A Streamlined and Predominantly Diploid Genome in the Tiny Marine Green Alga Chloropicon Primus

Total Page:16

File Type:pdf, Size:1020Kb

A Streamlined and Predominantly Diploid Genome in the Tiny Marine Green Alga Chloropicon Primus ARTICLE https://doi.org/10.1038/s41467-019-12014-x OPEN A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus Claude Lemieux 1,3, Monique Turmel 1,3, Christian Otis 1 & Jean-François Pombert 2 Tiny marine green algae issued from two deep branches of the Chlorophyta, the Mamiello- phyceae and Chloropicophyceae, dominate different regions of the oceans and play key roles in planktonic communities. Considering that the Mamiellophyceae is the sole lineage of 1234567890():,; prasinophyte algae that has been intensively investigated, the extent to which these two algal groups differ in their metabolic capacities and cellular processes is currently unknown. To address this gap of knowledge, we investigate here the nuclear genome sequence of a member of the Chloropicophyceae, Chloropicon primus. Among the main biological insights that emerge from this 17.4 Mb genome, we find an unexpected diploid structure for most chromosomes and a propionate detoxification pathway in green algae. Our results support the notion that separate events of genome minimization, which entailed differential losses of genes/pathways, have occurred in the Chloropicophyceae and Mamiellophyceae, suggesting different strategies of adaptation to oceanic environments. 1 Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada. 2 Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA. 3These authors contributed equally: Claude Lemieux, Monique Turmel. Correspondence and requests for materials should be addressed to C.L. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:4061 | https://doi.org/10.1038/s41467-019-12014-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12014-x reen algae are morphologically, ecologically, and phylo- insights into the nature of the first green algae and their patterns genetically diverse, and represent one of the most suc- of diversification. It has been suggested that the earliest-diverging G 1 fl cessful groups of photosynthetic eukaryotes ; yet our green algae were scaly agellates that were able to capture bac- knowledge about the genetic factors determining their ecological teria, although only a few extant prasinophytes such as Cymbo- success is still limited. Soon after their emergence about 1000 monas (Pyramimonadophyceae) exhibit a phagotrophic lifestyle1. Mya, early green algae split into two phyla: Chlorophyta, com- Among the independent prasinophyte lineages that have been prising the vast majority of extant species, and Streptophyta, identified so far, at least five (Prasinococcales, Mamiellophyceae, comprising charophyte algae and all land plants1–3. In recent Pycnococcaceae, Picocystophyceae, and Chloropicophyceae) years, the genomes of a number of photosynthetic green algae, comprise coccoid (no flagella, no scales) species of small size (≤5 mainly from the Chlorophyta, have been sequenced to unravel μm in diameter). A highly reduced, coccoid growth form is the evolutionary trajectories followed by ancestral green algae4–7, thought to confer a distinct advantage to planktonic algae because decipher cellular mechanisms such as the basis of multi- the resulting higher surface area to volume ratio enhances the cellularity8–11, pinpoint genes linked to adaptations to ecological efficiency of nutrient uptake, thus increasing competitiveness in niches12–15, and investigate metabolic networks, including routes an environment poor in nutrients; furthermore, a reduced size for the biosynthesis of highly valuable compounds for the helps to escape predators and promotes buoyancy21–23. industry16–19. The Mamiellophyceae comprises the smallest known free- Known for their important role in the global carbon cycle, the living eukaryote, the coccoid Ostreococcus tauri, and is the only green algae traditionally considered as prasinophytes constitute a prasinophyte lineage for which complete nuclear genomes are paraphyletic assemblage of unicellular, predominantly marine currently available (Fig. 1b). The tiny algae belonging to the three organisms at the base of the Chlorophyta2,20,21 (Fig. 1a). genera from the order Mamiellales—Ostreococcus, Micromonas Decoding their genomes is thus expected to yield important (no scales and one flagellum), and Bathycoccus (scales but no a b Genome Chromosome Gene Chlorophyceae size (Mb) no. no. Ulvophyceae 0.1 Volvox 131.2 19 15,494 Trebouxiophyceae Gonium 148.8 n/a 16,526 Chlorodendrophyceae Chlamydomonas Core Chlorophyta 111.1 17 18,115 Pedinophyceae Chlorella 46.2 12 9833 Chloropicophyceae Auxenochlorella 22.9 n/a 7114 Picocystophyceae Coccomyxa 48.8 20 9947 Pycnococcaceae Chlorophyta Chloropicon 17.4 20 8693 Nephroselmidophyceae O. lucimarinus 13.2 21 7839 Mamiellophyceae O. tauri 12.5 20 7942 Pyramimonadophyceae Bathycoccus 15.0 19 7847 Palmophyllophyceae M. commoda 21.0 17 10,163 M. pusilla 22.0 21 10,707 Streptophyta charophytes + land plants Klebsormidium 103.9 n/a 16,244 cd 1.4 Intergenic Klebsormidium Mamiellophyceae Intron (5645) (5882) 1.2 CDS 139 141 264 1 0.8 4975 0.6 390 504 0.4 317 0.2 Number of SNPs and indels/kb 0 I II V X III XI IV VI IX XII Core Chlorophyta VII XV XX XIII VIII XVI XIX XIV XVII (6186) XVIII Chromosome Fig. 1 Phylogenetic position and genome features of Chloropicon relative to the 12 green algae selected for comparative analyses. a Schematic diagram depicting the main lineages of the Chloroplastida. The algae of our study group belong to the highlighted lineages. b Nuclear phylogenomic tree inferred from 792 concatenated proteins encoded by single-copy genes and comparison of genome sizes, numbers of chromosomes/DNA assemblies, and sizes of protein-coding gene repertoires. c Venn diagram showing the numbers of protein-coding genes that Chloropicon shares with the Mamiellophyceae, core chlorophytes and Klebsormidium. d Density of SNPs and small indels in coding (blue bars) and non-coding (intron, orange bars; intergenic sequences, gray bars) regions of individual Chloropicon chromosomes. The source data of d are provided as a Source Data file 2 NATURE COMMUNICATIONS | (2019) 10:4061 | https://doi.org/10.1038/s41467-019-12014-x | www.nature.com/naturecommunications NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12014-x ARTICLE flagella)—are typically found in coastal waters although they have 3723 further assigned to KEGG orthologs. Nearly 78% of the been observed in open oceanic waters21. For each of these genera, predicted Chloropicon proteins are shared with the 12 other green cryptic species derived from separate clades or strains repre- algae used in our genome comparisons (Fig. 1c). Of the 1909 senting different ecotypes were targeted for genome proteins unique to Chloropicon, only 163 featured putative analysis4–7,24,25. All examined mamiellophyceans possess reduced functions as inferred using our annotation pipeline and genomes (12–22 Mb with only ~8000–11,000 predicted genes, GhostKOALA, and 82, 3, and 145 yielded strongest hits to Fig. 1b) compared to freshwater/terrestrial green algae and the proteins of bacteria, archaea, and eukaryotes from non-green prasinophyte Cymbomonas tetramitiformis26, implying that gen- lineages, respectively, in BLASTP searches (cutoff E-value = 1.0E- ome minimization occurred along cell reduction and simplifica- 10) against the nr database of the National Center for tion in the course of prasinophyte evolution22. The Ostreococcus Biotechnology Information (NCBI). genus exhibits the smallest genomes among sequenced green As an independent method to assess the quality and algae and as in other unicellular green algae, each chromosome is completeness of our genome assembly and annotation, we present in one copy. Within each genus of the Mamiellophyceae, queried using BUSCO32 the annotated proteins of Chloropicon species divergence or adaptation to ecological niches was linked and 13 other green algae against the OrthoDB v10 database, to dynamic genome evolution, with dispensable and fast-evolving which contains the collection of 2168 near-universal single-copy genes predominantly located in the smallest of the two outlier orthologs found in the Chlorophyta (Supplementary Fig. 1). The chromosomes displaying lower GC content. The small outlier Chloropicon proteins accounted for 82.5% of this collection, a chromosome is thought to be specialized in defense against value slightly lower than those obtained for Ostreococcus tauri viruses27, while the larger appears to contain the sex-determining (88.9%), Bathycoccus (86.9%), and Gonium (86.9%). region (SDR)4,6,28. As observed for the Mamiellales, there is a limited number of Recently, a late-diverging lineage of pico/nano-prasinophytes, gene families in Chloropicon, with copies of identical or very named Chloropicophyceae, has emerged as playing a key role in similar sequences often occurring as tandem repeats. The largest marine phytoplankton communities, especially in moderately families include genes that are dispersed throughout the genome oligotrophic waters29,30. This genetically diversified lineage, and these encode polyketide synthases (12 members, Supple- which includes two genera (Chloropicon and Chloroparvula), mentary Data 3), sialyltransferases (59 members, Supplementary occupies a sister position relative to the core Chlorophyta2,20,30,31 Data 4), guanylyl cyclases (30 members, Supplementary Data 5), (Fig. 1a) and although
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Metagenomes of the Picoalga Bathycoccus from the Chile Coastal Upwelling
    Metagenomes of the picoalga Bathycoccus from the Chile coastal upwelling. Daniel Vaulot, Cécile Lepère, Eve Toulza, Rodrigo de la Iglesia, Julie Poulain, Frédéric Gaboyer, Hervé Moreau, Klaas Vandepoele, Osvaldo Ulloa, Frédérick Gavory, et al. To cite this version: Daniel Vaulot, Cécile Lepère, Eve Toulza, Rodrigo de la Iglesia, Julie Poulain, et al.. Metagenomes of the picoalga Bathycoccus from the Chile coastal upwelling.. PLoS ONE, Public Library of Science, 2012, 7 (6), pp.e39648. 10.1371/journal.pone.0039648. hal-00848707 HAL Id: hal-00848707 https://hal.archives-ouvertes.fr/hal-00848707 Submitted on 28 Jul 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Metagenomes of the Picoalga Bathycoccus from the Chile Coastal Upwelling Daniel Vaulot1*, Ce´cile Lepe`re1, Eve Toulza2, Rodrigo De la Iglesia3¤a, Julie Poulain4, Fre´de´ ric Gaboyer1¤b, Herve´ Moreau2, Klaas Vandepoele5,6, Osvaldo Ulloa3, Frederick Gavory4, Gwenael Piganeau2 1 UPMC (Paris-06) and CNRS, UMR 7144, Station Biologique, Place G. Tessier, Roscoff, France, 2 CNRS and UPMC (Paris-06)
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • The Mixed Lineage Nature of Nitrogen Transport and Assimilation in Marine Eukaryotic Phytoplankton: a Case Study of Micromonas Sarah M
    The Mixed Lineage Nature of Nitrogen Transport and Assimilation in Marine Eukaryotic Phytoplankton: A Case Study of Micromonas Sarah M. McDonald, Joshua N. Plant, and Alexandra Z. Worden* Monterey Bay Aquarium Research Institute, Moss Landing, California Present address: Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025-3493. *Corresponding author: E-mail: [email protected]. Associate editor: Charles Delwiche Abstract Research article The prasinophyte order Mamiellales contains several widespread marine picophytoplankton (2 lm diameter) taxa, including Micromonas and Ostreococcus. Complete genome sequences are available for two Micromonas isolates, CCMP1545 and RCC299. We performed in silico analyses of nitrogen transporters and related assimilation genes in CCMP1545 and RCC299 and compared these with other green lineage organisms as well as Chromalveolata, fungi, bacteria, and archaea. Phylogenetic reconstructions of ammonium transporter (AMT) genes revealed divergent types contained within each Mamiellales genome. Some were affiliated with plant and green algal AMT1 genes and others with bacterial AMT2 genes. Land plant AMT2 genes were phylogenetically closer to archaeal transporters than to Mamiellales AMT2 genes. The Mamiellales represent the first green algal genomes to harbor AMT2 genes, which are not found in Chlorella and Chlamydomonas or the chromalveolate algae analyzed but are present in oomycetes. Fewer nitrate transporter (NRT) than AMT genes were identified in the Mamiellales. NRT1 was found in all but CCMP1545 and showed highest similarity to Mamiellales and proteobacterial NRTs. NRT2 genes formed a bootstrap-supported clade basal to other green lineage organisms. Several nitrogen-related genes were colocated, forming a nitrogen gene cluster. Overall, RCC299 showed the most divergent suite of nitrogen transporters within the various Mamiellales genomes, and we developed TaqMan quantitative polymerase chain reaction primer–probes targeting a subset of these, as well as housekeeping genes, in RCC299.
    [Show full text]
  • 1 Integrative Biology 200 "PRINCIPLES OF
    Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler March 14, 2018. Classification II: Phylogenetic taxonomy including incorporation of fossils; PhyloCode I. Phylogenetic Taxonomy - the argument for rank-free classification A number of recent calls have been made for the reformation of the Linnaean hierarchy (e.g., De Queiroz & Gauthier, 1992). These authors have emphasized that the existing system is based in a non-evolutionary world-view; the roots of the Linnaean hierarchy are in a specially- created world-view. Perhaps the idea of fixed, comparable ranks made some sense under that view, but under an evolutionary world view they don't make sense. There are several problems with the current nomenclatorial system: 1. The current system, with its single type for a name, cannot be used to precisely name a clade. E.g., you may name a family based on a certain type specimen, and even if you were clear about what node you meant to name in your original publication, the exact phylogenetic application of your name would not be clear subsequently, after new clades are added. 2. There are not nearly enough ranks to name the thousands of levels of monophyletic groups in the tree of life. Therefore people are increasingly using informal rank-free names for higher- level nodes, but without any clear, formal specification of what clade is meant. 3. Most aspects of the current code, including priority, revolve around the ranks, which leads to instability of usage. For example, when a change in relationships is discovered, several names often need to be changed to adjust, including those of groups whose circumscription has not changed.
    [Show full text]
  • Genes in Some Samples, Suggesting That the Gene Repertoire Is Modulated by Environmental Conditions
    Analyses de variations génomiques liées à la biogéographie des picoalgues Mamiellales. Thèse de doctorat de l'université Paris-Saclay École doctorale n°577, Structure et dynamique des systèmes vivants (SDSV) Spécialité de doctorat : Sciences de la Vie et de la Santé Unité de recherche : Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057, Evry-Courcouronnes, France. Référent : Université d'Évry Val d’Essonne Thèse présentée et soutenue à Évry, le 28/08/2020, par Jade LECONTE Composition du Jury Christophe AMBROISE Professeur des universités, Université Examinateur & Président d’Evry Val d’Essonne (UMR 8071) François-Yves BOUGET Directeur de recherche CNRS, Sorbonne Rapporteur & Examinateur Université (UMR 7232) Frédéric PARTENSKY Directeur de recherche CNRS, Sorbonne Rapporteur & Examinateur Université (UMR 7144) Ian PROBERT Ingénieur de recherche, Sorbonne Examinateur Université Olivier JAILLON Directeur de thèse Directeur de recherche, CEA (UMR 8030) Remerciements Je souhaite remercier en premier lieu mon directeur de thèse, Olivier Jaillon, pour son encadrement, ses conseils et sa compréhension depuis mon arrivée au Genoscope. J’ai appris beaucoup à ses côtés, progressé dans de nombreux domaines, et apprécié partager l’unique bureau sans moquette du troisième étage avec lui. Merci également à Patrick Wincker pour m’avoir donné l’opportunité de travailler au sein du LAGE toutes ces années. J’ai grâce à vous deux eu l’occasion de plonger un peu plus loin dans le monde de l’écologie marine à travers le projet Tara Oceans, et j’en suis plus que reconnaissante. Je tiens également à remercier les membres de mon jury de thèse, à la fois mes rapporteurs François-Yves Bouget et Frédéric Partensky qui ont bien voulu évaluer ce manuscrit, ainsi que Christophe Ambroise et Ian Probert qui ont également volontiers accepté de participer à ma soutenance.
    [Show full text]
  • Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (Astap) in Scenedesmaceae
    marine drugs Article Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (AstaP) in Scenedesmaceae Hiroki Toyoshima 1, Ami Miyata 1, Risako Yoshida 1, Taichiro Ishige 2, Shinichi Takaichi 3 and Shinji Kawasaki 1,3,* 1 Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] (H.T.); [email protected] (A.M.); [email protected] (R.Y.) 2 NODAI Genome Research Centre, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] 3 Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5477-2764 Abstract: Photooxidative stress-inducible water-soluble astaxanthin-binding proteins, designated as AstaP,were identified in two Scenedesmaceae strains, Coelastrella astaxanthina Ki-4 and Scenedesmus obtusus Oki-4N; both strains were isolated under high light conditions. These AstaPs are classified as a novel family of carotenoprotein and are useful for providing valuable astaxanthin in water-soluble form; however, the distribution of AstaP orthologs in other microalgae remains unknown. Here, we exam- ined the distribution of AstaP orthologs in the family Scenedesmaceae with two model microalgae, Chlamydomonas reinhardtii and Chlorella variabilis. The expression of AstaP orthologs under photooxida- Citation: Toyoshima, H.; Miyata, A.; tive stress conditions was detected in cell extracts of Scenedesmaceae strains, but not in model algal Yoshida, R.; Ishige, T.; Takaichi, S.; strains. Aqueous orange proteins produced by Scenedesmaceae strains were shown to bind astaxanthin.
    [Show full text]
  • Mannitol Biosynthesis in Algae : More Widespread and Diverse Than Previously Thought
    This is a repository copy of Mannitol biosynthesis in algae : more widespread and diverse than previously thought. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/113250/ Version: Accepted Version Article: Tonon, Thierry orcid.org/0000-0002-1454-6018, McQueen Mason, Simon John orcid.org/0000-0002-6781-4768 and Li, Yi (2017) Mannitol biosynthesis in algae : more widespread and diverse than previously thought. New Phytologist. pp. 1573-1579. ISSN 1469-8137 https://doi.org/10.1111/nph.14358 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Mannitol biosynthesis in algae: more widespread and diverse than previously thought. Thierry Tonon1,*, Yi Li1 and Simon McQueen-Mason1 1 Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK. * Author for correspondence: tel +44 1904328785; email [email protected] Key words: Algae, primary metabolism, mannitol biosynthesis, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, haloacid dehalogenase, histidine phosphatase, evolution of metabolic pathways.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Abstract Use of the Green Microalga Monoraphidium Sp. Dek19 to Remediate Wastewater
    ABSTRACT USE OF THE GREEN MICROALGA MONORAPHIDIUM SP. DEK19 TO REMEDIATE WASTEWATER: SALINITY STRESS AND SCALING TO MESOCOSM CULTURES Anthony Robert Kephart, M.S. Department of Biological Sciences Northern Illinois University, 2016 Gabriel Holbrook, Director The purpose of this thesis was to investigate the growth of the green microalga Monoraphidium sp. Dek19 in the context of phycoremediation under conditions representative of wastewater media of a Midwest wastewater treatment facility. Microalgae were grown in effluent collected from four different wastewater streams at the DeKalb Sanitary District (DSD), DeKalb, Illinois, USA in volumes from 1 L to 380 L. It was determined through preliminary modeling of public data that Monoraphidium sp. Dek19 will likely outcompete local heterospecifics in final effluent wastewaters at the DSD 51.8% of the year. It was also determined that neither nitrogen nor phosphorus should become a limiting nutrient throughout the year. Study of the response of Monoraphidium sp. Dek19 to salinity stress was also completed. Salt stress caused a significant increase in lipid accumulation in salt stressed cultures compared to control cultures (37.0-50.5% increase) with a reduction in biomass productivity. Increases in photosynthetic pigments per cell were seen under salt stress, though the ratio of chlorophyll a and b remained constant. Finally, nitrate uptake was not greatly affected by salinity stress except when biomass accumulation became a corollary for uptake (nitrogen saturation). Luxury uptake of phosphate was significantly affected by wastewater salinity (p<0.001). High sodium potentially interrupts phosphate stress response proteins, slowing internalization of phosphate. Phosphate removal was still possible as some protein binding proteins appear to operate independent of sodium.
    [Show full text]