Design-Build-Design-Management

Total Page:16

File Type:pdf, Size:1020Kb

Design-Build-Design-Management TABLE OF CONTENTS INTRODUCTION: A Guide to this Guide ...................................................................4 What’s New in Version 2.0 ..............................................................5 Contributors to Version 2.0 ..............................................................6 About the Charles Pankow Foundation ...........................................6 Chapter 1: Design-Build, the Design-Phase Manager and Team ............7 1.1 The Design-Build Method of Project Delivery .................................7 1.2 How Design-Build Teams are Structured ........................................8 1.3 Role of the Design-Phase Manager ................................................8 1.3.1 What the Design-Phase Manager Does ..............................9 1.3.2 Difference between the Design-Phase Manager and the Designer-of-Record .....................................................10 1.3.3 Design-Phase Manager Credentials ...................................11 1.3.4 What the Design-Phase Manager Needs to Know ............11 1.3.5 Alternative Ways to Staff a Design-Build Design Team .....12 1.4 Business Drivers under the Design-Build Model —and What They Mean for the Design-Phase Manager ............13 1.4.1 The Business of Designers .................................................13 1.4.2 The Business of Builders.....................................................14 1.5 Cultural Differences under the Design-Build Model —and Getting to Know The Team .................................................15 1.5.1 The Culture of Designers ....................................................15 1.5.2 The Culture of Builders .......................................................16 1.5.3 Putting Them All Together ..................................................17 1.5.4 The Ethical Imperative ........................................................17 Chapter 2: Design-Builder Selection ...........................................................19 2.1 Common Design-Build Team Selection Methods .........................19 2.1.1 Cost-Based Selection ..........................................................19 2.1.2 Qualifications-Based Selection ...........................................20 2.1.3 Best-Value Selection ...........................................................21 2.2 Design-Phase Manager’s Role during Selection ...........................21 2.3 Phases of a Best-Value Design-Build Selection ............................22 2.3.1 Qualifications Package ........................................................22 2.3.2 Owner’s Shortlist ................................................................23 2.3.3 Proposal Preparation ..........................................................24 2.3.4 Interview .............................................................................25 2.3.5 Award ..................................................................................25 CHARLES PANKOW FOUNDATION | DESIGN-PHASE MANAGER’S GUIDE 1 Chapter 3: Building and Sustaining a Functional and Successful Design Solution .................................27 3.1 Assembling the Design Team Based on the Owner’s Needs .............................................................27 3.1.1 Primary Design Consultants ......................................................................................................27 3.1.2 Specialty Design Consultants ....................................................................................................28 3.2 Motivating the Design Team and Engendering Trust and Respect .....................................................29 3.3 Kick-Off Strategies to Begin the Job Right ..........................................................................................31 3.3.1 Mission Statement and Team Chartering .................................................................................31 3.3.2 Project Vision ............................................................................................................................31 3.3.3 Performance Expectations ........................................................................................................31 3.3.4 Roles and Responsibilities .........................................................................................................32 3.4 Achieving Collaboration .......................................................................................................................32 3.4.1 Team Collaboration ...................................................................................................................33 3.4.2 Importance of Communication ..................................................................................................34 3.4.3 Information Management and Electronic Communication ......................................................34 3.4.4 Meetings during the Design Process ........................................................................................35 Chapter 4: Contracts and Subcontracts ............................................................................................................37 4.1 Best Practices in Contracting for Design-Build Services .....................................................................37 4.2 Teaming Agreements or Memoranda of Understanding during Selection Process...........................38 4.2.1 Exclusivity and Non-Disclosure ................................................................................................40 4.2.2 Inclusion of Subcontract as Part of the Teaming Agreement ...................................................40 4.2.3 Addressing Changes in Circumstances during the Design Selection Process .........................40 4.3 Standard Form Design-Build Subcontracts .........................................................................................41 4.4 Negotiating the Subcontract ................................................................................................................41 4.5 Key Subcontract Terms and Issues to Consider in the Design Subcontract .......................................42 4.5.1 Scope of Work Definition ..........................................................................................................43 4.5.2 Commercial Terms in the Design Subcontract .........................................................................44 4.5.3 Risk-Sharing Provisions ............................................................................................................44 4.5.4 Professional Liability Insurance and Errors and Omissions Contingencies .............................45 4.5.5 Indemnification Clauses and the Duty to Defend ......................................................................46 4.5.6 Flow-Down Clauses ...................................................................................................................47 4.6 Other Legal Considerations in Contracting ..........................................................................................47 4.6.1 Public-Private Partnerships .......................................................................................................47 4.6.2 BIM Ownership .........................................................................................................................48 4.6.3 Electronic Communications, Project Documentation, and Copyrights ....................................48 4.6.4 Performance-Based Criteria .....................................................................................................49 4.6.5 Authority to Change the Design ................................................................................................49 4.6.6 Warranties and Post-Occupancy Issues ...................................................................................50 4.7 Resolving Conflict .................................................................................................................................50 4.7.1 Avoiding Disagreements ...........................................................................................................51 4.7.2 Dealing with Errors and Omissions ..........................................................................................51 4.7.3 Addressing Changed Conditions ...............................................................................................52 4.7.4 Techniques for Dispute Resolution ............................................................................................52 Chapter 3: Building and Sustaining a Functional and Successful Design Solution .................................27 Chapter 5: Work Breakdown Structure and Schedule ...................................................................................55 3.1 Assembling the Design Team Based on the Owner’s Needs .............................................................27 5.1 Project Phases and the Work Breakdown Structure ...........................................................................55 3.1.1 Primary Design Consultants ......................................................................................................27 5.2 Developing the Design Schedule .........................................................................................................57 3.1.2 Specialty Design Consultants ....................................................................................................28 5.2.1 Design Schedule Elements .......................................................................................................57
Recommended publications
  • Demolition and Cleanup
    FactSheet Demolition and Cleanup Before starting a demolition, the person or persons in charge must adequately prepare for the task with regard to the health and safety of the workers. These preparatory operations involve the overall planning of the demolition job, includ- ing the methods to be used to bring the structure down, the equipment neces- sary to do the job, and the measures to be taken to perform the work safely. Before doing demolition work, inspect available personal protective equipment (PPE), and select, wear and use the PPE appropriate for the task. Demolition work involves many of the same hazards associated with construc- tion work. However, demolition also poses additional hazards due to unknown factors such as: deviations from the structure's original design, approved or unapproved modifications that altered the original design, materials hidden with- in structural members, and unknown strengths or weaknesses of damaged mate- rials. To counter these unknowns, all personnel involved in a demolition project need to be fully aware of these types of hazards and the safety precautions avail- able to control these hazards. Preliminary Tasks al able to withstand the loads likely to be A written engineering survey must be per- imposed. Debris dropped through holes in formed on each structure being considered for the floor without the use of chutes must be demolition to determine the condition of the completely enclosed with barricades not less framing, floors and walls, and to assess the than 42 inches high and not less than 6 feet possibility of an unplanned collapse of any back from the projected edge of the opening portion of the structure.
    [Show full text]
  • Building Design GUIDELINES Table of Contents
    Building Design GUIDELINES Table of Contents Acknowledgements . 1 Part I. Introduction Background . 2 Goals . 3 Applicability of This Document . 3 Part II. Building Design Guidelines A Context Fit. 5 B Pedestrian Friendliness. 8 C Visual Attractiveness . 18 D Sustainable Design . 32 Appendix I. Public Input Process . 36 II. Design Review Procedure . 40 III. Design Guidelines Checklist . 42 IV. Façade Renovation Toolkit . 43 Acknowledgements The Building Design Guidelines for the City of Naperville, Illinois were prepared through the help of many citizens, staff and officials of the Naperville community who participated in the planning process at stakeholder meetings, on-line surveys and open house meetings. Their involvement and insights are sincerely appreciated. City Plan Commission Derke Price, Chairman Bill Jepson Mike Brown Joe McElroy Ann Edmonds Jeffrey Meyers Paul Hinterlong Reynold Sterlin City Council George Pradel, Mayor Jim Boyajian Kenn Miller Bob Fieseler John Rosanova Richard Furstenau Darlene Senger Doug Krause Grant Wehrli City Staff Allison Laff, AICP, Planning Services Team Leader - TED Business Group Ying Liu, AICP, Community Planner - TED Business Group Suzanne Thorsen, Community Planner - TED Business Group Prepared by the City of Naperville with assistance from Lohan Anderson, LLC and A Design Consulting. 1 INTRODUCTION Background From just a handful of families residing within the City Council adopted Resolution #05-020 that states: original settlement, Naperville has grown to a community of over 140,000 people and is now a dynamic city with “It is the City of Naperville’s vision and expectation both old-fashioned charm and a high-tech corporate that issues related to design and architecture, corridor.
    [Show full text]
  • Civilremarks Civil and Environmental Engineering at Maryland
    FALL 2017 | THE A. JAMES CLARK SCHOOL OF ENGINEERING CIVILREMARKS CIVIL AND ENVIRONMENTAL ENGINEERING AT MARYLAND Better Together Cross-cutting capstone equips graduates for professional careers Chair’s As our alumni know, the University You’ll also meet current students and recent graduates of Maryland Department of Civil and who leveraged our active student groups to apply Message Environmental Engineering is ded- classroom knowledge and hone the skills needed to icated to equipping students with be successful in the years after graduation. the knowledge and skills needed to And you’ll learn about a nine-year partnership with tackle grand challenges. We have a the U.S. Department of Agriculture that has given proud history of providing hands- students the rare opportunity to impact national on experiences, mentorship, and efforts to preserve the environment. challenging research, co-curricular, These and numerous other endeavors are made extracurricular, and service-learning possible by dedicated faculty and staff, exceptional opportunities. students, and engaged, generous alumni. My deepest In this issue of Civil Remarks, you’ll read about some thanks to all those who work for the success of our of the strategies our faculty employ to not only build students as we look forward to another great year in engineering knowledge but also instill professional Glenn L. Martin Hall. best practices, raise awareness of important social issues surrounding the field, and foster an appreciation for multidisciplinary collaboration. Charles W. Schwartz, Ph.D. PROFESSOR AND CHAIR DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING TABLE OF CONTENTS CIVILREMARKS CIVIL AND ENVIRONMENTAL ENGINEERING 1 Better Together 10 Alumna Spotlight: Martina Driscoll AT MARYLAND PUBLISHER 4 Innovative Teaching Strategies in 11 Women Forge New Opportunities Department of Civil and Environmental CEE: Redefining the Norm for CEE Students Engineering Charles W.
    [Show full text]
  • Scales Types of Scales Civil Engineering Scale
    Scales • The purpose of scales is to allow an engineer, architect, technician or contractor to determine scaled measurements from drawings or maps very quickly and easily. • Drawings and maps are drawn to different scales such as: 1” = 100’, 1” = 1’-0” or 1:2 (half size). Types of Scales Civil Engineering Scale 1 Architect’s Scale Metric Scale 2 Civil Engineer’s Scale • Full Divided Scale • 1” is divided into equal decimal units of 10, 20, 30, 40, 50, 60 and 80 divisions. • For example, 1” = 100’ is a typical scale used for Civil Engineering Drawings. This means that 1” on the drawing represents 100’ in the real world. Scale & Size • 10 scale represents full size in decimal inches. 1” on paper represents 1” in real life. Hence the name “full size”. • 20 scale represents half scale where 1” on a drawing represents 2” in real life. • 40 scale represents quarter size where 1” on a drawing represents 4” in real life. 3 Applications • Civil Engineers typically design large things such as, bridges, roads, buildings, shopping centers etc. Therefore typical scales used include: 1” = 100’ for plan views of highway designs and 1” = 5’ vertical and 1” = 100’ horizontal for profile views. Section views are typically 1” = 5’ vertical and 1” = 10’ horizontal. Other Applications • Sometimes scales are used to compute quantities based on a graphical analysis. When this is the case units of measurement other than length are often used. Examples include: • 1” = 10 kips, 1” = 2000 volts, 1” = 50 buses, 1” = 20 GHz and 1” = 40 people. • Always remember that your answer will be recorded in a decimal format for the CE scale.
    [Show full text]
  • Design Charrette
    MEETING AGENDA – design charrette CLIENT: STATE COLLEGE AREA SCHOOL DISTRICT PROJECT: Ferguson Township Elementary School Project MEETING DATE: August 13 – 14, 2009 MEETING TIME: 8:30 AM – 4:00 PM MEETING TOPIC: DESIGN CHARRETTE The focus of this design charrette will be to develop the conceptual design for the Ferguson Township Elementary facility that will be carried into the schematic design process. The integration of educational facility design, site design and related sustainable design techniques will be the focus of this process. Participants will be fully engaged in the design process and will have the opportunity to share in the overall design decision making. Ferguson Township Elementary Design Charrette Thursday August 13 8:30 AM – 4:00 PM Time Topic Location 8:30 AM - 8:45 AM WELCOME & INTRODUCTION TO THE CHARRETTE PROCESS FTES 8:45 AM – 9:30 AM WALKING TOUR OF SITE FTES 9:30 AM – 9:45 AM REVISIT PROJECT PARAMETERS (site issues and program) FTES 9:45 AM – 10:15 AM REVIEW OF PROJECT TOUCHSTONES & LEED GOALS FTES 10:15 AM - 10:45 AM THE BUILDING AS A TEACHING TOOL FTES 10:45 AM – 11:00 AM VIRTUAL TOUR OF EDUCATIONAL SPACES FTES 11:00 AM – 11:30 AM SITE FLOWS EXERCISE FTES 11:30 AM – 12:15 PM LUNCH/ TRAVEL FROM FTES to MNMS travel 12:15 PM – 1:45 PM DESIGN SESSION 1 – SITE DESIGN AND “BIG IDEAS” MNMS 1:45 PM – 3:30 PM INTERNAL FEEDBACK MNMS 3:30 PM – 4:00 PM DOCUMENTATION OF THE “BIG IDEAS” MNMS SCHRADERGROUP architecture LLC | 161 Leverington Avenue, Suite 105 | Philadelphia, Pennsylvania 19127 | T: 215.482.7440 | F: 215.482.7441 | www.sgarc.com Friday August 14 8:30 AM – 4:00 PM Time Topic Location 8:30 AM – 8:45 AM REFLECTION ON THE S“BIG IDEAS” MNMS 8:45 AM – 10:15AM DESIGN SESSION 2 MNMS 10:15 AM – 12:00 PM INTERNAL FEEDBACK MNMS 12:00 PM – 12:45 PM LUNCH brown bag 12:45 PM – 2:15 PM DESIGN SESSION 3 MNMS 2:15 PM – 3:30 PM INTERNAL FEEDBACK MNMS 3:30 PM – 4:00 PM NEXT STEPS MNMS The information developed during this design charrette will become the basis for the schematic design process to be carried through the process.
    [Show full text]
  • Design Piracy: the Extensive Impact of a Fashion Knockoff
    On the Monetary Impact of Fashion Design Piracy Gil Appel Marshall School of Business, University of Southern California [email protected] Barak Libai Arison School of Business, Interdisciplinary Center (IDC), Herzliya [email protected] Eitan Muller Stern School of Business, New York University Arison School of Business, Interdisciplinary Center (IDC), Herzliya [email protected] July 2017 The authors would like to thank Roland Rust, Senior Editor and reviewers, On Amir, Michael Haenlein, Liraz Lasry, Irit Nitzan, Raphael Thomadsen, the participants of the Marketing Science and EMAC conferences and the participants of the seminars of the business schools at University of California at Davis, the University of California at San Diego, and Stanford University for a number of helpful comments and suggestions. On the Monetary Impact of Fashion Design Piracy Abstract Whether to legally protect original fashion designs against design piracy (“knockoffs”) is an ongoing debate among legislators, industry groups, and legal academic circles, yet to-date this discussion has not utilized marketing knowledge and formal approaches. We combine data collected on the growth of fashion items, price markups, and industry statistics, to create a formal analysis of the essential questions in the base of the debate. We distinguish between three effects: Acceleration, whereby the presence of a pirated design increases the awareness of the design, and thus might have a positive effect on the growth of the original; Substitution, which represents the loss of sales due to consumers who would have purchased the original design, yet instead buy the knockoff; and the loss due to Overexposure of the design that follows the loss of uniqueness due to the design becoming too popular, causing some consumer not to adopt the design or stop using it.
    [Show full text]
  • Alternative Contracting Methods
    ALTERNATIVE CONTRACTING METHODS • Conventional Design-Bid-Build • Design/Build • Negotiated General Contractor By Jeff Warner, AIA, LEED AP Principal, ALSC Architects CONVENTIONAL DESIGN-BID-BUILD The most traditional method of delivery of a construction PROS project is where the Architect, after selection by the Client, 1. Costs may be lower due to competition. totally completes the design documents which are then 2. Project design is typically complete prior to start of distributed to General Contractors for bidding. Usually, the construction. low bidder is selected to construct the project and enters 3. Owner receives a single lump sum proposal for the entire into a lump sum type contract agreement directly with the project not subject to cost escalation. Owner. During construction, the Architect typically maintains 4. This approach conforms most directly to public bidding a strong administrative role and is the focal point of most laws. communication on the project between the Contractor and Owner. While proponents of this method of contracting feel that CONS the lowest overall initial costs are obtained through pure 1. If bids exceed budget, the project may require re-design. competitive bidding, an adversarial relationship between 2. Difficult to fast-track or pre-order materials, resulting in principal parties can develop; making the administration of later Owner occupancy. changes more difficult, time consuming and costly. Perhaps 3. The General Contractor may be in an adversarial the biggest potential problem with this approach to a major, relationship with the Owner and Architect/Engineer. complex construction project is that the Owner does not 4. Prices for change order work are typically higher and obtain a firm handle on construction costs until the project has more difficult to control.
    [Show full text]
  • Interior Architectural Design for Adaptive Reuse in Application of Environmental Sustainability Principles
    sustainability Concept Paper Interior Architectural Design for Adaptive Reuse in Application of Environmental Sustainability Principles Magdalena Celadyn Faculty of Interior Design, Academy of Fine Arts in Krakow, pl. Matejki 13, 31-157 Krakow, Poland; [email protected] Received: 3 June 2019; Accepted: 10 July 2019; Published: 12 July 2019 Abstract: The paper discusses an interior architectural design model to enable the accomplishment of sustainable design strategy of efficient resources/waste management. The proposed design concept, referred to as interior architectural design for adaptive reuse, is based on the reintroduction of reclaimed or salvaged building construction materials and products acquired from demolished or refurbished building structural portions, into the structure of interior components. The presented design approach puts circular design methods and techniques in interior design practice at the core of environmentally responsible architectural design. To achieve its objectives, the implementation of resources efficiency strategy into the interior design scheme should remain a decisive interior design quality criterion. Meanwhile, the issues related to the environmental contextualization of interior spaces and their constitutive components, in fulfilment of sustainable design requirements for the conservation of natural resources, are neither sufficiently recognized by interior designers, nor appropriately highlighted in the current design practice. The main purpose of this concept paper is to develop a theoretical scheme for systemic inclusion of interior architectural design for adaptive reuse into the environmentally sustainable interior architectural design framework. This study provides interior designers with the concept of interior components design for the fulfilment of resources efficiency and waste management effectiveness. Keywords: sustainable architectural design; sustainable interior design; interior components; adaptive reuse; environmental contextualization 1.
    [Show full text]
  • Change Orders Ordeal: the Output of Project Disintegration
    International Journal of Business, Humanities and Technology Vol. 2 No. 1; January 2012 Change Orders Ordeal: The Output of Project Disintegration Roberto Soares, Ph.D., D.Sc., AIC, PE Assistant Professor College of Computing, Engineering and Construction University of North Florida Jacksonville, Florida United States of America Abstract Change orders are one of the most controversial issues in construction contracts and require successful negotiations to avoid claims and possible litigation. Contractors, owners and architects behave differently when dealing with change orders. The aim of this paper is to demonstrate that change orders are the natural result of the disintegration of design and construction, which started in the US in 1893 with a Congressional Act formally separating the design and construction phases of a capital project .Delivery methods such as Design-Build (DB) and Construction Management at Risk (CMR), which are designed to mend the missing integration of design and construction and, consequently, eliminate the existence of change order conflict are proposed to recover the level of integration that existed at the time of the master builder. Key words: change orders, project integration, design-build, delivery methods 1. Introduction Change orders in construction are one of the most controversial issues to manage and a challenge to project management to satisfactorily resolve any change in order to avoid claims. Any construction contract is signed under the principle of “good faith,” which means that the parties will trust each other to perform according to the contract and that the contract is fair with no intention of taking advantage of the parties during the life of the contract.
    [Show full text]
  • 1 CLOTHING and ARCHITECTURE: More in Common
    CLOTHING AND ARCHITECTURE: more in common Han Xu 20107500 1 Clothing and buildings are becoming even more alike. Both have typically served the bodies that inhabit them by maintaining environmental control and by presenting a codified exterior to the world. But now there are new kinds of physical resemblances between architecture and clothing. Various kinds of textiles and weaves are now being exploited in landscape and building design. Vast landscapes are shaped by geotexiles while building structures and envelopes exploit tensile, textile strategies, enabled by new lighter and more flexible materials and by the assistance of digital simulations. As well as becoming lighter, buildings are also becoming increasingly more temporary. The lifespans of buildings are ever shorter as their inhabitants become more transient, moving frequently from city to city. Evidence of this nomadic lifestyle can be found in fashion. Clothing, the portable envelope worn on the body, now provides some of the functions formerly associated with architecture. Designers are exploring the possibilities of integrated lights in clothes, pockets to carry portable electronic devices as well as soft electronic devices that are embedded in technical fabrics. Through other technological advances in textiles, specialized suits offer climatic control in very extreme environments. Yet other designers are integrating structure into clothing or even reviving the primitive model of a portable textile shelter. Many designers switch between fashion and architecture. Even the manufacturing processes for clothing and architecture can now be very much alike as new, highly sophisticated weaving robots automize the manufacturing process for articles of fashion or for components of buildings. In Gottfried Semper’s 1860 Style in the Technical and Tectonic Arts, we find a creation myth for today’s textile buildings and architectural suits.
    [Show full text]
  • Architectural Models
    C HAPTER 1 3 Architectural Models This chapter describes the architectural models that can be appHed to GMPLS networks. These architectures are not only useful for driving the ways in which networking equipment is deployed, but they are equally important in determining how the protocols themselves are constructed, and the responsibilities of the various protocol components. Several distinct protocol models have been advanced and the choice between them is far from simple. To some extent, the architectures reflect the backgrounds of their proponents: GMPLS sits uncomfortably between the world of the Internet Protocol and the sphere of influence of more traditional telecommunications companies. As a result, some of the architectures are heavily influenced by the Internet, while others have their roots in SONET/SDH, ATM, and even the telephone system (POTS). The supporters of the diff'erent architectures tend to be polarized and fairly dogmatic. Even though there are many similarities between the models, the proponents will often fail to recognize the overlaps and focus on what is different, making bold and forceful statements about the inadequacy of the other approaches. This chapter does not attempt to anoint any architecture as the best, nor does it even try to draw direct comparisons. Instead, each architecture is presented in its own right, and the reader is left to make up her own mind. Also introduced in this chapter is the end-to-end principle that underlies the lETF's Internet architecture and then describes three diff'erent GMPLS architectural models. The peer and overlay models are simple views of the network and are natural derivatives of the end-to-end architectural model: They can be combined into the third model, the hybrid model, which has the combined flexibihty of the two approaches.
    [Show full text]
  • Meaningful Urban Design: Teleological/Catalytic/Relevant
    Journal ofUrban Design,Vol. 7, No. 1, 35– 58, 2002 Meaningful Urban Design: Teleological/Catalytic/Relevant ASEEM INAM ABSTRACT Thepaper begins with a critique ofcontemporary urban design:the eldof urban designis vague because it isan ambiguousamalgam of several disciplines, includingarchitecture, landscapearchitecture, urban planningand civil engineering; it issuper cial because itisobsessedwith impressions and aesthetics ofphysical form; and it ispractised as an extensionof architecture, whichoften impliesan exaggerated emphasison theend product. The paper then proposesa meaningful(i.e. truly consequential to improvedquality of life) approach to urban design,which consists of: beingteleological (i.e. driven by purposes rather than de ned by conventional disci- plines);being catalytic (i.e. generating or contributing to long-term socio-economic developmentprocesses); andbeing relevant (i.e. grounded in rst causes andpertinent humanvalues). The argument isillustratedwith a number ofcase studiesof exemplary urban designers,such asMichael Pyatok and Henri Ciriani,and urban designprojects, such asHorton Plazaand Aranya Nagar, from around the world. The paper concludes withan outlineof future directionsin urban design,including criteria for successful urban designprojects (e.g. striking aesthetics, convenient function andlong-term impact) anda proposedpedagogical approach (e.g. interdisciplinary, in-depth and problem-driven). Provocations In the earlypart of 1998,two provocative urban design eventsoccurred at the Universityof Michigan in Ann Arbor.The rstwas an exhibition organizedas partof aninternationalsymposium on ‘ City,Space 1 Globalization’. The second wasa lecture by the renowned Dutch architectand urbanist, Rem Koolhaas. By themselves,the events generated much interestand discussion, yet were innocu- ous,compared to, say, Prince Charles’s controversialcomments on contempor- arycities in the UKorthe gathering momentumof the New Urbanism movementin the USA.
    [Show full text]