Toward Predictive Scenarios of Planetary Migration Clément Baruteau

Total Page:16

File Type:pdf, Size:1020Kb

Toward Predictive Scenarios of Planetary Migration Clément Baruteau Toward predictive scenarios of planetary migration Clément Baruteau To cite this version: Clément Baruteau. Toward predictive scenarios of planetary migration. Astrophysics [astro-ph]. Observatoire de Paris, 2008. English. tel-00334456 HAL Id: tel-00334456 https://tel.archives-ouvertes.fr/tel-00334456 Submitted on 27 Oct 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale d’Astronomie et d’Astrophysique d’Ile de France These` de Doctorat pr´esent´ee par Cl´ement Baruteau pour obtenir le grade de docteur de l’Observatoire de Paris en Astronomie et Astrophysique Vers des scenarios´ predictifs´ de la migration planetaire´ dirig´ee par Fr´ed´eric Masset et soutenue le 02 octobre 2008 devant la commission compos´ee de Dr. Gennaro D’Angelo ..............................rapporteur Prof. Jean-Marc Hure´ ..............................examinateur Prof. Wilhelm Kley ..................................rapporteur Prof. Douglas Lin ....................................rapporteur Dr. Fr´ed´eric Masset . directeur de th`ese Prof. Bruno Sicardy . .examinateur, pr´esident du jury Prof. Caroline Terquem ...........................examinatrice Service d’Astrophysique du CEA Saclay [email protected] Cl´ement Baruteau Toward predictive scenarios of planetary migration – CEA Saclay – Cover page : The perturbed surface density of a gaseous protoplanetary disc, obtained from a two-dimensional hydrodynamic calculation. The white circle at the center of the picture encloses the central star and the disc parts close to the star. The protoplanetary disc is perturbed by a low-mass planet (the brightest point on the right-hand side of the picture) that excites a spiral-shaped wake propagating in the disc. The planet induces an additional perturbation in a narrow annulus located close to the star-planet separation. Copyright – Cl´ement Baruteau 2008 Remerciements / Acknowledgments Je tiens d’abord `aremercier Pierre-Olivier Lagage pour m’avoir accueilli dans son service lors de ma th`ese. Je lui suis reconnaissant, ainsi qu’`ala direction de l’Irfu, de m’avoir permis de s´ejourner au Mexique, d’avoir assur´eles frais de trajet et de mission sur place. J’esp`ere que le pr´esent manuscrit, et le travail r´ealis´edurant ces trois ans de th`ese, auront ´et´e`ala hauteur de la confiance qui m’a ´et´eaccord´ee. Un grand merci aux personnes du service qui m’ont aid´e`aavancer au cours de ces trois ans. A Michel Tagger pour ses conseils sur l’auto-gravit´e. A Romain Teyssier et Thierry Foglizzo pour leurs explications et intuitions sur les discontinuit´es de contact. A Edouard Audit pour sa patience quant `amon utilisation surintensive de Godunov. Un remerciement plus particulier `aS´ebastien Fromang pour ses conseils pr´ecieux et avis´es sur des points aussi vari´es que la conception d’un poster, la r´edaction de dossiers pour les offres de postdocs ou la pr´eparation de la soutenance de th`ese. L’avanc´ee a aussi ´et´ehumaine, ainsi j’adresse aux ´etudiants (et assimil´es !) mes plus sinc`eres voeux de bonheur et de r´eussite : notre sp´ecialiste `es kouign amann Alain Gueguen, Ana Palacios, Matthias Gonzalez y el amigo Fabio Acero con los que fue un placer hablar espa˜nol, Ana¨elle Maury, Micka¨el Coriat, Lionel Prat, sans qui j’aurais eu du mal `aassister `a la conf´erence en Chine, J´erˆome Guilet, Benjamin Braconnier, mes super cobureaux Yohan Dubois et Benoˆıt Commer¸con, que je remercie d’avoir relu le premier chapitre de ce manuscrit, Estelle Deau, notre coureur Henri Triou, Ivan Debono, Savita Mathur, Julien Salmon, M´ed´eric Boquien, Laur`ene Jouve, Lilia Solovyeva, Guillaume Loisel, Pierrick Abrial, Jo¨el Berge´, Sandrine Pires, Vincent Duez, Nazirah Jetha, Arnaud Woiselle. Un petit mot enfin pour Jules Casoli, compagnon d’aventures mexicaines, `aqui je souhaite une th`ese brillante avec Fr´ed´eric. I wish to thank the following people for their help and comments on my research work. A special thank to Takayuki Muto and Sijme-Jan Paardekooper for insightful comments on the corotation torque calculation in adiabatic discs. Aur´elien Crida for clarifying remarks on the migration of massive planets. Alessandro Morbidelli for a thorough reading of the two articles written during my thesis. Andres Carmona for an illuminating question about self-gravity during the IAU meeting in Suzhou. It was my honor to have them as committee members. Gennaro D’Angelo for a detailed reading of the manuscript, and for insightful comments and questions I appreciated much. Jean-Marc Hure´ qui a r´ev´el´een moi un goˆut certain pour les simulations hydrodynamiques. Wilhelm Kley for fruitful discussions during the conferences I attended to. Douglas Lin for his reading of the manuscript, and for having quickly enrolled me as a postdoc at UCSC ! Bruno Sicardy pour m’avoir passionn´epour les r´esonances de Lindblad lors de son cours de Master, et pour m’avoir inspir´eun travail sur la capture en r´esonance de Pluton. Et enfin Caroline Terquem pour ses commentaires avis´es sur les disques radiatifs. J’en viens `arendre hommage `ames amis. Aux complices Guilhem Lavaux, Elisabetta Micelotta, Gwena¨el Boue´, que je remercie d’avoir relu les deux premiers chapitres de ce manuscrit, Isabelle et S´ebastien Esnault, Herv´e Boisson et sa famille. Une pens´ee toujours ´emue `anotre promotion du Master de l’Observatoire : Kevin Baillie, Virginie Batista, Gwena¨el Boue´, encore lui, Josselin Desmars, Jordi Fontdecaba i Baig, Julie Gayon, vi Magali Maroccia, Arielle Moullet, Christophe Ouzeau et Arianne Sauvenier. Viennent encore Aur´elien Benoit-Levy, Kumiko Kotera, Elisabete Da Cunha, Sara Caucci, pour son cours d’italien, la famille Rimada pour son accueil chaleureux au Mexique et la famille Hurpin. A tous je souhaite mes plus vifs voeux de bonheur. Une pens´ee chaleureuse `a ma famille d’hier, d’aujourd’hui et de demain : Catherine, Georges, Maurice, Nicole, Claire, Camille, Fran¸cois, Gabriel, H´el`ene, Gerald, Agn`es, Stefan, Alice, Matthieu, et Sarah, mi vida. Peut-ˆetre les th`eses se suivent et se ressemblent. Comme toi, j’ai gard´ele meilleur pour la fin. A toi, Fr´ed´eric Masset, mon directeur de th`ese, pour m’avoir aiguill´esur le chemin de la recherche. Travailler avec toi a ´et´eune exp´erience enthousiasmante et ˆocombien enrichissante. Je mesure la chance que j’ai eue de pouvoir b´en´eficier de tes intuitions, de tes commentaires et discussions ´eclair´es, de ta disponibilit´e`atoute ´epreuve, mˆeme `al’autre bout de la Terre. Merci aussi pour ta relecture de ce manuscrit. Comme le jour de la soutenance, je vais te vieillir un peu : j’esp`ere ˆetre comme toi dans quinze ans ! Vers des sc´enarios pr´edictifs de la migration plan´etaire La d´etection r´ecente des exoplan`etes a fourni un formidable laboratoire d’exp´erimentation des th´eories de formation et d’´evolution plan´etaire. Un r´esultat troublant est la proportion de plan`etes g´eantes situ´ees plus pr`es de leur ´etoile que ne l’est Mercure de notre Soleil ! Si, comme il est admis, ces plan`etes se sont form´ees `aplus grande distance de l’´etoile dans le disque protoplan´etaire, il reste `aexpliquer comment elles ont pu s’en rapprocher. Remarquablement, une telle th´eorie est apparue bien avant la d´ecouverte de la premi`ere exoplan`ete. Elle explique que sous l’interaction avec le disque protoplan´etaire, les plan`etes se rapprochent de leur ´etoile en spiralant. On parle de migration plan´etaire. De nombreuses ´etudes ont montr´eque le temps de migration des plan`etes de faible masse est bien plus court que le temps de dissipation du disque. Toutes les plan`etes devraient avoir migr´ejusqu’`aleur ´etoile ! Ce qui est d´ej`aremis en cause par notre Syst`eme Solaire. Afin d’inscrire la migration plan´etaire dans un sc´enario pr´edictif de formation et d’´evolution plan´etaire, il est primordial d’affiner notre compr´ehension de l’interaction disque-plan`ete. La prise en compte de l’auto-gravit´edu disque est un exemple de progr`es en ce sens. Je montre que n´egliger l’auto-gravit´econduita ` surestimer significativement le couple diff´erentiel de Lindblad. Une autre branche explor´ee dans cette th`ese est l’impact des processus thermiques sur la migration. Je montre que l’´evolution thermodynamique du disque g´en`ere une contribution suppl´ementaire au couple de corotation, capable de ralentir consid´erablement, voire de renverser, la migration des plan`etes de faible masse. Mots cl´e: migration plan´etaire, disques protoplan´etaires, hydrodynamique, analyse lin´eaire, simulations num´eriques Toward predictive scenarios of planetary migration The recent detection of extrasolar planets has provided an exciting opportunity to test our theories of planet formation and evolution. An impressive result is the significant proportion of giant planets located much closer to their star than Mercury is from our own Sun! These planets should have formed further out in the protoplanetary disc, thus one needs to explain how they could move closer to their host star. Remarkably enough, such an explanation was proposed well before the discovery of the first exoplanet. It considered the interaction between a planet and the protoplanetary disc, which leads to a decrease of the planet’s semi-major axis.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Gaia Data Release 2: First Stellar Parameters from Apsis
    Astronomy & Astrophysics manuscript no. GDR2_Apsis c ESO 2018 3 April 2018 Gaia Data Release 2: first stellar parameters from Apsis René Andrae1, Morgan Fouesneau1, Orlagh Creevey2, Christophe Ordenovic2, Nicolas Mary3, Alexandru Burlacu4, Laurence Chaoul5, Anne Jean-Antoine-Piccolo5, Georges Kordopatis2, Andreas Korn6, Yveline Lebreton7; 8, Chantal Panem5, Bernard Pichon2, Frederic Thévenin2, Gavin Walmsley5, Coryn A.L. Bailer-Jones1? 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 2 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France 3 Thales Services, 290 Allée du Lac, 31670 Labège, France 4 Telespazio France, 26 Avenue Jean-François Champollion, 31100 Toulouse, France 5 Centre National d’Etudes Spatiales, 18 av Edouard Belin, 31401 Toulouse, France 6 Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden 7 LESIA, Observatoire de Paris, PSL Research University, CNRS UMR 8109, Université Pierre et Marie Curie, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon 8 Institut de Physique de Rennes, Université de Rennes 1, CNRS UMR 6251, F-35042 Rennes, France Submitted to A&A 21 December 2017. Resubmitted 3 March 2018 and 3 April 2018. Accepted 3 April 2018 ABSTRACT The second Gaia data release (Gaia DR2) contains, beyond the astrometry, three-band photometry for 1.38 billion sources. One band is the G band, the other two were obtained by integrating the Gaia prism spectra (BP and RP). We have used these three broad photometric bands to infer stellar effective temperatures, Teff , for all sources brighter than G = 17 mag with Teff in the range 3 000– 10 000 K (some 161 million sources).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:1512.00417V1 [Astro-Ph.EP] 1 Dec 2015 Velocity Surveys
    Draft version December 2, 2015 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE LICK-CARNEGIE EXOPLANET SURVEY: HD 32963 { A NEW JUPITER ANALOG ORBITING A SUN-LIKE STAR Dominick Rowan 1, Stefano Meschiari 2, Gregory Laughlin3, Steven S. Vogt3, R. Paul Butler4,Jennifer Burt3, Songhu Wang3,5, Brad Holden3, Russell Hanson3, Pamela Arriagada4, Sandy Keiser4, Johanna Teske4, Matias Diaz6 Draft version December 2, 2015 ABSTRACT We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV) observations for the solar-type star HD 32963. Our dataset reveals a candidate planetary signal with a period of 6.49 ± 0.07 years and a corresponding minimum mass of 0.7 ± 0.03 Jupiter masses. Given Jupiter's crucial role in shaping the evolution of the early Solar System, we emphasize the importance of long-term radial velocity surveys. Finally, using our complete set of Keck radial velocities and correcting for the relative detectability of synthetic planetary candidates orbiting each of the 1,122 stars in our sample, we estimate the frequency of Jupiter analogs across our survey at approximately 3%. Subject headings: Extrasolar Planets, Data Analysis and Techniques 1. INTRODUCTION which favors short-period planets. The past decade has witnessed an astounding acceler- Given the importance of Jupiter in the dynamical his- ation in the rate of exoplanet detections, thanks in large tory of our Solar System, the presence of a Jupiter ana- part to the advent of the Kepler mission. As of this writ- log is likely to be a crucial differentiator for exoplanetary ing, more than 1,500 confirmed planetary candidates are systems.
    [Show full text]
  • Habitability of Planets on Eccentric Orbits: Limits of the Mean Flux Approximation
    A&A 591, A106 (2016) Astronomy DOI: 10.1051/0004-6361/201628073 & c ESO 2016 Astrophysics Habitability of planets on eccentric orbits: Limits of the mean flux approximation Emeline Bolmont1, Anne-Sophie Libert1, Jeremy Leconte2; 3; 4, and Franck Selsis5; 6 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada 3 Banting Fellow 4 Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada 5 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France 6 CNRS, LAB, UMR 5804, 33270 Floirac, France Received 4 January 2016 / Accepted 28 April 2016 ABSTRACT Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ∼0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Arxiv:1501.00633V1 [Astro-Ph.EP] 4 Jan 2015 Teria (Han Et Al
    Draft version September 24, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE CALIFORNIA PLANET SURVEY IV: A PLANET ORBITING THE GIANT STAR HD 145934 AND UPDATES TO SEVEN SYSTEMS WITH LONG-PERIOD PLANETS * Y. Katherina Feng1,4, Jason T. Wright1, Benjamin Nelson1, Sharon X. Wang1, Eric B. Ford1, Geoffrey W. Marcy2, Howard Isaacson2, and Andrew W. Howard3 (Received 2014 August 11; Accepted 2014 November 26) Draft version September 24, 2018 ABSTRACT We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi- planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1MJup planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2MJup planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period > 5 yr, and with no evidence of giant planets in between.
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Incidental Tables
    Sp.-V/AQuan/1999/10/27:16:16 Page 667 Chapter 27 Incidental Tables Alan D. Fiala, William F. Van Altena, Stephen T. Ridgway, and Roger W. Sinnott 27.1 The Julian Date ...................... 667 27.2 Standard Epochs ...................... 668 27.3 Reduction for Precession ................. 669 27.4 Solar Coordinates and Related Quantities ....... 670 27.5 Constellations ....................... 672 27.6 The Messier Objects .................... 674 27.7 Astrometry ......................... 677 27.8 Optical and Infrared Interferometry ........... 687 27.9 The World’s Largest Optical Telescopes ........ 689 27.1 THE JULIAN DATE by A.D. Fiala The Julian Day Number (JD) is a sequential count that begins at Noon 1 Jan. 4713 B.C. Julian Calendar. 27.1.1 Julian Dates of Specific Years Noon 1 Jan. 4713 B.C. = JD 0.0 Noon 1 Jan. 1 B.C. = Noon 1 Jan. 0 A.D. = JD 172 1058.0 Noon 1 Jan. 1 A.D. = JD 172 1424.0 A Modified Julian Day (MJD) is defined as JD − 240 0000.5. Table 27.1 gives the Julian Day of some centennial and decennial dates in the Gregorian Calendar. 667 Sp.-V/AQuan/1999/10/27:16:16 Page 668 668 / 27 INCIDENTAL TABLES Table 27.1. Julian date of selected years in the Gregorian calendar [1, 2]. Julian day at noon (UT) on 0 January, Gregorian calendar Jan. 0.5 JD Jan. 0.5 JD Jan. 0.5 JD Jan. 0.5 JD 1500 226 8923 1910 241 8672 1960 243 6934 2010 245 5197 1600 230 5447 1920 242 2324 1970 244 0587 2020 245 8849 1700 234 1972 1930 242 5977 1980 244 4239 2030 246 2502 1800 237 8496 1940 242 9629 1990 244 7892 2040 246 6154 1900 241 5020 1950 243 3282 2000 245 1544 2050 246 9807 Century years evenly divisible by 400 (e.g., 1600, 2000) are leap years.
    [Show full text]
  • Gaia Data Release 2: First Stellar Parameters from Apsis
    Astronomy & Astrophysics manuscript no. GDR2_Apsis c ESO 2018 26 April 2018 Gaia Data Release 2: first stellar parameters from Apsis René Andrae1, Morgan Fouesneau1, Orlagh Creevey2, Christophe Ordenovic2, Nicolas Mary3, Alexandru Burlacu4, Laurence Chaoul5, Anne Jean-Antoine-Piccolo5, Georges Kordopatis2, Andreas Korn6, Yveline Lebreton7; 8, Chantal Panem5, Bernard Pichon2, Frederic Thévenin2, Gavin Walmsley5, Coryn A.L. Bailer-Jones1? 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 2 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France 3 Thales Services, 290 Allée du Lac, 31670 Labège, France 4 Telespazio France, 26 Avenue Jean-François Champollion, 31100 Toulouse, France 5 Centre National d’Etudes Spatiales, 18 av Edouard Belin, 31401 Toulouse, France 6 Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden 7 LESIA, Observatoire de Paris, PSL Research University, CNRS UMR 8109, Université Pierre et Marie Curie, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon 8 Institut de Physique de Rennes, Université de Rennes 1, CNRS UMR 6251, F-35042 Rennes, France Submitted to A&A 21 December 2017. Resubmitted 3 March 2018 and 3 April 2018. Accepted 3 April 2018 ABSTRACT The second Gaia data release (Gaia DR2) contains, beyond the astrometry, three-band photometry for 1.38 billion sources. One band is the G band, the other two were obtained by integrating the Gaia prism spectra (BP and RP). We have used these three broad photometric bands to infer stellar effective temperatures, Teff , for all sources brighter than G = 17 mag with Teff in the range 3 000– 10 000 K (some 161 million sources).
    [Show full text]
  • A Featureless Transmission Spectrum for the Neptune-Mass Exoplanet GJ 436B
    A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b Heather A. Knutson1, Björn Benneke1,2, Drake Deming3, & Derek Homeier4 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 3Department of Astronomy, University of Maryland, College Park, MD 20742, USA. 4Centre de Recherche Astrophysique de Lyon, 69364 Lyon, France. GJ 436b is a warm (approximately 800 K) extrasolar planet that periodically eclipses its low-mass (0.5 MSun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations1,2,3 have indicated that its atmosphere has a methane-to-CO ratio that is 105 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures4,5. A recent study proposed that this unusual chemistry could be explained if the planet’s atmosphere is significantly enhanced in elements heavier than H and He6. In this study we present complementary observations of GJ 436b’s atmosphere obtained during transit. Our observations indicate that the planet’s transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with a significance of 48σ. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (3% H/He mass fraction) atmospheric composition7,8,9. We observed four transits of the Neptune-mass planet GJ 436b on UT Oct 26, Nov 29, and Dec 10 2012, and Jan 2 2013 using the red grism (1.2-1.6 µm) on the Hubble Space Telescope (HST) Wide Field Camera 3 instrument.
    [Show full text]