Thesis Rests with Its Author

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Rests with Its Author University of Bath PHD Contributions to knowledge of water relations in hemiptera Goodchild, A. J. P. Award date: 1988 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 CONTRIBUTIONS TO KNOWLEDGE OF WATER RELATIONS IN HEM I PTERA Submitted by A .J . P.Goodchild for the degree of Ph.D. (S ta ff C andidature,Method B) of the U niversity of Bath 1988 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with i ts author and th a t no quotation from the th e sis and no inform ation derived from it may be published without the prior written consent of the au th o r. Material contained within the papers submitted as appendices remains the copyright of the publishers of the respective journals. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. UMI Number: U010226 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U010226 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 'r '\ 2 4 At-'R j% < ) • - 1 - t a b l e o f c o n t e n t s Page PREFACE.................................................. 2 SUMMARY ........................................................................................................................... 3 INTRODUCTION ........................................................................................................... 4 THE SOURCE OF RESEARCH MATERIAL.................................................................14 THE PRODUCTION AND COMPOSITION OF EXCRETA . ,...........................16 FEEDING, GROWTH, AND ION EXCRETION.........................................................20 THE ULTRASTRUCTURE OF THE MIDGUT OF D. baccarum ..............................30 DISCUSSION.......................................................................................................................35 ACKNOWLEDGEMENTS............................................................ 50 REFERENCES.......................................................................................................................51 APPENDIX 1 .........................................................Original pagination 543-572 APPENDIX 2 ...................................................................." " " 217-237 APPENDIX 3 ...................................................................." " " 851-910 APPENDIX 4 ........................................................ " ” " 97-140 APPENDIX 5 ....................................................................” ” " 192-196 APPENDIX 6 ....................................................................” " " 11-16 APPENDIX 7 ...................................................................." M " 62-70 APPENDIX 8 ...................................................................." " " 1032-1041 APPENDIX 9 ...................................................................." " " 177-188 - 2 - p r e f a c e The work submitted herein for the Degree of Doctor of Philosophy (Staff Candidature - Method B) consists mainly of nine selected papers which have already been published in reputable journals. They are the sole work of the candidate, and have not previously been submitted to any university for the award of a higher degree. They are attached as Appendices 1-9, and the titles listed below. The thesis consists of an introduction to the subject in general, with the background to the published papers, and an account of experiments and ultrastructural stu d ies carried out between 1978 and 1983, and not as yet published. The discussion assesses these results in the light of previous work, and reviews the literature of the subject up to the time of writing. APPENDICES 1. A study of the digestive system of the West African cacao capsid bugs.(Hemiptera,Miridae) Proc.zool.Soc.Lond., 122, 543-572.(1952) 2. Some new observations on the intestinal structures concerned with water disposal in sap-sucking Hemiptera. Trans.R.ent.Soc.Lond. , 115, 217-237.(1963) 3. Studies on the functional anatomy of the intestines of Heteroptera. Proc.zool.Soc.Lond., 141, 851-910.(1963) 4. Evolution of the alimentary canal in the Hemiptera. Biological Reviews, 41, 97-140.(1966) 5. Shield bug (Piezosternum calidum Fab.) infestation of Oyster Nut. E.Afr.Agric.& For.J., 192-196.(1967) 6. Some unusual cell inclusions in the mid-gut of a Moth Bug, Gyarina nigritarsis Karsch.(Homoptera;Flatidae), and their possible signif­ icance in nutrition. Proc.R.ent.Soc.Lond.(A), 44, 11-16.(1969) 7. The rectal glands of Halosalda lateralis(Fallen)(Hemiptera;Saldidae) and Hydrometra stagnorum(L.)(Hemiptera;Hydrometridae). Proc.R.ent .Soc.l£>nd. (A) , 44, 62-70.(1969) 8. Bionomics, aggregated feeding behaviour, and colour variations in the sap-sucking bug Mygdonia tuberculosa Sign.(H em iptera:C oreidae). Rev.Zool.Afr., 91, 1032-1041.(1977) 9. The nature and origin of the mid-gut contents in a sap-sucking Heteropteran, Piezosternum calidum Fab.(Tessaratominae) and the role of symbiotic bacteria in its nutrition.Ent.exp.fc appl.,23, 177-188.(1978) - 3 - SUMMARY Measurements of sodium and potassium concentrations in the haemolymph and excreta, and an experiment to compare feeding, growth ra te and excretion in 5th.instar larvae of the pentatomid bug Palomena prasina, are described, and an account given of investigations into the ultra­ structure of the midgut of adults of a closely related species, Dolycoris baccarum. It is shown that the haemolymph of P.prasina has a sodium:potassium ratio of approximately 0.4, substantially less than in other Exopterygote insects. It is suggested that this is an adaptation to phytophagy. Very little sodium, but a large amount of potassium, is discharged in the excreta, corresponding to the proportions in the food (runner bean pod) of 1:140. The relationship between food intake, weight gain, and potassium excreted show significant correlations, the average per 5th.instar larva per day being approximately 35.5mg., 7.6mg., and 0.066mg. respectively. The points at which the regression lines cross the y-axis suggest that the "mainten­ ance ration" per insect per day is 9mg.wet weight of bean pod ( 0.01 Kj.) and that approximately 15% of the excreta is not measured by the technique employed. A correction for the latter is applied to the results, and gives a result for volume of fluid excreta consistent with that calculated from independent data. Feeding efficiency is shown to be comparable with that of other phytophagous insects, but less than that of seed-feeding Hemiptera. Weight gain is 38.34% of food ingested and 40.6% of food assimilated. The former figure is high compared with biting-and-chewing feeders because no inassimilable material is ingested. The structure of the midgut of adult D.baccarum shows that the anterior regions are adapted for secretion and solute absorption without mass fluid transport, but the posterior regions, which are isolated during larval life by an interruption of the gut lumen, resemble cells in other insects in which mass fluid transport is believed to occur. It is thought that movement from lumen to haemolymph occurs in the c e n tra l tube of the caeca- bearing region, and from haemolymph to lumen in the hindmost part of the midgut, the excretory vesicle. The implications of this are discussed. The material contained within the papers submitted as appendices is essentially summarised in the Introduction to this thesis. - 4 - INTRODUCTION Insects belonging to the Order Hemiptera feed by piercing and sucking. Their feeding apparatus is among the most highly modifiedtfrom the primitive pattern found in the cockroach, of any group of insects. In place of the biting jaws and jointed maxillae and labium, with jointed sensory palps on the last two pairs of appendages, there remains only the proboscis-like labium, carrying in a channel on its morphologically anterior face a hollow piercing stylet The stylet
Recommended publications
  • European Academic Research
    EUROPEAN ACADEMIC RESEARCH Vol. IV, Issue 6/ September 2016 Impact Factor: 3.4546 (UIF) ISSN 2286-4822 DRJI Value: 5.9 (B+) www.euacademic.org Gelatin : mini–review AMER MAHDI State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Deparatment of of Food Science and Technology Faculty of Agriculture, Sana’a University Sana’a, Yemen WALEED AL-ANSI State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Deparatment of of Food Science and Technology Faculty of Agriculture, Sana’a University Sana’a, Yemen ANWAR NOMAN State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Deparatment of Agricultural Engineering Faculty of Agriculture, Sana’a University Sana’a, Yemen AMMAR AL-FARGA1 State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Abstract: Gelatin or Gelatine is a type of insoluble protein produced by hydrolysis of collagen extracted from a variety of animal sources such as the skin, bones, and connective tissues. Considered gelatin is the structural mainstay and most common protein in the animal kingdom. Gelatin has been widely used in food additives and healthy food due to its high content of protein and amino acid. The gelatin have unique 1 Corresponding author: [email protected] 5154 Amer Mahdi, Waleed Al-Ansi, Anwar Noman, Ammar Al-Farga- Gelatin: mini– review hydrocolloid nature, it has enabled it to find numerous applications in the food industry.
    [Show full text]
  • Het News Issue 22 (Spring 2015)
    Circulation : An informal newsletter circulated periodically to those interested in Heteroptera Copyright : Text & drawings © 2015 Authors. Photographs © 2015 Photographers Citation : Het News, 3 rd series, 22, Spring 2015 Editor : Tristan Bantock: 101 Crouch Hill, London N8 9RD [email protected] britishbugs.org.uk , twitter.com/BritishBugs CONTENTS ANNOUNCEMENTS Scutelleridae A tribute – Ashley Wood…………………………………………….. 1 Odonotoscelis fuliginosa ……………………………………………... 5 Updated keys to Terrestrial Heteroptera exc. Miridae…………… 2 Stenocephalidae County Recorder News……………………………………………… 2 Dicranocephalus medius feeding on Euphorbia x pseudovirgata 5 IUCN status reviews for Heteroptera………………………………. 2 Lygaeidae New RES Handbook to Shieldbugs & Allies of Britain and Ireland 2 Nysius huttoni ………………………………………………………… 5 Request for photographs of Peribalus spp…………………………. 2 Ortholomus punctipennis …………………….……………………… 5 Ischnodemus sabuleti ……………..………….……………………… 5 SPECIES NEW TO BRITAIN Rhyparochromus vulgaris ……………………………………………. 6 Centrocoris variegatus (Coreidae)………………………………….. 2 Drymus pumilio…………………………………………………….…. 6 Orius horvathi (Anthocoridae)……………………………………….. 2 Miridae Nabis capsiformis (Nabidae)………………………………………… 3 Globiceps fulvicollis cruciatus…………………….………………… 6 Psallus anaemicus (Miridae)………………………………………… 3 Hallodapus montandoni………………………………………………. 6 Psallus helenae (Miridae)……………………………………………. 3 Pachytomella parallela……………………………………………….. 6 Hoplomachus thunbergii……………………………………………… 6 SPECIES NOTES Chlamydatus evanescens……………………… …………………….
    [Show full text]
  • Thorne Moors :A Palaeoecological Study of A
    T...o"..e MO<J "S " "",Ae Oe COlOOIC'" S T<.OY OF A e"ONZE AGE slTE - .. "c euc~ , A"O a • n ,• THORNE MOORS :A PALAEOECOLOGICAL STUDY OF A BRONZE AGE SITE A contribution to the history of the British Insect fauna P.c. Buckland, Department of Geography, University of Birmingham. © Authors Copyright ISBN ~o. 0 7044 0359 5 List of Contents Page Introduction 3 Previous research 6 The archaeological evidence 10 The geological sequence 19 The samples 22 Table 1 : Insect remains from Thorne Moors 25 Environmental interpretation 41 Table 2 : Thorne Moors : Trackway site - pollen and spores from sediments beneath peat and from basal peat sample 42 Table 3 Tho~ne Moors Plants indicated by the insect record 51 Table 4 Thorne Moors pollen from upper four samples in Sphagnum peat (to current cutting surface) 64 Discussion : the flooding mechanism 65 The insect fauna : notes on particular species 73 Discussion : man, climate and the British insect fauna 134 Acknowledgements 156 Bibliography 157 List of Figures Frontispiece Pelta grossum from pupal chamber in small birch, Thorne Moors (1972). Age of specimen c. 2,500 B.P. 1. The Humberhead Levels, showing Thorne and Hatfield Moors and the principal rivers. 2 2. Thorne Moors the surface before peat extraction (1975). 5 3. Thorne Moors the same locality after peat cutting (1975). 5 4. Thorne Moors location of sites examined. 9 5. Thorne Moors plan of trackway (1972). 12 6. Thorne Moors trackway timbers exposed in new dyke section (1972) • 15 7. Thorne Moors the trackway and peat succession (1977).
    [Show full text]
  • Lace Bugs of Namibia (Heteroptera, Tingoidea, Tingidae)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Lace bugs of Namibia (Heteroptera, Tingoidea, Tingidae)1 J. DECKERT & U. GÖLLNER-SCHEIDING Abstract: This paper provides locality records and host plant data for 85 species in 32 genera of Namib- ian Tingidae. Three new species are described: Ammianus ernsti nov.sp., Cysteochila bassoni nov.sp., and Cysteochila rusti nov.sp. Forty-three species are recorded for the first time from Namibia. A key to the genera found in Namibia is presented. Key words: Afrotropical Tingidae, distribution, key, Namibia. Introduction oligophagous on a group of related plants, but some species are polyphagous and feed More than 2000 species of lace bugs in on species of several different plant families. approximately 270 genera are known world- wide. One third of all known lace bugs oc- The lion’s share of Tingidae, more than curs in Africa, which amounts to more than 95 % of the described species, belongs to the 600 species in 121 genera (GÖLLNER-SCHEI- subfamily Tinginae. Many genera of Tingi- DING 2004a). Forty-two species of Tingidae nae remain poorly defined and several are have been recorded previously from Namib- almost certainly not monophyletic. LIS ia and the present study increases this num- (1999) and GUILBERT (2001, 2004) dis- ber to 85 species in 32 genera. cussed two contradicting views of the family and subfamily level classification of Tin- Tingidae are mainly distributed in the goidea. One of the main differences be- tropical and temperate zones. All species are of small size. Their total length is usually be- tween these two classifications is the posi- tween two and four millimetres, but a few tion and treatment of Cantacader and some species measure less than two or up to eight related species groups as either a separate millimetres.
    [Show full text]
  • Barbed Wire Vine
    Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Compiled by: Michael Fox www.megoutlook.org/flora-fauna/ © 2015-17 Creative Commons – free use with attribution to Mt Gravatt Environment Group Ants Dolichoderinae Iridomyrmex sp. Small Meat Ant Attendant “Kropotkin” ants with caterpillar of Imperial Hairstreak butterfly. Ants provide protection in return for sugary fluids secreted by the caterpillar. Note the strong jaws. These ants don’t sting but can give a powerful bite. Kropotkin is a reference to Russian biologist Peter Kropotkin who proposed a concept of evolution based on “mutual aid” helping species from ants to higher mammals survive. 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 1 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Opisthopsis rufithorax Black-headed Strobe Ant 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 2 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Camponotus consobrinus Banded Sugar Ant Size 10mm Eggs in rotting log Formicinae Camponotus nigriceps Black-headed Sugar Ant 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 3 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 4 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis ammon Golden-tailed Spiny Ant Large spines at rear of thorax Nest 22-Aug-17 Insects Beetles and Bugs - ver 5.4 Page 5 of 51 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis australis Rattle Ant Black Weaver Ant or Dome-backed Spiny Ant Feeding on sugar secretions produced by Redgum Lerp Psyllid.
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century.
    [Show full text]
  • Hemiptera: first Record for an Australian Lophopid (Hemiptera, Lophopidae)
    Australian Journal of Entomology (2007) 46, 129–132 Historical use of substrate-borne acoustic production within the Hemiptera: first record for an Australian Lophopid (Hemiptera, Lophopidae) Adeline Soulier-Perkins,1* Jérôme Sueur2 and Hannelore Hoch3 1Muséum National d’Histoire Naturelle, Département Systématique et Évolution, USM 601 MNHN & UMR 5202 CNRS, Case Postale 50, 45, Rue Buffon, F-75005 Paris, France. 2NAMC-CNRS UMR 8620, Bât. 446, Université Paris XI, F-91405 Orsay Cedex, France. 3Museum für Naturkunde, Institut für Systematische Zoologie, Humboldt-Universität zu Berlin Invalidenstr. 43, D- 10115 Berlin, Germany. Abstract Here the first record of communication through substrate-borne vibrations for the Lophopidae family is reported. The signals from Magia subocellata that the authors recorded were short calls with a decreasing frequency modulation. Acoustic vibrations have been observed for other families within the Hemiptera and a scenario concerning the historical use of vibrational communication within the Hemiptera is tested using a phylogenetic inference. The most parsimonious hypothesis suggests that substrate-borne communication is ancestral for the hemipteran order and highlights the groups for which future acoustic research should be undertaken. Key words Cicadomorpha, Coleorrhyncha, evolutionary scenario, Heteroptera, Sternorrhyncha, substrate vibration. INTRODUCTION Lophopidae migrating into America via the Bering land bridge. Some other ancestors of the extant groups moved onto Many animals have been recently recognised for their ability newly emerging land in the Pacific, expanding their distribu- to communicate through substrate-borne vibrations (Hill tion as far east as the Samoan Islands, and as far south as 2001). While elephants produce vibrations transmitted by the Australia (Soulier-Perkins 2000).
    [Show full text]
  • Overview of Upland Rice Research Proceedings of the 1982 Bouaké, Ivory Coast Upland Rice Workshop
    AN OVERVIEW OF UPLAND RICE RESEARCH PROCEEDINGS OF THE 1982 BOUAKÉ, IVORY COAST UPLAND RICE WORKSHOP 1984 INTERNATIONAL RICE RESEARCH INSTITUTE LOS BAÑOS, LAGUNA, PHILIPPINES P. O. BOX 933, MANILA, PHILIPPINES The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today IRRl is one of 13 nonprofit international research and training centers supported by the Consultative Group for International Agricultural Research (CGIAR). The CGIAR is sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), and the United Nations Development Programme (UNDP). The CGIAR consists of 50 donor countries, international and regional organizations, and private foundations. IRRl receives support, through the CGIAR, from a number of donors including: the Asian Development Bank the European Economic Community the Ford Foundation the International Development Research Centre the International Fund for Agricultural Development the OPEC Special Fund the Rockefeller Foundation the United Nations Development Programme the World Bank and the international aid agencies of the following governments: Australia Belgium Brazil Canada China Denmark Fed. Rep. Germany India Italy Japan Mexico Netherlands New Zealand Philippines Saudi Arabia Spain Sweden Switzerland United Kingdom United States The responsibility for this publication rests with the International Rice Research Institute. ISBN 971-104-121-9 CONTENTS FOREWORD v BASE PAPERS Upland rice in Africa IITA 3 WARDA 21 Upland rice in Asia IRRI 45 Upland rice in India 69 D. M. Maurya and C. P. Vaish Upland rice in Latin America CIAT 93 EMBRAPA 121 ENVIRONMENTAL CHARACTERIZATION AND CLASSIFICATION Rice production calendar for the Ivory Coast 137 J.
    [Show full text]
  • Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
    __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N.
    [Show full text]
  • Hemiptera: Miridae: Orthotylinae) in Different Instars
    RESEARCH ARTICLE The structure and morphologic changes of antennae of Cyrtorhinus lividipennis (Hemiptera: Miridae: Orthotylinae) in different instars 1☯ 2☯ 3 3 1 Han-Ying Yang , Li-Xia Zheng , Zhen-Fei Zhang , Yang Zhang , Wei-Jian WuID * 1 Laboratory of Insect Ecology, South China Agricultural University, Guangzhou, China, 2 College of Agronomy, Jiangxi Agricultural University, Nanchang, China, 3 Plant Protection Institute, Guangdong a1111111111 Agricultural Science Academy, Guangzhou, China a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 Abstract Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae: Orthotylinae), including nymphs and OPEN ACCESS adults, are one of the dominant predators and have a significant role in the biological con- Citation: Yang H-Y, Zheng L-X, Zhang Z-F, Zhang trol of leafhoppers and planthoppers in irrigated rice. In this study, we investigated the Y, Wu W-J (2018) The structure and morphologic antennal morphology, structure and sensilla distribution of C. lividipennis in different changes of antennae of Cyrtorhinus lividipennis instars using scanning electron microscopy. The antennae of both five different nymphal (Hemiptera: Miridae: Orthotylinae) in different instars. PLoS ONE 13(11): e0207551. https://doi. stages and adults were filiform in shape, which consisted of the scape, pedicel and flagel- org/10.1371/journal.pone.0207551 lum with two flagellomeres. There were significant differences found in the types of anten- Editor: Feng ZHANG, Nanjing Agricultural nal sensilla between nymphs and adults. The multiporous placodea sensilla (MPLA), University, CHINA basiconica sensilla II (BAS II), and sensory pits (SP) only occurred on the antennae of Received: August 8, 2018 adult C.
    [Show full text]
  • Page 1-21.FH10
    ISSN 0375-1511 Rec. zool. Surv. India: 113(Part-4): 213-227,2013 REPORT ON THE SOIL FAUNA OF BHADRAK AND BALASORE DISTRICT, ORISSA RiNKU GoswAMi, MAYA GHOSH AND DEBDULAL SAHA Zoological Survey of India, M-Block, New Alipore, Kolkata-700053 INTRODUCTION In this study, the assessment of soil fauna in Soil is one of the basic natural resoiirces that the study areas aimed at obtaining a general supports life on Earth. It is a huge ecosystem, overview of soil fauna in the ecosystems of the which is the habitat to several living organisms. region. Perusal of published literature shows no Historically, most of the efforts on biodiversity such systematic study was conducted in these studies focused, especially on aboveground plant areas of our study zone previously. and animal species (Wardle, 2006). However, it is Soil Fauna and their Function in Soil well recognized that in most terrestrial There are many animal groups inhabiting soil ecosystems, the belowground biota supports system. It has been reported that of the total much greater diversity of organisms than does the nirmber of described species on Earth (~1,500,000), aboveground biota, because soils are the central as many as 23 per cent are soil animals (Decaens et. organising entities in terrestrial ecosystems al., 2006). Estimated nirmbers of soil species include (Coleman, and Whitman, 2005). Soil fauna is a 30,000 bacteria; 1,500,000 fungi; 60,000 algae; 10,000 highly diverse group of organisms living within protozoa; 500,000 nematodes; and 3,000 the soil and make soil alive by their activity.
    [Show full text]