N-Butane Partial Oxidation to Maleic Anhydride: Experimental and Kinetic Studies Under Transient Conditions

N-Butane Partial Oxidation to Maleic Anhydride: Experimental and Kinetic Studies Under Transient Conditions

UNIVERSITÉ DE MONTRÉAL N-BUTANE PARTIAL OXIDATION TO MALEIC ANHYDRIDE: EXPERIMENTAL AND KINETIC STUDIES UNDER TRANSIENT CONDITIONS ALI SHEKARI DÉPARTEMENT DE GÉNIE CHIMIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION DU DIPLÔME DE PHILOSOPHIAE DOCTOR (Ph.D.) (GÉNIE CHIMIQUE) AOÛT 2011 © Ali Shekari, 2011. UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Cette thèse intitulée: N-BUTANE PARTIAL OXIDATION TO MALEIC ANHYDRIDE: EXPERIMENTAL AND KINETIC STUDIES UNDER TRANSIENT CONDITIONS présentée par : SHEKARI Ali en vue de l’obtention du diplôme de : Philosophiae Doctor a été dûment accepté par le jury d’examen constitué de : M. BUSCHMANN Michael D., Ph. D., président M. PATIENCE Gregory S., Ph. D., membre et directeur de recherche M. HENRY Olivier, Ph. D., membre M. BERK Dimitrios, Ph. D., membre iii DEDICATION To my family, for their endless care. iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisor, Professor Gregory S. Patience for his continual support, encouragement and friendship. His scientific knowledge and industrial experience helped me choose the right path during my research. Out of the academia, I enjoy being a friend of him and I appreciate his supportive attitude. I would also like to thank the Génie Chimique department staff, our chemists Martine Lamarche and Gino Robin and the technical assistance of Carol Painchaud, Jean Huard and Robert Delisle. Their support helped me pass through the experimental hurdles in the lab. During my studies, I had the opportunity of friendship with Jean-Philippe Laviolette, Mads Kristian Kaarsholm, François-Xavier Chiron, Milad Aghabararnejad, Patrice Perreault, Laurent Spreutels, Sherif Farag, Babak Esmaeili, Omid Ebrahimpour, and many more. Their friendship and interesting discussions on research topics made my PhD studies more prosperous. My appreciation goes to my family for their invaluable support, care and encouragement during my studies and my life. Without having them on my side, I could not have been where I am now. Finally, I would like to thank Nadi, my companion during these years. I appreciate her collaboration, care and support and being with me throughout the path to success. v RÉSUMÉ Cette thèse de doctorat présente l’activité transitoire du pyrophosphate de vanadyle (PPV), catalyseur utilisé par la compagnie Dupont pour la synthèse de l’anhydride maléique (AM) par oxydation partielle du n-butane. Les principaux objectifs de ce travail ont été de caractériser l’influence des paramètres ayant attrait à la nature redox du catalyseur afin d’optimiser la productivité d’AM et de proposer un modèle cinétique transitoire, applicable sur une large plage de conditions opératoires. Les principaux facteurs étudiés ont été : la composition des gaz réactifs, le temps d’oxydation du catalyseur, la température et la pression d’opération. La première partie de cette thèse se focalise sur le comportement du PPV en oxydoréduction, qui a été étudié en régime permanent dans un réacteur lit fluidisé de laboratoire. Des données issues du réacteur type lit fluidisé circulant (LFC) de l’entreprise Dupont ont également été analysées quant à la production d’AM. L’objectif était d’étudier l’influence des configurations d’alimentation ainsi que l’injection d’oxygène supplémentaire (i.e. en excès) pour améliorer les taux de production d’AM, dans des réacteurs de diverses échelles. Le réacteur de laboratoire a été équipé d’un injecteur réglable à différentes hauteurs du lit. Le réacteur commercial avait lui aussi la possibilité d’injecter de l’oxygène supplémentaire dans la zone réactionnelle à l’aide de buses d’injections installées à différentes hauteurs du réacteur. Les expériences à l’échelle du laboratoire ont montré que la sélectivité en AM ainsi que la conversion du n-butane augmentaient lorsque l’on diminuait la distance entre le point d’alimentation du n-butane et celui de l’oxygène. Les rendements en AM les plus élevés ont été observés alors qu’on co-alimentait de l’oxygène avec du n-butane à concentration élevée. La même observation a été réalisée dans le réacteur commercial. Le taux de production d’AM pourrait être augmenté de 15 % en alimentant seulement de l’oxygène supplémentaire dans la section inferieure du réacteur (fast bed). Ces résultats suggèrent que le PPV est extrêmement sensible à la configuration du système d’alimentation des gaz réactifs ainsi qu’à la présence d’oxygène en excès lorsque la concentration en n-butane est élevée. L’augmentation du vi rendement d’AM a été attribuée au maintient d’un état d’oxydation supérieur tout en alimentant suffisamment d’oxygène dans la zone réactionnelle. La majeure partie de cette thèse traite de la caractérisation et de l’optimisation de l’activité transitoire du PPV de Dupont, testées dans un microréacteur (lit fixe). Ces expériences ont eu aussi pour but de proposer un modèle cinétique transitoire. L’opération en LFC a été simulée en alternant les phases d’oxydation et de réduction sur environ 500 mg de catalyseur. Les expériences redox ont été conduites entre 360 et 400 °C et a une pression maximale de 4,1 bar. L’effet de la pression sur la cinétique de cette réaction n’a été que très peu discutée dans la littérature. Un large panel de composition de gaz réactifs et de temps d’oxydation du catalyseur a été étudié dans ce projet, afin de couvrir l’ensemble de la plage opérationnelle communément observée dans les lits fixes industriels, les lits fluidisés ou les réacteurs LFC. Les données transitoires recueillies quant à la production d’AM ont montré que, indépendamment de la composition de l’alimentation, il existe une relation linéaire entre la production d’AM et le temps d’oxydation du catalyseur. Le taux de production d’AM a été amélioré de 50 % en augmentant le temps d’oxydation de 0,3 à 10 minutes, même en condition oxydantes (O2/C4H10 > 3,7). L’amélioration dans les taux d’AM est supposée venir d’une meilleure disponibilité de l’oxygène de surface lorsque le temps d’oxydation est supérieur. Cet effet était même plus prononcé lorsque la concentration de n-butane dans l’alimentation approchait la réduction pure (10 vol. % n-butane dilué dans l’argon). Cependant, en réduction pure, une désactivation majeure du catalyseur a été observée (baisse dans la production d’AM) même après 10 minutes de pré- oxydation. Une faible désactivation a aussi été observée à faible concentration d’oxygène dans l’alimentation. Dans ces conditions, l’oxydation du catalyseur joue un rôle important pour retrouver une activité catalytique. Ces observations, une fois encore, soulèvent l’importance d’une co-alimentation d’oxygène dans le gaz réducteur de façon à conserver une bonne activité catalytique et pour régénérer la surface en permanence. Concernant la composition de l’alimentation, une composition équimolaire de n-butane et d’oxygène (~ 6 vol. %) a été identifiée comme étant la meilleure pour maximiser le taux d’AM. vii Conformément aux tendances observées dans l’installation commerciale, les données recueillies ont reconfirmé que la performance du LFC pourrait être améliorée par une régénération efficace du catalyseur et une composition optimisée des gaz réactifs. La méthodologie présentée dans cette thèse a été développée de façon à être utile pour la conception et l’optimisation de technologies émergentes similaires, telles que la combustion en boucle chimique (CBC) ou d’autres procédés basés sur une technologie à lits transportés. Une analyse approfondie des données expérimentales a montré que dans des conditions oxydantes (alimentation), l’augmentation de la conversion du n-butane était le principal facteur pour l’amélioration du rendement en AM. Par opposition, pendant une opération en conditions réductrices (O2/C4H10 ≤ 1,1), la sélectivité en AM et la conversion du n-butane ont contribué conjointement à l’amélioration des performances du catalyseur. Une forte dépendance de la conversion du n-butane et de la sélectivité en AM sur la composition de l’alimentation ou sur le temps d’oxydation du catalyseur a alors été observée. Une baisse de la conversion du n-butane à de faibles concentrations d’oxygène peut indiquer que la contribution de l’oxygène de structure est très limitée dans la réaction. Par conséquent, l’oxygène de surface (i.e. disponible) absorbé depuis la phase gazeuse pourrait être considéré comme le facteur principal pour l’activation du n-butane. À la fois la température et la pression ont montré un effet améliorant sur le rendement en AM. Ces effets ont été encore plus significatifs lorsque la concentration en oxygène dans l’alimentation était plus grande. La sélectivité en AM a chuté d’environ 20 % lorsque la pression du réacteur a été augmentée à 4,1 bar. Cependant, jusqu’à 60 % d’augmentation dans la conversion du n-butane a entrainé une amélioration du rendement global d’AM d’environ 30 %. Une hausse de température a également un effet positif sur la conversion du n-butane. Cependant, la sélectivité en AM était plus ou moins constante lorsqu’assez d’oxygène était alimenté. Ces observations se sont révélées encore plus vraies à plus haute pression. L’effet négatif de la température sur la sélectivité en AM doit cependant être minimisé. viii La dernière partie de cette thèse présente le modèle cinétique transitoire développé. Malgré la simplicité de son mécanisme, le modèle a pu adéquatement prédire les résultats sur une large gamme de conditions, applicables aux lits fixes, fluidisés et/ou circulants. De plus, l’effet de la pression sur l’activité transitoire du PPV a été inclue dans le modèle, ce qui constitue une avancée majeure, puisque les études précédentes n’en tenaient pas compte. Ce point peut être considéré comme une contribution majeure de cette thèse. Les intervalles de confiance déterminés pour ce modèle, indiquent que ce seul modèle est applicable à pression ambiante ainsi qu’à plus hautes pressions.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    239 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us