production plant [2]). Two strategies are being used for succinic acid fermentation [1]: (1) Use of bacteria strains, isolated Glucose from rumen. This strains are excellent Biomass Conversion Biomass natural succinic acid producers and their yields can be improved, though metabolic engineering; (2) Use of well-known Fermentation industrial microorganisms (such as Escherichia coli or Saccharomyces cervisiae) and modify their minor succinic acid production capability into high yields Succinic Acid through metabolic engineering.
    [Show full text]
  • Xyfluor Chemical Compatibility Guide
    456456 Xyfluor® Chemical Compatibility Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers. A = Swell < 10% after exposure. Suitable. B = Swell > 10% & < 20% after exposure. Generally suitable. C = Swell >20% & < 40% after exposure. May be suitable in some situations. D = Swell > 40% after exposure. Not suitable. N = Insufficient data. Test: Full immersion, Room Temperature, 3 days The information contained herein is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. Full-scale testing and end-product performance are the responsibility of the user. CHEMICAL RATING CHEMICAL RATING acetaldehyde A amomnium phosphate A acetic acid, ammonium stearate A glacial A ammonium sulfate A hot A ammonium thiocyanate A 5% A amyl acetate A/B acetic anhydride A amyl alcohol A acetone A amyl nitrate A acetone cyanohydrin A aniline A acetyl chloride A aniline hydrochloride A acetylene gas A anti-freeze, alcohol or glycol based A acrylonitrile A aqua regia N adipic acid A argon gas A alcohol, denatured A arsenic acid A alkyl benzene A ash slurry A alkyl-arylsulphonic acid A asphalt A alumina trihydrate N barium chloride A aluminum acetate
    [Show full text]
  • 6.5 Phthalic Anhydride
    6.5 Phthalic Anhydride 6.5.1 General1 Phthalic anhydride (PAN) production in the United States in 1972 was 0.9 billion pounds per year; this total is estimated to increase to 2.2 billion pounds per year by 1985. Of the current production, 50 percent is used for plasticizers, 25 percent for alkyd resins, 20 percent for unsaturated polyester resins, and 5 percent for miscellaneous and exports. PAN is produced by catalytic oxidation of either orthoxylene or naphthalene. Since naphthalene is a higher-priced feedstock and has a lower feed utilization (about 1.0 lb PAN/lb o-xylene versus 0.97 lb PAN/lb naphthalene), future production growth is predicted to utilize o-xylene. Because emission factors are intended for future as well as present application, this report will focus mainly on PAN production utilizing o-xylene as the main feedstock. The processes for producing PAN by o-xylene or naphthalene are the same except for reactors, catalyst handling, and recovery facilities required for fluid bed reactors. In PAN production using o-xylene as the basic feedstock, filtered air is preheated, compressed, and mixed with vaporized o-xylene and fed into the fixed-bed tubular reactors. The reactors contain the catalyst, vanadium pentoxide, and are operated at 650 to 725EF (340 to 385EC). Small amounts of sulfur dioxide are added to the reactor feed to maintain catalyst activity. Exothermic heat is removed by a molten salt bath circulated around the reactor tubes and transferred to a steam generation system. Naphthalene-based feedstock is made up of vaporized naphthalene and compressed air.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Partial Oxidation of N-Pentane Over Vanadium Phosphorus Oxide Supported on Hydroxyapatites
    RESEARCH ARTICLE S. Singh, 1 S. Afr. J. Chem., 2016, 69, 1–8, <http://journals.sabinet.co.za/sajchem/>. Partial Oxidation of n-Pentane over Vanadium Phosphorus Oxide supported on Hydroxyapatites Sooboo Singh School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa. E-mail: [email protected] Received 14 August 2015, revised 13 November 2015, accepted 20 November 2015. ABSTRACT The selective oxidation of n-pentane to value-added products, maleic anhydride or phthallic anhydride by vanadium phosphorus oxide loaded on hydroxyapatites as catalysts and oxygen as oxidant was investigated. Hydroxyapatite (HAp) and cobalt- hydroxyapatite (Co-HAp) were prepared by the co-precipitation method and VPO with varying weight percentages (2.5–15.0 %) were loaded on the hydroxyapatite supports by the wet impregnation technique. The catalyst materials were characterized by surface area measurements, elemental analysis, powder X-ray diffraction (XRD), infrared spectroscopy (IR) and temperature- programmed reduction (TPR). VPO is present in two phases, viz.(VO)2P2O7 and VOPO4. With increase in the VPO loading on the hydroxyapatites, the (VO)2P2O7 phase also increased. From catalytic results, a conversion of 75 % of n-pentane and selectivity towards maleic anhydride, about 50 % and phthalic anhydride, about 25 %, were consistently achieved with loadings of 5.0 and 7.5 wt. % VPO at 360 °C for GHSVs of 1900 and 2300 h–1. Under optimum conditions, product yields of up to 40 % maleic anhydride and 20 % phthalic anhydride were obtained. It is proposed that the products formed through the diene intermediate. KEYWORDS Selective oxidation, n-pentane, vanadium phosphorus oxide, hydroxyapatite, maleic anhydride, phthalic anhydride.
    [Show full text]
  • Preparation, Characterization, and Crystallization of Naphthalene-Labeled Polypropylene
    Polymer Journal, Vol. 32, No. 12, pp 995~993 (2000) Preparation, Characterization, and Crystallization of Naphthalene-Labeled Polypropylene Jun YANG, t Guangxin CHEN, Wanjun LIU, and Jingjiang LIU State Key Laboratory of Poymer Physics and Chemistry, Changchun Institute ofApplied Chemistry, Chinese Academy ofSciences, Changchun 130022, People's Republic of China (Received April 10, 2000; Accepted August 18, 2000) ABSTRACT: Naphthalene-labeled polypropylene (PP) was prepared by melt reaction of maleic anhydride-grafted­ polypropylene (PP-g-MA) with 1-aminonaphthalene in a Barabender mixer chamber. The structure of the product was analyzed with fourier transform infrared (FT-IR), ultraviolet (UV) and fluorescence. The results showed that naphthyl groups grafted onto the PP molecular chains through the imide bonds formed between MA and 1-aminonaphthalene. 4 The content of the chromophores was 1.8 X 10 ·· mo! g - i measured by elemental analysis. Isothermal crystallization be­ havior was studied by differential scanning calorimeter (DSC). Labeled PP had a higher crystallization rate than PP-g­ MA. Wide-angle X-Ray diffraction (WAXD) analysis revealed that labeled PP had higher crystallinity than PP-g-MA. KEY WORDS Melt Reaction I Excimer Fluorescence/ Polypropylene/Naphthalene/ Excimer formation has been widely used to study poly­ DSC analysis of isothermal crystallization revealed that mer physics and processing. This fluorescence quench­ labeled PP has a higher crystallization rate than PP-g­ ing can give information about miscibility of polymer MA as well as a higher crystallinity measured by blends, 1 residual strains in polymer materials,2 chain WAXD. To our knowledge, labeling fluorescent chromo­ folding,3 distribution of functional groups grafted onto a phores to a polymer in melt instead of in solution is polymer backbone,4 chain interactions,5 and conforma­ scarcely reported.
    [Show full text]
  • Maleic Anhydride 1 Maleic Anhydride
    Maleic anhydride 1 Maleic anhydride Maleic anhydride[1] Identifiers [2] CAS number 108-31-6 [3] PubChem 7923 [4] ChemSpider 7635 [5] UNII V5877ZJZ25 [6] EC-number 203-571-6 [7] ChEBI CHEBI:474859 [8] ChEMBL CHEMBL374159 RTECS number UE5950000 [9] Jmol-3D images Image 1 Properties Molecular formula C H O 4 2 3 Molar mass 98.06 g/mol Appearance White crystals Density 1.48 g/cm3 Melting point 52.8 °C (127.0 °F; 325.9 K) Boiling point 202 °C (396 °F; 475 K) Solubility in water Reacts Hazards Maleic anhydride 2 [10] MSDS MSDS at J. T. Baker EU classification Corrosive (C) R-phrases R22, R34, R42/43 S-phrases (S2), S22, S26, S36/37/39, S45 NFPA 704 Flash point 102 °C (216 °F; 375 K) Related compounds Related acid anhydrides Succinic anhydride Related compounds Maleic acid Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) [11] (verify) (what is: / ?) Infobox references Maleic anhydride is an organic compound with the formula C H (CO) O. It is the acid anhydride of maleic acid. it 2 2 2 is a colourless or white solid with an acrid odour. It is produced industrially on a large scale for applications in coatings and polymers. Production Maleic anhydride was traditionally produced by the oxidation of benzene or other aromatic compounds. As of 2006, only a few smaller plants continue to use benzene. Instead, most maleic anhydride plants is produced by vapor-phase oxidation of n-butane. The overall process converts the methyl groups to carboxylate and dehydrogenates the backbone.
    [Show full text]
  • Evaluation of Commercially Available Styrene-Co-Maleic Acid Polymers For
    European Polymer Journal 114 (2019) 485–500 Contents lists available at ScienceDirect European Polymer Journal journal homepage: www.elsevier.com/locate/europolj Evaluation of commercially available styrene-co-maleic acid polymers for T the extraction of membrane proteins from spinach chloroplast thylakoids ⁎ Olena Korotycha,b, , Jyotirmoy Mondala, Kerim M. Gattás-Asfurac, Jessica Hendricksa, ⁎ Barry D. Brucea,d, a Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1939, United States b Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611-6131, United States c Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611-6131, United States d Department of Microbiology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1937, United States ARTICLE INFO ABSTRACT Keywords: Solubilization of membrane proteins by poly(styrene-co-maleic acid) salts (pSMA-S) has significant potential for styrene-co-maleic acid lipid particle (SMALP) membrane protein studies. This approach provides an opportunity to overcome many disadvantages associated styrene-maleic acid (SMA) copolymer with a traditional detergent-based technique including protein denaturation and displacement of boundary lipids poly(styrene-co-maleic acid) salt (pSMA-S) which may offer both structural and functional stability to membrane proteins. Thylakoid membranes (TMs) membrane protein from photosynthetic organisms are well studied protein-rich membranes that host several multi-subunit protein thylakoid complexes associated with oxygenic photosynthesis. These protein complexes are important for applied pho- solubilization efficacy tosynthesis and by being extracted and purified they can be used in the near future for direct energy conversion.
    [Show full text]
  • Production of Maleic Anhydride
    Production of Maleic Anhydride Background Maleic anhydride is a versatile chemical intermediate used to make unsaturated polyester resins, lube oil additives, alkyd resins, and a variety of other products. In 1995, global production of maleic anhydride was estimated at 1.8 billion pounds, with an estimated value of $700 million. Over the last five years, world consumption has increased at an average annual rate of 5.8%, with the fastest growth occurring in Asia, where it is used as an intermediate for production of 1,4-butanediol [1]. The goal of this project is to design a grass roots facility that is capable of producing 40 million pounds of maleic anhydride per year from n-butane. Process Description Figure 1 shows a PFD for the overall process. Pure butane, Stream 2, and compressed air, Stream 3, are mixed and fed to R-101, an adiabatic reactor, where butane reacts with oxygen to form maleic anhydride. The reaction is exothermic, therefore, one could consider either a fluidized bed reactor or a packed bed reactor with heat removal to stay close to isothermal. The reactor effluent is cooled and sent to T-101, a packed bed absorber, where it is contacted with water, Stream 7, to remove the light gases and all of the maleic anhydride reacts to form maleic acid. The vapor effluent, which consists of non-condensables, Stream 8, must be sent to an after-burner to remove any carbon monoxide prior to venting to the atmosphere. This is not shown here. The liquid effluent, Stream 9, is then cooled and flashed at 101 kPa and 120°C in V-101.
    [Show full text]
  • Maleic Anhydride
    Product Stewardship Summary Maleic anhydride General Statement Maleic anhydride (MAN) is an organic chemical intermediate for the manufacture of numerous products including unsaturated polyester resins (UPR), MAN-based copolymers, lube oil additives, alkyl succinic anhydrides (ASA), malic acid, fumaric acid and various agricultural chemicals. UPR’s are used in boats, automobiles, buildings, piping, and electrical goods. MAN-based copolymers consist of a wide variety of copolymers with diverse applications including compatibilizers and coupling agents with polyolefins and as thickeners, dispersants and stabilizing agents in consumer products such as cosmetics and toiletries. Lube oil additives synthesized from maleic anhydride are used to prolong oil change intervals and improve engine efficiency. ASA’s are used in a variety of applications including paper sizing, detergents, leather treatment and food products. Malic acid is primarily used as an additive to food and beverages to control pH and enhance flavors. Fumaric acid uses include paper sizing, food acidulant and UPR manufacture. Agricultural chemicals from maleic anhydride include pesticides, herbicides and growth regulators. Maleic anhydride rapidly forms maleic acid when in contact with water. This acid is an irritant and skin sensitizer. Consumer exposure to maleic anhydride is uncommon, and worker exposure is controlled by protective equipment and ventilation. Chemical Identity Name: Maleic Anhydride Brand Names: Sold as such, and incorporated into unsaturated polyester resins and food additive products Chemical name (IUPAC): furan-2,5-dione CAS number(s): 108-31-6 EC number: 203-571-6 Molecular formula: C4H2O3 Structure: Uses and Applications Ashland produces maleic anhydride in the USA. Ashland uses maleic anhydride to produce unsaturated polyester resins and food additive products.
    [Show full text]