<<

bs_bs_banner

Zoological Journal of the Linnean Society, 2013, 167, 165–190. With 4 figures

Hidden diversity in bent-winged (Chiroptera: Miniopteridae) of the Western Palaearctic and adjacent regions: implications for

JAN ŠRÁMEK1*, VÁCLAV GVOŽDÍK2,3 and PETR BENDA1,2

1Department of Zoology, Faculty of Science, Charles University, Vinicˇná 7, CZ–128 44 Prague, Czech Republic 2Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ–115 79 Prague, Czech Republic 3Laboratory of Molecular Ecology, Institute of Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, CZ–277 21 Libeˇchov, Czech Republic

Received 6 December 2011; revised 28 August 2012; accepted for publication 29 August 2012

The taxonomic status of bent-winged bats (Miniopterus) in the Western Palaearctic and adjacent regions is unclear, particularly in some areas of the eastern Mediterranean, Middle East and Arabia. To address this, we analysed an extensive collection of museum materials from all principal parts of this distribution range, i.e. North Africa, Europe and southwest Asia, using morphological (skull) and genetic approaches (mitochondrial DNA). Linear and geometric morphometric analysis of cranial and dental characteristics, together with molecular phylogeny, suggested that Miniopterus populations comprise four separate species: (1) M. schreibersii sensu strictissimo (s.str.) – occurring in Europe, coastal Anatolia, Levant, Cyprus, western Transcaucasia, and North Africa; (2) M. pallidus – occurring in inland Anatolia, Jordan, eastern Transcaucasia, Turkmenistan, Iran and southern Afghanistan (Kandahar); (3) a Miniopterus sp. – recorded from Nangarhar province in eastern Afghanistan, which we tentatively assign to M. cf. fuliginosus; and (4) a Miniopterus sp. with Afro-tropic affinities confirmed from south-western Arabia and Ethiopia, which we tentatively name M. cf. arenarius. The latter two species are well differentiated by skull morphology, while M. pallidus possesses very similar skull morphology to M. schreibersii. The results also suggest the existence of a possible new taxon (subspecies) within M. schreibersii s.str. inhabiting the Atlas Mountains of Morocco.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190. doi: 10.1111/j.1096-3642.2012.00870.x

ADDITIONAL KEYWORDS: Arabia – bent-winged bats – cryptic species – Europe – Middle East – mitochondrial DNA – morphology – North Africa – phylogeography – systematics.

INTRODUCTION mostly in the tropics and subtropics of the Old World, viz. Africa (except the Sahara), southern and central Bent-winged bats, family Miniopteridae, are repre- Europe, southern Asia from Anatolia, across the sented by a single , Miniopterus Bonaparte, Middle East and Transcaucasia to China and Japan, 1837. The genus includes up to 19 species occurring the Sunda archipelago, the Philippines, and the Australasian region (Simmons, 2005). Morphological analysis suggests that the named forms (species/ *Corresponding author. Current address: Department of subspecies) of this genus are very similar in their Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, CZ–100 00 Prague, Czech cranial and external characteristics (e.g. Tate, 1941; Republic. E-mail: [email protected] Maeda, 1982; Benda et al., 2006), meaning that

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 165 166 J. ŠRÁMEK ET AL. identification of many taxa is difficult and the classi- populations from Turkey, while most of the Palaearc- fication of many populations of this genus remains tic range of the bent-winged bats still remains ques- unclear. Further, a number of recent molecular phy- tionable from a taxonomic and phylogeographic point logenetic studies have indicated that the taxonomy of of view (cf. Bilgin, 2011, 2012). this genus is in urgent need of revision (Appleton, The subspecific taxonomic rank of the taxon McKenzie & Christidis, 2004; Tian et al., 2004; Miller- pallidus has been applied, particularly by Russian Butterworth et al., 2005; Furman et al., 2009, 2010c; authors (e.g. Ellerman & Morrison-Scott, 1951; Furman, Öztunç & Çoraman, 2010b). This is particu- Kuzâkin, 1965; Strelkov, Sosnovcena & Babaev, 1978; larly true for Miniopterus schreibersii (Kuhl, 1817) Rahmatulina, 2005), for populations occurring in sensu lato (s.l.), the only species considered as inhab- some areas of the former Soviet Union (currently the iting the whole south-western portion of the Palae- Caucasus region and southern Turkmenistan; Ognev, arctic region (Koopman, 1993, 1994; Simmons, 2005). 1927, 1928; Gazaryan, 2005). Distribution of this For a long time, this species was considered a form has also been reported from the Levant (Syria, polytypic and widespread , with up to 25 subspe- Lebanon, Israel, Jordan), Iraq, Iran, Afghanistan and cies recognised within its distribution range, which from the inland/highland areas of central and eastern is almost identical to that of the genus and com- Turkey (e.g. Lay, 1967; Gaisler, 1970; Maeda, 1982; prises most of the Old World region (e.g. Tate, 1941; Horácˇek, Hanák & Gaisler, 2000; Boye, 2004; Benda Hayman & Hill, 1971; Corbet, 1978; Harrison & et al., 2006; Furman et al., 2010c); Ferguson (2002), Bates, 1991; Corbet & Hill, 1992; Koopman, 1994). however, reported the occurrence of a subspecies, Nowadays, M. schreibersii sensu stricto (s.s.) is most schreibersii, for Israel. Populations from the Euro- often accepted as a south-western Palaearctic faunal pean distribution range of M. schreibersii, s.s. as well element occurring in southern and central Europe, as populations from North Africa and the larger Medi- supra-Saharan Africa, south-west Asia, and eastern terranean islands, have traditionally been attributed Afghanistan (cf. Appleton et al., 2004; Tian et al., to the nominotypical subspecies (e.g. Aellen & Stri- 2004; Miller-Butterworth et al., 2005; Benda et al., nati, 1970; Spitzenberger, 1981; Gaisler, 1983; Cru- 2006; Bilgin et al., 2006, 2008; Furman et al., 2009, citti, 1989; Kowalski & Rzebik-Kowalska, 1991); the 2010b). It is interesting to note, however, that these situation in Cyprus, however, remains unclear. Boye geographical limits for M. schreibersii had already (2004), for example, mentions the occurrence of sub- been proposed by Maeda (1982) in his precise mor- species pallidus, while others assume the island to be phometric analysis of the Palaearctic and Oriental inhabited by the nominotypical form (e.g. Horácˇek populations of the genus. et al., 2000). The newly delimited species rank of M. schreibersii In the Middle East, a morphologically distinct (as reviewed by Simmons, 2005) consists of two population of M. schreibersii s.l. has been suggested subspecies, M. s. schreibersii [type locality (t.l.): as present in the Nangarhar province of eastern Kolumbács Cave, left bank of the River Danube, Afghanistan, on the border of the Palaearctic and near Coronini, Romania; sensu Ansell & Topál, 1976] Oriental regions (Gaisler, 1970), and was thought to and M. s. pallidus Thomas, 1907 [t.l.: vicinity of represent M. s. fuliginosus Hodgson, 1835 (t.l.: Nepal) Bandar-i-Gaz (Golestan Province), Iran; sensu Lay, (Gaisler, 1970; Hill, 1983; Koopman, 1994; Bates & 1967]. These subspecies are very similar in both Harrison, 1997). A further population traditionally external and cranial characteristics (e.g. Ognev, assigned to M. schreibersii s.l. occurs at the border of 1928; Albayrak & Coskun, 2000; Benda et al., 2006; the Palaearctic in south-western Arabia (Harrison & Furman et al., 2009) and differ mainly in pelage col- Bates, 1991). These populations were originally clas- oration. Evidence of seasonal and geographic changes sified as M. s. arenarius Heller, 1912 (t.l.: Nanyuki, in this trait, however, has shown it to be unsuit- Kenya) (Nader & Kock, 1987; Harrison & Bates, 1991; able for taxonomic identification (Kuzâkin, 1950; Koopman, 1994). This taxon, however, is currently Lay, 1967; Karatas¸ & Sözen, 2004; Gazaryan, 2005). considered as part of M. natalensis Smith, 1834 (t.l.: Furman et al. (2010c) studied differentiation between Durban, South Africa), which was recently revali- these taxa in populations inhabiting Asia Minor and dated to species level within M. schreibersii s.l and is found statistically significant genetic, morphological reported to occur in sub-Saharan Africa and south- (body size and wing shape) and echolocation differ- western Arabia (Koopman, 1994; Simmons, 2005). ences. Following these findings, they suggested that To summarise, the taxonomic status and dis- the two taxa were reproductively isolated and consid- tribution ranges of particular taxa/populations of Pal- ered them to be two separately evolving units repre- aearctic Miniopterus bats have tended to be reported senting distinct cryptic species, M. schreibersii sensu more-or-less intuitively (mainly on a geographic strictissimo (s.str.) and M. pallidus. This taxonomic basis) and its status remains unclear in most of the proposal, however, was based almost solely on the respective areas. Classification of the Levantine,

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 167

Middle Eastern, North African and, especially, & Christidis, 2001), and one newly developed European populations remains in need of revision. Miniopterus-specific internal reverse primer Delimitation of the geographical margins and contact (mND2inR: 5′-TGAATRACYGCCGTACTA-3′). New zones between respective taxa, especially in the light sequences of different haplotypes were deposited of new findings (cf. Furman et al., 2010c), is also in GenBank (see Table 1 for Accession Nos.). Fifty- necessary. seven additional sequences from various Miniopterus Here, we present a revision of the taxonomy of species were added to our dataset from GenBank Miniopterus populations of Western Palaearctic and (AY169435–46, AY169448–71, Appleton et al., 2004; some adjacent regions, based on a synthesis of results GU290290–310, Furman et al., 2010b), as well as from morphological and molecular analysis of a rich four outgroup taxa: Myotis muricola (AY504566; museum-material collection from all principal parts of J. M. Worthington Wilmer, C. J. Schneider & M. D. the Miniopterus distribution range (i.e. southern Sorenson, unpubl. data), Chalinolobus tuberculatus Europe, south-west Asia and North Africa). In doing (AF321051; Lin & Penny, 2001), Chalinolobus nigrog- so, we aim to answer two main questions arising riseus (AY504561; J. M. Worthington Wilmer, C. J. from several recent studies (e.g. Appleton et al., 2004; Schneider & M. D. Sorenson, unpubl. data), and Miller-Butterworth et al., 2005; Bilgin et al., 2008; Chalinolobus morio (AY169472; Appleton et al., 2004). Furman et al., 2010b, c): (1) what are the phylogenetic For phylogenetic analysis, we shortened the new and phenotypic relationships between particular sequences from this study to 1034 bp in order Western Palaearctic Miniopterus populations (as to match the additional GenBank sequences. All well as their taxonomic status), and (2) is M. pallidus sequences were aligned in BioEdit 7.0 (Hall, 1999) [demonstrated as representing a separate species in a and examined by translation into amino acids with recent study (Furman et al., 2010c)] morphologically the vertebrate mitochondrial genetic code using well differentiated and what is its present distribu- DnaSP 5.10 (Librado & Rozas, 2009); no stop codons tion range? were detected. Phylogenetic trees were constructed using a dataset of 89 sequences that comprised only unique haplo- MATERIAL AND METHODS types (haplotype dataset). The trees were constructed In order to assess the taxonomic status of Miniopterus using the maximum likelihood (ML), Bayesian populations from the Western Palaearctic and adja- approach (BA), and neighbour-joining (NJ) methods. cent regions (i.e. Afghanistan, Yemen and Ethiopia), For ML and BA, the jModelTest 0.1.1 software we examined 352 skulls morphologically (Appendix 1) package (Posada, 2008) was employed prior to analy- and 52 samples genetically. Fifty-seven additional sis to calculate the best-fit model of nucleotide evolu- sequences of Miniopterus spp. from around the Old tion (selected according to the Akaike information World were retrieved from GenBank (Table 1). A criterion for the whole sequence length in ML, and review of the geographic origin of all the material each codon position separately in BA). ML analysis investigated is displayed in Figure 1A. was performed using PhyML 3.0 (Guindon et al., 2010). The best-fit substitution model corresponded with the transitional model with a proportion of MOLECULAR ANALYSIS invariant positions and gamma distribution of Total genomic DNA was extracted from tissue rate heterogeneity (TIM2 + I + G). The best branch- samples (c. 1 mm2 of wing membrane) using the swapping approach was applied, which combines Genomed JetQuick Tissue DNA Spin Kit (Löhne, nearest neighbour interchanges with subtree pruning Germany), following the manufacturer’s protocol. A and regrafting, and optimisation of topology and segment of extracted mitochondrial DNA (mtDNA), branch length settings. Bootstrap branch support was the complete gene for the second subunit of NADH calculated based on 1000 resampled datasets. The BA dehydrogenase (ND2 – 1044 bp), was amplified by was carried out using MrBayes 3.2 (Huelsenbeck Polymerase Chain Reaction (PCR) using the primers & Ronquist, 2001; Ronquist & Huelsenbeck, 2003), ND2-1 and ND2-2 (Kirchman et al., 2001) under with partitions for codon positions and parameters the following thermal profile: initial denaturation of optimised during runs. The likelihood settings corre- 93 °C for 3 min, 35 subsequent cycles of 93 °C for 30 s, sponded with the general time-reversible model, 52 °C for 40 s and 72 °C for 1 min, and a final exten- which was the closest approximation of the best-fit sion of 72 °C for 10 min. Sequencing was carried substitution model for each partition available in out by Macrogen Inc. (Seoul, South Korea, http:// MrBayes (we applied GTR + G/GTR + G/GTR + I + G www.macrogen.com) using a combination of the for codon position 1/2/3). BA analysis was performed above mentioned PCR primers, one formerly pub- for six million generations with two runs (to check lished internal forward primer (mmND2.1; Osborne convergence) and four coupled chains for each run,

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 168 Table 1. Specimens examined genetically

Lineage/ GenBank ŠRÁMEK J. Species Haplotype sublineage Country Locality Coordinates Acc. No. Voucher/Reference

M. schreibersii MSC1 WM Italy Etna, Sicily 37.72 N, 14.92 E JX012135 biopsy M. schreibersii MSC1 WM Italy Etna, Sicily 37.72 N, 14.92 E JX012135 biopsy TAL ET

02TeLnenSceyo London, of Society Linnean The 2012 © M. schreibersii MSC1 WM Italy Etna, Sicily 37.72 N, 14.92 E JX012135 biopsy M. schreibersii MSC1 WM Romania Betfia 46.98 N, 22.02 E JX012135 biopsy M. schreibersii MSC1 WM Romania Betfia 46.98 N, 22.02 E JX012135 biopsy M. schreibersii MSC1 WM Slovakia Drienovec 48.62 N, 20.95 E JX012135 NMP pb4261 . M. schreibersii MSC1 WM Slovakia Drienovec 48.62 N, 20.95 E JX012135 NMP pb4260 M. schreibersii MSC2 WM Romania Dubova 47.62 N, 22.25 E JX012136 NMP pb4419 M. schreibersii MSC2 WM Romania Betfia 46.98 N, 22.02 E JX012136 NMP pb4256 M. schreibersii MSC3 WM Romania Betfia 46.98 N, 22.02 E JX012137 NMP pb4258 M. schreibersii MSC4 WM Greece Milatos, Crete 35.30 N, 25.58 E JX012138 NMP 91116 M. schreibersii MSC4 WM Greece Milatos, Crete 35.30 N, 25.58 E JX012138 NMP 91113 M. schreibersii MSC4 WM Greece Omalos, Crete 35.35 N, 23.90 E JX012138 NMP 91166 M. schreibersii MSC4 WM Greece Vreikos Cave, Crete 35.08 N, 26.00 E JX012138 NMP 92316 M. schreibersii MSC5 WM Greece Lefkogia, Crete 35.18 N, 24.47 E JX012139 NMP 92311 M. schreibersii MSC5 WM Greece Omalos, Crete 35.35 N, 23.90 E JX012139 NMP 91172 M. schreibersii MSC6 EM Cyprus Kakopetria 34.97 N, 32.87 E JX012140 NMP CH108 olgclJunlo h ina Society Linnean the of Journal Zoological M. schreibersii MSC6 EM Cyprus Kakopetria 34.97 N, 32.87 E JX012140 NMP CH46 M. schreibersii MSC7 EM Cyprus Akamas Peninsula 35.05 N, 32.33 E JX012141 NMP CH123 M. schreibersii MSC7 EM Cyprus Kakopetria 34.97 N, 32.87 E JX012141 NMP 90406 M. schreibersii MSC7 EM Cyprus Kakopetria 34.97 N, 32.87 E JX012141 NMP 90405 M. schreibersii MSC7 EM Cyprus Kalavasos 34.80 N, 33.27 E JX012141 NMP 90434 M. schreibersii MSC8 EM Syria Qala’at al-Hosn 35.65 N, 40.73 E JX012142 NMP pb49989 M. schreibersii MSC8 EM Syria Talsh’hab 32.70 N, 35.96 E JX012142 NMP 48861 M. schreibersii MSC9 EM Turkey Akbez 36.51 N, 36.30 E JX012143 NMP tr099 M. schreibersii MSC10 EM Lebanon Aaqura 34.12 N, 35.92 E JX012144 NMP 91778 M. schreibersii MSC10 EM Syria Safita 34.83 N, 36.12 E JX012144 NMP 48883 M. schreibersii MSC11 EM Syria Qala’at al-Hosn 35.65 N, 40.73 E JX012145 NMP 48873 M. schreibersii MSC11 EM Syria Safita 34.83 N, 36.12 E JX012145 NMP 48881 M. schreibersii MSC12 EM Cyprus Kakopetria 34.97 N, 32.87 E JX012146 NMP CH45 M. schreibersii MSC12 EM Lebanon Aamchite 34.15 N, 35.67 E JX012146 NMP 91808 M. schreibersii MSC13 EM Lebanon Aaqura 34.12 N, 35.92 E JX012147 NMP 91777

2013, , M. schreibersii MSC14 MO Morocco Tazouguerte 32.02 N, 03.78 W JX012148 NMP pb3906 M. schreibersii MSC14 MO Morocco Tazouguerte 32.02 N, 03.78 W JX012148 NMP pb3908 M. schreibersii MSC15 MO Morocco Sebt-des-Ait- 34.03 N, 04.57 W JX012149 NMP 90103 167 Serhrouchen

165–190 , M. schreibersii MSC15 MO Morocco Talkout 31.68 N, 07.28 W JX012149 NMP 90047 M. schreibersii MSC16 MO Morocco Talkout 31.68 N, 07.28 W JX012150 NMP 90051 02TeLnenSceyo London, of Society Linnean The 2012 ©

M. schreibersii MSC17 WM Bulgaria Pazardzik AY169446 Appleton et al. (2004) M. schreibersii MSC18 WM Bulgaria Sofia AY169445 Appleton et al. (2004) M. schreibersii MSC19 WM Georgia Ghliana GU290307 Furman et al. (2010b) M. schreibersii MSC20 WM Georgia Ghliana GU290308 Furman et al. (2010b) M. schreibersii MSC21 WM Morocco Agadir AY169450 Appleton et al. (2004) M. schreibersii MSC21 WM Morocco Agadir AY169449 Appleton et al. (2004) M. schreibersii MSC22 WM Spain Cadiz AY169448 Appleton et al. (2004) M. schreibersii MSC23 WM Turkey Hızar GU290301 Furman et al. (2010b) M. schreibersii MSC24 WM Turkey Horatas¸ ı GU290302 Furman et al. (2010b) M. schreibersii MSC25 EM Turkey Karanlık GU290304 Furman et al. (2010b)

olgclJunlo h ina Society Linnean the of Journal Zoological M. schreibersii MSC26 EM Turkey Karanlık GU290305 Furman et al. (2010b) M. schreibersii MSC27 EM Turkey Obruk GU290309 Furman et al. (2010b) M. schreibersii MSC28 EM Turkey Obruk GU290310 Furman et al. (2010b) M. schreibersii MSC29 EM Turkey Zindan GU290303 Furman et al. (2010b) M. schreibersii MSC30 EM Turkey Zindan GU290306 Furman et al. (2010b) M. pallidus MPA1 ME Iran Dorud 33.45 N, 49.02 E JX012151 NMP 48154 M. pallidus MPA2 ME Iran Bisotun 34.38 N, 47.43 E JX012152 NMP 48151 M. pallidus MPA3 ME Iran Mina 37.30 N, 58.97 E JX012153 NMP 90825 M. pallidus MPA3 ME Iran Mina 37.30 N, 58.97 E JX012153 NMP 90826 M. pallidus MPA4 ME Iran Bisotun 34.38 N, 47.43 E JX012154 NMP 48149 M. pallidus MPA5 ME Jordan Khashibah 32.22 N, 35.72 E JX012155 NMP 92532 M. pallidus MPA6 ME Azerbaijan Azıx GU290293 Furman et al. (2010b) M. pallidus MPA7 ME Azerbaijan Azıx GU290290 Furman et al. (2010b) M. pallidus MPA8 ME Azerbaijan Azıx GU290295 Furman et al. (2010b) M. pallidus MPA8 ME Turkey Epçik GU290296 Furman et al. (2010b) AOOYOF TAXONOMY M. pallidus MPA9 ME Iran Karaftu GU290292 Furman et al. (2010b) 2013, , M. pallidus MPA10 ME Iran Karaftu GU290294 Furman et al. (2010b) M. pallidus MPA11 ME Turkey Delikli GU290299 Furman et al. (2010b)

167 M. pallidus MPA12 ME Iran Sarin Ab-Garma GU290291 Furman et al. (2010b) M. pallidus MPA13 ME Turkey Delikli GU290300 Furman et al. (2010b) 165–190 , M. pallidus MPA14 ME Turkey Epçik GU290297 Furman et al. (2010b) M. pallidus MPA14 ME Turkey Epçik GU290298 Furman et al. (2010b) M. africanus MAF1 Ethiopia Sof Omar 06.09 N, 40.85 E JX012161 NMP 92129 MINIOPTERUS M. africanus MAF2 Ethiopia Sof Omar 06.09 N, 40.85 E JX012162 NMP 92127 M. ‘australis’ MAU1 Australia Cape York AY169453 Appleton et al. (2004) M. ‘australis’ MAU2 Australia Shoalwater Bay AY169452 Appleton et al. (2004) M. ‘australis’ MAU3 Indonesia Java AY169444 Appleton et al. (2004) M. ‘australis’ MAU4 Philippines Leyte Island AY169458 Appleton et al. (2004) M. ‘australis’ MAU5 Philippines Negros Island AY169457 Appleton et al. (2004) 169 Table 1. Continued 170

Lineage/ GenBank .ŠRÁMEK J. Species Haplotype sublineage Country Locality Coordinates Acc. No. Voucher/Reference

M. ‘australis’ MAU6 Vanuatu Aore Island AY169454 Appleton et al. (2004) M. ‘australis’ MAU7 Vanuatu Tegua Island AY169455 Appleton et al. (2004) M. ‘australis’ MAU8 Vanuatu Toga Island AY169456 Appleton et al. (2004) TAL ET 02TeLnenSceyo London, of Society Linnean The 2012 © M. bassanii MBA Australia Naracoorte AY169435 Appleton et al. (2004) M. fuliginosus MFU1 China Yunan AY169468 Appleton et al. (2004) M. fuliginosus MFU2 Japan Wakayama AY169469 Appleton et al. (2004) . M. inflatus MIN Uganda Rwenzori Mountains AY169465 Appleton et al. (2004) M. magnater MMA Papua New Guinea Nong River AY169443 Appleton et al. (2004) M. manavi MMN Madagascar Andringitra Reserve AY169464 Appleton et al. (2004) M. ‘medius’ MME1 Papua New Guinea Magidobo AY169441 Appleton et al. (2004) M. ‘medius’ MME2 Papua New Guinea Sol River AY169442 Appleton et al. (2004) M. cf. arenarius MAR1 YE Yemen Halhal 15.73 N, 43.62 E JX012156 NMP pb3747 M. cf. arenarius MAR2 YE Yemen Riqab 14.87 N, 43.42 E JX012157 NMP pb3127 M. cf. arenarius MAR3 YE Ethiopia Masha 07.87 N, 35.48 E JX012158 NMP 92178 M. cf. arenarius MAR4 YE Ethiopia Masha 07.87 N, 35.48 E JX012159 NMP 92177 M. cf. arenarius MAR5 YE Yemen Riqab 14.87 N, 43.42 E JX012160 NMP pb3128 M. natalensis MNA1 South Africa Steenkampskraal AY169467 Appleton et al. (2004) M. natalensis MNA2 South Africa Sudwala AY169466 Appleton et al. (2004) olgclJunlo h ina Society Linnean the of Journal Zoological M. oceanensis MOC Australia Nowa Nowa AY169436 Appleton et al. (2004) M. orianae MOR1 Australia Darwin AY169437 Appleton et al. (2004) M. orianae MOR2 Australia Kimberley Ranges AY169438 Appleton et al. (2004) M. propritristis MPR Papua New Guinea Waro AY169440 Appleton et al. (2004) M. sp. MSP1 Papua New Guinea Waro AY169439 Appleton et al. (2004) M. sp. MSP2 Philippines Negros Island AY169451 Appleton et al. (2004) M. sp. MSP3 Solomon Islands Santa Isabel AY169459 Appleton et al. (2004) M. sp. MSP4 Solomon Islands Santa Isabel AY169460 Appleton et al. (2004) M. sp. MSP5 Solomon Islands Santa Isabel AY169461 Appleton et al. (2004) M. sp. MSP6 Tanzania Gonja Forest Reserve AY169462 Appleton et al. (2004) M. sp. MSP7 Tanzania Usambara Mountains AY169463 Appleton et al. (2004) M. tristis MTR1 Philippines Leyte Island AY169471 Appleton et al. (2004) M. tristis MTR2 Philippines Negros Island AY169470 Appleton et al. (2004) Myotis muricola AY504566 Worthington Wilmer et al. (unpubl.) 2013, , Chalinolobus morio AY169472 Appleton et al. (2004) Chalinolobus AY504561 Worthington Wilmer

167 nigrogriseus et al. (unpubl.) Chalinolobus AF321051 Lin & Penny (2001) 165–190 , tuberculatus

NMP = National Museum in Prague, Czech Republic. TAXONOMY OF MINIOPTERUS 171

Figure 1. A. Map showing the origin of specimens investigated in this study and their sorting to nine groups defined for morphometric analysis. (1) Morocco = purple, (2) Western Europe = bluish green, (3) Pannonia = red, (4) Balkans = violet, (5) Crete = brown, (6) Levant = light blue, (7) Middle East = light green, (8) Eastern Afghanistan (Jalalabad) = dark blue, (9) Yemen and Ethiopia = yellow. Colours correspond to those in Figures 4A–4D, S4 and S5. Circles with any colour except white = samples used for morphometric analysis, white circles = samples used for molecular analysis, two-coloured circles = samples using both methods; grey shading delimits the distribution of Miniopterus spp.; black cross = type locality of M. schreibersii, white cross = type locality of M. pallidus. B. Geographic representation of the Western Palaearctic and Yemeni-Ethiopian lineages/sublineages, and approximate distribution of the respective species. Species and type localities (t.l.) are represented by different symbols (circles = M. schreibersii s.str.; squares = M. pallidus; triangles = M. cf. arenarius; diamond = M. cf. fuliginosus; black cross = t.l. of M. schreibersii; white cross = t.l. of M. pallidus). Coloured symbols indicate genetic, or both genetic and morphological, approaches used; white symbols represent morphological approach only used (colours of symbols correspond to different species/lineage/sublineage as indicated in Fig. 2 and to haplotypes presented in the haplotype network in Fig. 3). Coloured shading delimits the approximate distribution of species occurring in the Western Palaearctic and adjacent regions: grey = M. schreibersii s.str.; blue = M. pallidus; yellow = M. cf. arenarius; brown = M. cf. fuliginosus. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 172 J. ŠRÁMEK ET AL. and parameter and tree samples saved every 100 Middle East = central and eastern Turkey, southern generations. A 50% majority-rule consensus tree was Azerbaijan, Iran, southern Afghanistan and north- constructed from the sampled trees after discarding western Jordan. The Statistica 6.0 software package the first 20 000 (two million generations) as burn-in, (StatSoft) was used for all morphological statistical which included samples before attainment of the analyses. stationarity plateau on the log-likelihood score plot according to Tracer 1.4 (Drummond & Rambaut, Linear morphometrics 2007). Posterior probabilities were calculated as the We recorded 24 cranio-dental measurements (11 skull frequency of samples recovering any particular clade or mandible measurements and 13 upper or lower (Huelsenbeck & Ronquist, 2001). The NJ tree was tooth-row dimensions) taken using a digital calliper inferred using PAUP* 4.0b10 (Swofford, 2003), based (by JŠ) to the nearest 0.01 mm (Fig. S1). Further, we on uncorrected p-distances and calculating the boot- recorded 57 dental measurements (width, length and strap branch support based on 1000 resampled data- high dimensions of respective teeth; Fig. S2) to the sets. Haplotype networks were prepared using the nearest 0.0125 mm using an optical calliper (for a statistical parsimony algorithm implemented in TCS complete list of all measurements, see Appendix S1). 1.21 (Clement, Posada & Crandall, 2000) under a 95% Basic descriptive statistical parameters (mean, limit of parsimony. Based on the results obtained minimum, maximum, and standard deviation) were through phylogenetic analysis, ingroup haplotypes for calculated for each measurement and for each group bent-winged bat populations were divided into seven (1–9). We further used the morphometric data to sets and average uncorrected p-distances between perform factor (FA) and discriminant function (DFA) them calculated using MEGA 4.0 (Tamura et al., analyses to test: (1) grouping and/or separation of the 2007). In the text, we always refer to uncorrected above groups (1–9); (2) similarity/dissimilarity of par- p-distances as they are easily comparable with most ticular populations/taxa; and (3) the importance of previous molecular-taxonomic studies. particular dimensions for intrageneric, inter-specific and intraspecific variation and differentiation. FA and DFA were first performed on samples from all groups MORPHOLOGICAL ANALYSIS (1–9), and subsequently on groups 1–7, in order to Morphometric analysis was based on skull traits. The better demonstrate differences between geographi- complete set of specimens was divided into nine cally and morphologically close populations. Cranial groups (Fig. 1A) based on the results of both pub- and dental characteristics were divided into six data- lished (Appleton et al., 2004; Bilgin et al., 2006, 2008; sets (maxillary, mandibular, cranial, cranio-dental, Furman et al., 2009, 2010b, c) and our own preli- all dental, and all cranial characteristics) and these minary genetic analysis, geographic origin of the tested separately in consecutive FAs and DFAs to samples, and obvious differences observed in biomet- assess the influence of different character sets on the ric data (cranial and dental metrics and non-metric grouping/separation of individuals in morphospace. traits): viz. (1) Morocco – specimens from the Atlas The FA and DFA canonical scores were plotted to Mountains (N = 18); (2) Western Europe – specimens show relationships among the examined groups of from Spain, France, Italy, and Austria (N = 37); (3) samples. Morphological data of the Balkan (with Pannonia – specimens from Slovakia and Romania addition of genotyped samples of the Levantine (N = 49); (4) Balkans – specimens from Bulgaria group) and Middle Eastern sample sets were analysed and continental Greece (N = 84); (5) Crete (N = 19); (6) by analysis of variance (ANOVA). Levant – specimens from southern Turkey, western Syria, Cyprus, and Lebanon (N = 93); (7) Middle East Geometric morphometrics and non-metric traits – specimens from Iran and southern Afghanistan Geometric morphometrics were used to analyse (N = 14); (8) Eastern Afghanistan (Jalalabad area) geographic variation in Miniopterus skulls and man- (N = 28); and (9) Yemen and Ethiopia – including dibles. This technique has been demonstrated to be one specimen from Sudan (N = 11). Only individuals both objective and efficient compared to traditional morphologically assignable to M. schreibersii s.l. were methods (e.g. Zelditch, Fink & Swiderski, 1995; Rohlf, included. Group 6 (Levant) contained some samples Loy & Corti, 1996; Rohlf, 1998), including in studies from the area of the zone of sympatry of M. schreib- on bats (e.g. Velazco, Gardner & Patterson, 2010). The ersii and M. pallidus. These samples were classified same material was used as for linear morphometrics according to the prevailing genotypes present in the (Appendix 1). place of origin. Explanation of some geographic terms Images of skulls (lateral, ventral and dorsal view), used in this study (considering the grouping of the mandibles (lateral and occlusal view) and dentition examined material): Levant = western Syria and (details of the upper and lower tooth-row) were Lebanon, but including southern Turkey and Cyprus; taken with a digital camera, archived (jpeg format;

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 173

1360 ¥ 1200 pixels resolution), and processed using RESULTS QuickPhoto 4.1 software (Promicra, Prague). Images of mandibles were taken separately. All images were MOLECULAR ANALYSIS taken at an identical angle. Images of skulls and Eighty-nine haplotypes were registered from 111 mandibles were converted to thin-plate spline format shortened (1034 bp) sequences (including GenBank (tps) using tpsUtil 1.46 software (Rohlf, 2010). and outgroup sequences) of the mitochondrial ND2 Homologous and topologically equivalent landmarks gene. Within this haplotype dataset, 591 characters were plotted on the skull (lateral, dorsal, and ventral were variable and 527 parsimony-informative. Topolo- views) and mandible (lateral view) images using the gies from all analyses performed (ML, BA, NJ), tpsDig 1.40 program (Rohlf, 2004) in order to describe as well as the log likelihood values (lnL), were size and shape variation (for landmark definitions see similar (Fig. 2; ML lnL =-10614.95; BA mean Appendix S1). lnL =-10316.71). Three well supported Miniopterus Landmark coordinates were converted into millime- bat clades were identified within the complete tres using an established conversion factor (pixel/mm) data set: (A) an Australian-Oriental clade (Australa- and the original scale. The centroid size (CS) scores sian, Oriental and Eastern-Palaearctic regions) in of all view types for each specimen (CS1 – lateral the basal position; (B) an Afro-Arabian clade (sub- view of mandible, CS2 – lateral view of skull, CS3 – Saharan Africa and south-western Arabia); and (C) a ventral view of skull, and CS4 – dorsal view of skull) West Palaearctic clade (Europe, North Africa, Asia were calculated using the tpsRegr 1.36 program Minor and the Middle East). The Western Palaearctic (Rohlf, 2009), and subsequently plotted to show size clade could be further divided into three well sepa- differences between the groups examined. In order rated lineages: a Middle Eastern lineage (ME) (Iran, to compare the shape of specimens from different inland Turkey, Azerbaijan, Jordan) in the basal posi- groups, the coordinates for each specimen were tion, differing by 4.3 and 5.4% from the remaining two scaled, aligned and transformed by general procrustes lineages; a Moroccan lineage (MO) from the Atlas alignment (which generates a consensus configura- Mts.; and a Mediterranean lineage (M) identified from tion based on the landmark coordinates of all speci- Spain, Sicily, Slovakia, Romania, Bulgaria, Crete, the mens) using the tpsRelw 1.46 software package Atlantic coast of Morocco, the eastern Mediterranean (Rohlf, 2008) with a=0, and orthogonal projection region (southern Turkey, Cyprus, Syria, Lebanon), and uniform component included. Shape differences and the Black Sea region (northern Turkey, Georgia). between the consensus landmark configuration and The latter two lineages differed from each other by each individual specimen were obtained and used to 2.5%. Within the third lineage, we detected a further compute a matrix of partial warp (PW) scores. Rela- subdivision into two seemingly parapatric subline- tive warp (RW) scores were computed over the cov- ages with 1.2% divergence: a West Mediterranean ariance matrix of the PW scores; these are, therefore, sublineage (WM) from Europe, the Atlantic coast analogous to a principal components analysis (PCA) of Morocco, and the Black Sea region; and an East in the sense that they describe the axes of greatest Mediterranean sublineage (EM) from southern variation in shape for all specimens investigated. The Turkey, Cyprus, Syria and Lebanon. The mutual rela- PW matrix was used in a DFA to describe differences tionships between the West Palaearctic clade samples between the studied groups and to confirm patterns are also demonstrated through the parsimony haplo- previously suggested by the RW scores. The scores type network (Fig. 3). All the above-mentioned from canonical variant 1 of the DFA (of partial matrix Miniopterus clades/lineages/sublineages were highly data) and the CS of skull and mandible were plotted supported by ML bootstrap values (Ն 80%), NJ boot- in order to visualise and evaluate how size and shape strap values (Ն 85%), and BA posterior probabilities contributed to the arrangement of these groups. Data (Ն 0.98), except for clade A and lineage MO by ML obtained by geometric morphometrics (RW scores) of bootstrap (62% and 71%), and sublineage WM by BA the Balkan (with addition the genotyped Levantine posterior probabilities (0.81). samples) and Middle Eastern sample sets were ana- All samples from south-western Arabia and Ethio- lysed by ANOVA. pia, border areas of the Palaearctic and Afro-tropic The status of 49 non-metric cranial and dental regions, were embedded within clade B, where they characteristics (44 dental and five skull or mandible; formed two lineages (Fig. 2), one represented by a see Table S1) were investigated based on images of morphologically distinct Afro-tropic species, M. afri- skulls, mandibles and dentition. Each characteristic canus Sanborn, 1936, collected from Ethiopia (and was evaluated based on a pre-defined scale system initially used as an outgroup species); and the other 1–5 (see Fig. S3). Non-metric data were analysed in formed by individuals from Yemen and western the same way as the linear metric data (basic descrip- Ethiopia [hereafter known as the Yemeni-Ethiopian tive statistics, FA and DFA computed). lineage/group (YE)]. Representatives of the YE

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 174 J. ŠRÁMEK ET AL.

Figure 2. Maximum likelihood tree demonstrating phylogeny of Miniopterus as inferred from mitochondrial ND2 (based on different haplotypes only). Numbers at the nodes represent bootstrap support or posterior probability values for maximum likelihood (ML), bayesian approach (BA), and neighbour joining (NJ) analyses. An asterisk (*) indicates full support (100 or 1.00) for a particular clade and analysis, 100* indicates full support in all analyses, – = clade not inferred in the respective analysis, // = branch length shortening in respect to outgroup. Capital letters and letters in circles represent respective clade/lineages/sublineage, as discussed in the text. Vertical bars indicate Western Palaearctic species that are the subject of this study (M. fuliginosus is represented only by sequences originating outside the Western Palaearctic retrieved from GenBank). Haplotype codes are identical to those listed in Table 1. Colours correspond to those in Figures 1B and 3.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 175

Figure 3. Graphic illustration of relationships between ND2 haplotypes of M. schreibersii s.str. (green, light blue, purple) and M. pallidus (dark blue), as inferred through the maximum parsimony network approach. Size of circles corresponds to the number of samples within a particular haplotype (1, 2, 4 or 7 samples). Small dots between haplotypes indicate hypothetical haplotypes (or number of substitutions between them). Geographic abbreviations: MO – Morocco, Agadir (coast); MA – Morocco, Atlas Mts.; ES – Spain; SI – Sicily (Italy); SK – Slovakia; RO – Romania; BG – Bulgaria; CR – Crete (Greece); CY – Cyprus; NT – northern Turkey; ST – southern Turkey; GE – Georgia; AZ – Azerbaijan; LB – Lebanon; SY – Syria; JO – Jordan; IR – Iran. Colours correspond to those in Figures 1B and 2. Haplotype codes are identical to those listed in Table 1. lineage morphologically resemble M. cf. schreibersii comparisons (Table 3; Tables S2 and S3), indicated but have been recently assigned to M. natalensis the same size patterns. Bats from eastern Afghani- (e.g. Simmons, 2005). The latter lineage, however, stan (Jalalabad area) were markedly larger in com- was differentiated by 11.5% from populations in parison to European and Levantine samples (size South Africa, where the type locality of M. natalensis differences between the latter two bat groups were is registered. Moreover, the South African haplotypes very small). Specimens from Crete, Yemen and Ethio- were not in sister position to the YE lineage, with pia were clearly the smallest; while samples from the other species, such as M. manavi Thomas, 1906; M. Middle East were slightly smaller than those from inflatus Thomas, 1903; and Miniopterus sp. from Tan- eastern Afghanistan, but markedly larger than bats zania, being interspersed. from Europe and the Levant, and similar in size to Genetic distances within and between selected Moroccan bats. Both skull and dentition shape differ- populations/taxa are presented in Table 2; while a ences (expressed by ratios of cranial or dental dimen- geographic representation of the Western Palaearctic sions) were much less expressive than differences in and YE lineages/sublineages, and the approximate general size. This pattern was more pronounced in distribution of the respective species, is presented in cranial than dental characteristics. Figure 1B. The results of FA and DFA analysis of skull and dental dimensions generally showed similar follow- MORPHOLOGICAL ANALYSIS ing patterns (results of FA not shown; for DFA see Linear morphometrics Fig. 4A, B; and Fig. S4), as did the comparison of raw All CS values, and all cranial and dental measure- skull and tooth dimensions and their ratios: (1) ments for the nine different groups and their simple samples from eastern Afghanistan, the YE group and

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 176 J. ŠRÁMEK ET AL.

, Morocco clustered separately from the European, Levantine and Middle Eastern groups, however, in case of Morocco markedly less distinct; (2) samples from the Balkans and Pannonia formed a common cluster, as did samples from Crete and the Levant; (3) M. natalensis South Africa Middle Eastern samples overlapped substantially

, with the West European and Levantine samples, and were positioned close to the Pannonian and Balkan samples; (4) samples from western Europe were grouped together with other groups from Europe, the Middle East and the Levant (based on cranial dimen- M. africanus Ethiopia sions), and very closely with samples from the Levant (based solely on dental traits). Using factor loading

, values, we were able to identify the 10 cranial and 13 dental dimensions that affected observed variation most significantly (DFA, P < 0.0001), i.e. LaZ, LaInf, 3 3 2 LaM, ACr, ACo, CC, M M ,I1M3,CM3,M1M3; and LI , M. cf. arenarius Yemeni- Ethiopian lineage (YE) sup 2 4 1 1 2 2 WC ,WP,WP, LiM , W2M , LiM , W3M ,LI2,LI3,

LDinf,WDinf and LP2, respectively. For a description of , morphometric differentiation between the Miniopt- based on the haplotype dataset (in percentage; mean in erus groups examined, see Appendix S2. Results of ANOVA (Table S4) showed significant differences in 34 of 85 of the examined characteristics M. pallidus Middle Eastern lineage (ME) (mainly cranial) between the Balkan (with addition ,

Miniopterus of the genotyped Levantine samples) and Middle Eastern samples.

Geometric morphometrics and non-metric traits Twenty-two RWs were generated for the lateral skull M. schreibersii Moroccan lineage (MO) view, 18 for the ventral view, 14 for the dorsal view, , and 14 for the lateral view of the mandible. The first four RWs, which together represented more than 50% of total variation for each view, were used in all subsequent analyses (Table S5). Results of PCA and DFA demonstrated a number of M. schreibersii Eastern- Mediterranean sublineage (EM) differences between the sample sets examined, and , particularly in the lateral view of the skull; however, neither PCA nor DFA were able to demonstrate any clear separation between most of the groups exam- ined (results of PCA not shown; for DFA see Fig. 4C), 4.9–6.3 (5.4) 4.7–5.9 (5.3) 3.9–4–7 (4.3) 0.1–1.1 (0.6) 0.8–2.2 (1.2) 0.1–1.1 (0.5) 0.1–1.4 (0.6) with the European and Middle Eastern samples in 14.1–15.1 (14.6) 13.9–15.0 (14.4) 14.2–14.9 (14.5) 14.8–15.8 (15.2) 0.1–0.5 (0.4) M. schreibersii Western- Mediterranean sublineage (WM) particular frequently showing a substantial overlap. Nevertheless, distinctive separations were observed in the samples from eastern Afghanistan when plot- ting the first two DFA canonical variables considering all views of skull (Fig. 4C); the YE group considering the dorsal and ventral views of skull; the Moroccan distances between and within different species/(sub)lineages of

p- samples in the skull ventral view; and in the Panno- nian samples for the skull lateral view. While the relationships between the groups differed for indi- , Yemeni-Ethiopian , Moroccan lineage (MO) 2.0–3.0 (2.4) 2.2–3.1 (2.5) 0.3–0.5 (0.4) , Eastern-Mediterranean , Western-Mediterranean vidual views, some general patterns were observable: , South Africa 12.8–13.6 (13.2) 12.8–13.9 (13.2) 12.9–13.3 (13.2) 14.0–15.0 (14.5) 11.2–11.8 (11.5) 10.6–10.9 (10.8) 1.5 , Ethiopia 15.5–16.1 (15.7) 15.5–16.0 (15.8) 15.0–15.7 (15.3) 15.1–16.2 (15.6) 12.8–13.4 (13.1) 1.0

, Middle Eastern lineage (1) Pannonian and Levantine samples were distinct

Uncorrected from each other; (2) samples from Crete were mostly

arenarius similar to those from the Levant; and (3) Middle Eastern samples were mostly grouped together with lineage (YE) (ME) sublineage (EM) sublineage (WM) . cf. parentheses) Table 2. M. africanus M. natalensis M M. schreibersii M. pallidus M. schreibersii M. schreibersii samples from Western Europe. In general, all analy-

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 02TeLnenSceyo London, of Society Linnean The 2012 ©

Table 3. Selected cranial and dental dimensions (in mm) of Miniopterus examined in this study

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character N M min max SD N M min max SD N M min max SD N M min max SD N M min max SD

LCr 18 15.365 15.12 15.65 0.164 36 15.229 14.80 15.49 0.173 45 15.392 14.94 15.88 0.206 76 15.229 14.54 15.83 0.216 19 14.916 14.48 15.19 0.185 LaI 18 3.777 3.63 3.98 0.089 36 3.711 3.57 3.88 0.071 47 3.761 3.53 4.02 0.108 82 3.710 3.52 3.93 0.087 19 3.621 3.48 3.77 0.084 LaInf 18 4.202 4.02 4.32 0.086 36 4.023 3.74 4.29 0.104 45 4.025 3.85 4.24 0.088 80 3.974 3.45 4.18 0.136 19 3.894 3.78 4.05 0.091 LaM 18 8.788 8.64 8.97 0.105 35 8.675 8.10 8.99 0.190 46 8.757 8.10 9.21 0.180 76 8.746 8.12 9.04 0.155 19 8.524 8.40 8.67 0.091

olgclJunlo h ina Society Linnean the of Journal Zoological ACr 18 7.973 7.73 8.34 0.185 30 7.497 6.66 8.01 0.420 43 7.672 6.79 8.04 0.325 77 7.743 6.83 8.21 0.324 19 7.765 7.36 7.99 0.154 LMd 18 10.977 10.80 11.28 0.144 36 10.852 10.56 11.15 0.143 48 10.923 10.28 11.30 0.175 75 10.847 10.15 11.07 0.154 19 10.622 10.32 10.88 0.118 ACo 18 2.598 2.48 2.81 0.077 36 2.594 2.40 2.93 0.109 48 2.533 2.17 2.93 0.120 75 2.508 2.04 2.93 0.109 19 2.538 2.41 2.69 0.076 CS1 18 11.168 10.84 11.52 0.189 34 11.130 10.67 11.97 0.298 44 11.431 10.94 12.03 0.278 66 11.103 10.64 11.90 0.261 19 10.730 10.15 11.02 0.211 CS2 18 20.813 20.39 21.21 0.228 32 20.478 20.15 20.89 0.199 42 20.659 20.04 21.19 0.276 68 20.502 19.87 21.11 0.261 19 20.163 19.72 20.59 0.205 CS3 18 16.935 16.73 17.33 0.159 32 16.760 16.37 17.09 0.173 40 16.738 16.30 17.43 0.250 73 16.756 16.23 17.19 0.186 19 16.394 16.05 16.75 0.173 CS4 18 17.716 17.44 18.03 0.193 34 17.515 17.18 17.93 0.194 37 17.762 17.18 18.44 0.264 74 17.580 17.14 18.10 0.204 19 17.179 16.64 17.51 0.221 LCsup 18 1.055 1.00 1.10 0.031 28 1.084 1.03 1.13 0.026 44 1.062 0.98 1.15 0.036 81 1.071 1.00 1.15 0.037 19 1.052 1.00 1.13 0.031 WCsup 18 0.883 0.81 0.93 0.035 28 0.896 0.81 0.98 0.032 44 0.840 0.78 0.90 0.030 81 0.833 0.76 0.93 0.033 19 0.825 0.78 0.85 0.024 HCsup 4 1.653 1.63 1.71 0.041 21 1.573 1.45 1.93 0.106 29 1.547 1.33 1.69 0.074 56 1.550 1.15 1.70 0.092 15 1.520 1.30 1.63 0.097 LP2 18 0.841 0.75 0.90 0.046 36 0.816 0.78 0.88 0.027 48 0.829 0.73 0.93 0.047 82 0.829 0.78 0.94 0.036 19 0.818 0.78 0.88 0.025 WP2 18 1.131 1.03 1.20 0.048 36 1.138 1.08 1.19 0.031 48 1.087 0.90 1.16 0.051 82 1.094 1.00 1.20 0.040 19 1.083 1.04 1.13 0.027 HP2 4 0.584 0.55 0.63 0.031 25 0.568 0.48 0.65 0.047 33 0.535 0.43 0.63 0.049 58 0.561 0.43 0.65 0.053 15 0.521 0.45 0.60 0.045 WP4 18 1.390 1.31 1.46 0.041 36 1.444 1.38 1.51 0.032 48 1.328 1.15 1.48 0.083 82 1.377 1.23 1.50 0.053 19 1.389 1.26 1.45 0.046 LP4 18 1.220 1.10 1.38 0.068 36 1.283 1.18 1.35 0.042 48 1.231 1.13 1.38 0.066 82 1.231 1.13 1.38 0.057 19 1.181 1.15 1.23 0.023 HP4 4 1.569 1.48 1.65 0.072 25 1.586 1.44 1.71 0.065 33 1.497 1.35 1.60 0.071 58 1.543 1.28 1.68 0.071 15 1.407 0.83 1.65 0.279 LoM1 18 1.438 1.35 1.50 0.039 35 1.473 1.43 1.55 0.034 48 1.447 1.35 1.53 0.039 83 1.452 1.24 1.55 0.043 19 1.439 1.40 1.48 0.021 OF TAXONOMY 2013, , LiM1 18 0.924 0.88 1.03 0.035 35 0.983 0.93 1.05 0.031 48 0.947 0.83 1.04 0.049 83 0.984 0.85 1.09 0.041 19 0.970 0.90 1.03 0.036

LCinf 18 0.726 0.70 0.76 0.020 31 0.754 0.70 0.84 0.031 45 0.736 0.63 0.85 0.047 75 0.723 0.64 0.79 0.029 19 0.717 0.68 0.78 0.021

WCinf 18 0.829 0.78 0.88 0.032 31 0.821 0.79 0.86 0.022 45 0.799 0.74 0.86 0.024 75 0.804 0.68 0.85 0.027 19 0.789 0.78 0.81 0.013 167 HCinf 4 1.503 1.49 1.53 0.016 21 1.394 1.03 1.50 0.108 30 1.435 1.30 1.56 0.063 51 1.435 1.25 1.63 0.064 15 1.424 1.30 1.50 0.058

165–190 , LP2 18 0.594 0.55 0.64 0.023 28 0.587 0.55 0.63 0.021 46 0.567 0.53 0.60 0.022 75 0.566 0.53 0.63 0.022 19 0.551 0.53 0.58 0.020

WP2 18 0.651 0.63 0.68 0.017 28 0.626 0.59 0.65 0.017 46 0.645 0.60 0.71 0.028 75 0.643 0.53 0.69 0.027 19 0.626 0.59 0.68 0.020

HP2 4 0.575 0.53 0.63 0.046 20 0.519 0.45 0.63 0.045 31 0.509 0.40 0.61 0.051 51 0.504 0.45 0.60 0.028 15 0.481 0.43 0.52 0.028 MINIOPTERUS WP4 18 0.791 0.73 0.85 0.029 34 0.762 0.70 0.85 0.030 48 0.781 0.68 0.85 0.035 77 0.767 0.63 0.88 0.040 19 0.759 0.63 0.79 0.036

LP4 18 0.607 0.55 0.68 0.037 34 0.613 0.51 0.75 0.055 48 0.639 0.54 0.71 0.041 76 0.603 0.50 0.78 0.050 19 0.605 0.54 0.68 0.039

HP4 4 0.925 0.85 0.98 0.061 22 0.874 0.58 0.98 0.076 33 0.836 0.74 0.98 0.062 52 0.872 0.73 1.00 0.050 15 0.845 0.75 0.95 0.047

LM3 18 1.219 1.15 1.29 0.036 36 1.273 1.19 1.35 0.032 48 1.253 1.19 1.33 0.032 78 1.254 1.18 1.33 0.027 19 1.235 1.15 1.31 0.035

WM3 18 0.666 0.60 0.73 0.029 36 0.634 0.60 0.68 0.019 48 0.659 0.59 0.78 0.036 78 0.642 0.60 0.73 0.024 19 0.641 0.59 0.70 0.024 177 178

Table 3. Continued ŠRÁMEK J.

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character N M min max SD N M min max SD N M min max SD N M min max SD TAL ET 02TeLnenSceyo London, of Society Linnean The 2012 © LCr 93 15.148 14.71 15.74 0.217 14 15.497 15.11 15.84 0.222 28 15.636 15.03 16.13 0.254 10 15.058 14.71 15.50 0.229 LaI 93 3.675 3.41 3.97 0.084 14 3.686 3.55 3.88 0.096 28 3.928 3.76 4.15 0.083 11 3.711 3.58 3.96 0.108 LaInf 93 3.987 3.74 4.18 0.086 14 4.039 3.94 4.18 0.080 28 4.124 3.82 4.43 0.141 12 3.712 3.46 3.87 0.115 . LaM 93 8.697 8.27 9.05 0.142 14 8.914 8.74 9.09 0.092 28 8.840 8.51 9.21 0.168 10 8.299 7.97 8.68 0.224 ACr 90 7.819 7.14 8.11 0.188 14 8.005 7.76 8.34 0.162 28 7.779 6.99 8.36 0.434 11 7.504 7.13 7.87 0.215 LMd 91 10.763 10.32 11.17 0.155 14 11.072 10.74 11.23 0.149 28 11.304 11.00 11.60 0.166 11 10.645 10.29 11.04 0.208 ACo 91 2.568 2.35 2.93 0.113 14 2.621 2.48 2.73 0.074 28 2.647 2.44 3.04 0.117 11 2.412 2.24 2.65 0.115 CS1 85 11.005 10.45 11.89 0.312 13 11.153 10.90 11.60 0.210 23 11.551 11.03 12.29 0.291 11 10.677 10.39 10.87 0.157 CS2 91 20.437 19.85 21.37 0.291 14 20.830 20.17 21.39 0.342 28 21.076 20.42 21.74 0.311 10 20.073 19.52 20.73 0.327 CS3 92 16.621 16.13 17.39 0.245 14 17.045 16.63 17.42 0.243 28 17.227 16.80 17.70 0.243 10 16.548 16.02 17.06 0.285 CS4 92 17.321 16.56 17.99 0.260 14 17.838 17.42 18.33 0.306 28 17.902 17.25 18.39 0.293 11 17.278 16.79 17.89 0.302 LCsup 92 1.072 1.00 1.18 0.034 14 1.088 1.05 1.14 0.030 26 1.114 1.03 1.20 0.048 12 1.056 0.96 1.13 0.042 WCsup 92 0.865 0.80 1.15 0.041 14 0.858 0.81 0.90 0.025 26 0.933 0.85 1.00 0.042 12 0.860 0.80 0.95 0.036 HCsup 57 1.579 1.25 1.73 0.088 14 1.569 1.30 1.73 0.130 26 1.645 1.28 2.00 0.178 3 1.629 1.60 1.66 0.031 LP2 93 0.832 0.78 0.93 0.034 14 0.835 0.80 0.89 0.027 27 0.895 0.79 1.00 0.055 12 0.850 0.75 0.90 0.041 WP2 93 1.124 0.91 1.25 0.051 14 1.118 1.06 1.16 0.031 27 1.081 0.90 1.19 0.061 12 1.028 0.80 1.15 0.096 olgclJunlo h ina Society Linnean the of Journal Zoological HP2 58 0.580 0.45 0.70 0.052 14 0.542 0.25 0.68 0.107 27 0.556 0.38 0.70 0.077 3 0.596 0.58 0.64 0.036 WP4 93 1.403 1.30 1.53 0.039 14 1.368 1.29 1.43 0.046 27 1.413 1.33 1.58 0.057 12 1.350 1.26 1.43 0.060 LP4 93 1.266 1.08 1.40 0.064 14 1.196 1.09 1.28 0.056 27 1.282 1.23 1.45 0.057 12 1.200 1.03 1.28 0.069 HP4 58 1.514 0.88 1.70 0.153 14 1.411 0.79 1.71 0.311 27 1.531 1.35 1.75 0.104 3 1.533 1.50 1.60 0.058 LoM1 93 1.455 1.31 1.56 0.035 14 1.482 1.43 1.55 0.032 27 1.491 1.38 1.55 0.050 12 1.447 1.36 1.50 0.047 LiM1 93 0.957 0.85 1.05 0.042 14 0.994 0.95 1.05 0.034 27 0.991 0.90 1.10 0.044 12 0.951 0.88 1.03 0.040

LCinf 89 0.736 0.68 0.80 0.026 14 0.741 0.70 0.78 0.027 26 0.787 0.71 0.86 0.040 12 0.745 0.68 0.80 0.033

WCinf 89 0.807 0.75 0.86 0.025 14 0.821 0.78 0.85 0.027 26 0.853 0.75 0.93 0.045 12 0.780 0.73 0.85 0.033

HCinf 55 1.452 1.15 1.55 0.088 14 1.436 1.25 1.55 0.084 25 1.557 1.29 1.80 0.148 3 1.425 1.38 1.53 0.087

LP2 89 0.569 0.53 0.63 0.022 14 0.549 0.51 0.58 0.017 26 0.575 0.53 0.63 0.032 12 0.567 0.53 0.60 0.022

WP2 89 0.627 0.58 0.68 0.021 14 0.634 0.60 0.66 0.018 26 0.651 0.61 0.68 0.019 12 0.610 0.58 0.65 0.024

HP2 55 0.490 0.43 0.55 0.025 13 0.468 0.25 0.55 0.079 26 0.472 0.36 0.55 0.056 3 0.463 0.45 0.48 0.013

WP4 90 0.761 0.68 0.85 0.030 14 0.781 0.70 0.83 0.035 27 0.767 0.73 0.83 0.027 12 0.751 0.71 0.80 0.022

LP4 90 0.601 0.50 0.68 0.037 14 0.634 0.55 0.70 0.037 27 0.668 0.58 0.76 0.058 12 0.633 0.53 0.70 0.049

HP4 55 0.883 0.75 0.95 0.050 14 0.918 0.78 1.00 0.056 27 0.879 0.75 1.03 0.076 3 0.900 0.85 0.98 0.066

LM3 90 1.249 1.15 1.33 0.031 14 1.257 1.20 1.31 0.033 27 1.268 1.20 1.31 0.029 12 1.221 1.15 1.28 0.034

WM3 90 0.638 0.58 0.88 0.034 14 0.665 0.63 0.70 0.023 27 0.688 0.64 0.75 0.032 12 0.665 0.60 0.73 0.034 2013, ,

Codes in brackets stand for the respective genetic lineage or sublineage (see text). See Appendix S1 for explanation of dimension abbreviations. Data for all dimensions are presented in Tables S2 and S3. 167 M = mean, min = minimum value, max = maximum value, and SD = standard deviation. 165–190 , TAXONOMY OF MINIOPTERUS 179

Figure 4. A, B. Results of discriminant function analysis based on linear morphometric data of skull dimensions – first two canonical axes. Polygons follow marginal points of particular groups, with coloured dots as centroids. A – all specimens; B – separate analysis excluding individuals from marginal areas (i.e. Eastern Afghanistan, Arabia and Ethiopia). C. Results of discriminant function analysis based on relative warp scores obtained from geometric morpho- metric analysis of 11 landmarks on the ventral view of the skull – first two canonical axes. Polygons and coloured dots are as in Figure 4A. D. Polygon plot of the first and second axes from factor analysis of all non-metric traits. Polygons and coloured dots are as in Figure 4A. ses indicated that the most distinct groups were those these tended to be related to shifts in size rather than originating from eastern Afghanistan, Yemen and shape. This pattern was especially applicable within Ethiopia; and from the Moroccan Atlas Mts. the eastern Afghanistan samples, and was most pro- Both bivariate plots of the main shape variable nounced in results for the ventral and dorsal views of (RW1) and the CS for the respective view showed the skull. The shape-size plots provided very similar differences between the groups for all views; however, results for all views (see Fig. S5 for the skull lateral

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 180 J. ŠRÁMEK ET AL.

Figure 4. Continued view) and may be summarised as follows: (1) the East West European samples were grouped very close to Afghanistan samples were generally the most distinc- each other and were positioned centrally in the mor- tive in both shape and size; (2) the YE group was phospace; for this reason they partially overlapped positioned close to the Cretan group, and both were with all the other groups. In general, all the geomet- most distant from the eastern Afghanistan group by ric morphometric results conformed well to the size dimension; (3) the Levantine samples were beside results of linear morphometric analyses. those from eastern Afghanistan the most distinctive Results of ANOVA (Table S4) showed four of 16 to Pannonian samples by shape dimension; (4) the characteristics to be statistically different between Moroccan group was positioned close to the Middle the Balkan (with addition of the genotyped Levantine Eastern group, and both overlapped substantially samples) and Middle Eastern samples. with the Balkan and West European groups, espe- The 49 non-metric cranial and dental traits (Table cially by shape dimension; and (5) the Balkan and S6) examined through FA and DFA demonstrated

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 181 pronounced differentiation of the eastern Afghanistan cranial and dental characteristics. Genetic differences group from the other groups. Similar differentiation between populations were markedly more expressive was noted for the YE group, while all other groups for some groups (i.e. the Middle East, Morocco, Yemen formed a cluster of broadly overlapping samples and Ethiopia) than differences observed for morpho- (for FA see Fig. 4D; results of DFA not shown). logical traits. No clinal shift in size or other morpho- These analyses also enabled selection of maxilla char- logical data was found between populations, contrary acteristics that most affected observed variation to morphometric analysis results for other bat species in the non-metric traits (P < 0.0001 in DFAs). For a occurring in the Western Palaearctic (Hanák & description of non-metric differentiation between the Horácˇek, 1984; Bogdanowicz, 1990; Benda & Horácˇek, Miniopterus groups see Appendix S2. 1995; Benda et al., 2006).

DISCUSSION EUROPE AND EASTERN MEDITERRANEAN Revision of particularly Western Palaearctic bent- European, Black Sea region and eastern Mediterra- winged bat populations over their whole range (i.e. nean Miniopterus populations evidently represent from the Maghreb to Afghanistan, and from Central identical taxa that can be co-identified with the Europe to Arabia) revealed unexpected hidden diver- species M. schreibersii s.str. (sensu Furman et al., sity, even in the light of recent discoveries by Furman 2010c). Our results support the opinions of most et al. (2009, 2010c). Synthesis of the results from two previous authors (e.g. Spitzenberger, 1981; Crucitti, different analytical approaches suggests that M. sch- 1989; Fernandez & Ibañez, 1989; Appleton et al., reibersii s.l. (sensu, e.g. Corbet, 1978), a traditionally 2004; Boye, 2004; Gazaryan, 2005; Furman et al., polytypic species, should be split into several allopat- 2009, 2010b, c) who suggest that all European popu- ric or parapatric population groups, differing from lations of M. schreibersii (in its traditional concept) each other in genetic and morphological traits. These belong to the nominotypical form. groups can be delimited geographically as follows: (1) Samples of the WM sublineage (that includes Europe, northern Turkey and Georgia; (2) the Levant, samples from Europe, coastal Morocco, coastal areas including southern Turkey and Cyprus; (3) the moun- of northern Turkey and Georgia) showed relatively tains of Morocco; (4) the Middle East (except for the low genetic variation (0.1–1.4%). Only one sample Levant and Turkish coastal areas); (5) south-western from Spain and two from the Atlantic coast of Morocco Arabia and Ethiopia; and (6) eastern Afghanistan showed more differentiation from the cluster of (Jalalabad area). This order mirrors the degree of other European haplotypes (0.8–1.3%). This diver- relatedness of the respective populations to those of gence could correspond to the ‘isolation by distance’ Europe (i.e. group two is closer related to the Euro- model suggested for other bat species in the region pean population than group three). Although the geo- (e.g. Pipistrellus – Hulva et al., 2004, 2007a, 2010). In graphical groupings may, at first, appear surprising, order to confirm this genetic pattern, however, addi- the findings are in general accordance with the opin- tional samples from less distant localities of Western ions of earlier authors (namely Tate, 1941 and Maeda, Europe (e.g. France, the Italian peninsular, other 1982) who stressed morphological similarities among Iberian samples) need to be studied. Morphometric individual species of the genus Miniopterus and pre- data did not show any clinal pattern, and only sumed the existence of more species, rather than a shallow morphological variation. Bent-winged bats single universal morphotype. These conclusions have from Crete represented the only exception, these also recently gained support through several molecu- being significantly smaller. Ondrias (1978) and lar studies (Appleton et al., 2004; Tian et al., 2004; Iliopoulou-Georgudaki (1986), who studied bats from Miller-Butterworth et al., 2005; Furman et al., 2009, the Greek islands, including Crete, found similar 2010b, c), and we supplement these findings with morphological evidence and suggested that smaller additional molecular phylogeny and new morphologi- size in island Miniopterus populations could have cal evidence. resulted from climatic influence, i.e. strong winds. Our results indicate that, though the populations These authors, however, did not take account of differ only slightly in skull size, these differences were the general ecological factors associated with island more pronounced than differences in skull shape. biogeography (MacArthur & Wilson, 1967), which These findings are in accordance with those of previ- we consider a more likely explanation for this mor- ous authors (Tate, 1941; Maeda, 1982). Differences in phological effect. Interestingly, genetic divergence cranial measurements were also more expressive between Cretan and mainland populations is minute than differences in dental measurements. Levels of compared to morphometric divergence. Morphometric significance for differentiation between populations differentiation, however, appears to relate to skull were then followed by the results of non-metric size rather than skull shape. This suggests that

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 182 J. ŠRÁMEK ET AL. size-based morphological evidence does not correlate a clade that diverged by 2.4–2.5% from the M lineage. with genetic evidence in Miniopterus bats, as has Similar evidence was also provided by the morpho- been demonstrated for other bat groups (e.g. Hulva, metric analysis results. On the other hand, a pub- Horácˇek & Benda, 2007b; Benda, Vallo & Reiter, lished haplotype from Agadir (Atlantic coast of 2011). south-west Morocco; Appleton et al., 2004) repre- Levantine populations (including Cyprus), for sented part of the M lineage (WM sublineage). The which taxonomic position has hitherto been unclear, haplotype most similar to this was one detected from belong to the same taxon as European populations, Spain and published by the same author (Appleton i.e. M. schreibersii s.str. However, they formed a et al., 2004). Unfortunately, we were unable to obtain distinct clade under mtDNA genealogy, the EM sub- samples from the Atlantic coast in order to investi- lineage, which diverged by 0.8–2.2% from the Euro- gate their morphological characteristics. Moroccan pean and Black Sea region samples that formed samples that separated into two genealogical lineages their sister clade. Our genetic results thus support were also found by Furman et al. (2010b), based on the opinions of Horácˇek et al. (2000) and Karatas¸& mitochondrial cytochrome b sequences taken from Sözen (2004), i.e. that the Mediterranean parts of García-Mudarra, Ibáñez & Juste (2009), although the Levant are inhabited by the European form. exact locations of the samples were, unfortunately, When comparing Levantine bent-winged bats to not published. The available results, however, clearly the population more to the east, i.e. M. pallidus (see suggest that there are two distinct lineages present below), there was a substantial divergence in genetic in Morocco, the West Mediterranean M. schreibersii, traits (5.3%) but, interestingly, almost no distinction occurring along the Atlantic coast, and an unnamed in cranial or dental morphology. It appears, there- Moroccan form of M. schreibersii s.str., occurring in fore, that both M. schreibersii and M. pallidus are inland areas of the Atlas Mts. A similar geographic conservative in their morphology, and especially pattern of haplotype distribution was also docu- in skull shape. A further interesting point is that mented in Morocco for the vespertilionid bats Myotis Miller-Butterworth et al. (2005) uncovered, and mystacinus (García-Mudarra et al., 2009) and Pipist- Furman et al. (2010b) consequently re-analysed, rellus pipistrellus (Hulva et al., 2010), as well as for another genetic lineage from northern Israel the freshwater terrapin Mauremys leprosa (Fritz (Alma Cave), based on the mitochondrial cytochrome et al., 2005). Miniopterus populations from the Atlas b gene of the only sample. This was, however, com- Mts. may thus represent a separate taxon. This sug- pletely outside the species ranks of both M. schreib- gestion contradicts the traditional view on taxonomic ersii s.str. and M. pallidus (c. 6–8% genetic distance; affiliation of Maghrebian populations, which are con- cf. Miller-Butterworth et al., 2005; Furman et al., sidered to represent the nominotypical form by most 2010b; see also the phylogenetic tree topology in the authors (e.g. Ellerman & Morrison-Scott, 1951; Aellen latter paper). This lineage was most closely related & Strinati, 1970; Qumsiyeh & Schlitter, 1982; Gaisler, to an Afro-tropical species, M. natalensis, and thus 1983; Kowalski & Rzebik-Kowalska, 1991; Boye, suggests the possible presence of the Arabian species 2004). An in-depth study of the North African Mini- M. cf. arenarius (see below) in southern Levant [if opterus population is necessary in order to reveal the the sequence (AY614736) is correct – several ambi- phylogenetic and taxonomic position of the respective guity codes are present]. A similar disjunct distri- sub-populations. bution can be seen in the Arabian tree frog, Hyla felixarabica (Gvoždík et al., 2010). Considering the high systematic and biogeographic importance of MIDDLE EAST this possible Israeli lineage, it is necessary to Miniopterus populations of the Middle East, including confirm the finding with more numerous samples in those of southern Afghanistan, Iran, Azerbaijan, future analyses. [Considering the apparent absence inland plateau areas of central and eastern Turkey, of this lineage in our rich dataset, which covers and north-western Jordan, represent a further dis- surrounding areas of the Levant (Lebanon, south- tinct evolutionary lineage. This ME lineage, tradition- western Syria, north-western Jordan), a mislabelling ally considered a subspecies M. schreibersii pallidus of the sample would appear to be a more probable (e.g. Corbet, 1978; Koopman, 1994), displayed marked explanation of this curiosity.] genetic divergence (5.4% distance to the M lineage and 4.3% distance to the MO lineage). The 5% value set as a species level indicator according to the MOROCCO genetic species concept in , and particularly Our results show that a unique evolutionary lineage in bats, was, therefore, exceeded [the 5% value was of M. schreibersii s.str. inhabits the Atlas Mountains originally suggested for mitochondrial markers of Morocco. The inland Moroccan samples formed with similar mutation rates, i.e. genes for cytochrome

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 183 b (Baker & Bradley, 2006) and ND1 (Mayer, Dietz & larly as in Turkey (Maraci et al., 2010; Bilgin et al., Kiefer, 2007)]. Cranial and dental morphological 2012)] or in close parapatry, as in the case of tree traits investigated in this study as well as performed frogs or geckos (Gvoždík et al., 2010; Moravec et al., analyses (FA, DFA, ANOVA), however, indicated that 2011). individuals of this group were in shape almost iden- tical to those from Europe and the Levant, whereas in size were slightly bigger. ANOVA results otherwise EASTERN AFGHANISTAN shoved many significant mainly cranial size charac- The Jalalabad (Nangarhar Province of Afghanistan) teristics (in shape minimum) between the Balkan population, usually considered as representing M. s. (with addition of genotyped samples of the Levant; fuliginosus (e.g. Ellerman & Morrison-Scott, 1951; M lineage; representing M. schreibersii species) and Gaisler, 1970; Hill, 1983; Yoshiyuki, 1989; Corbet & Middle Eastern samples (ME lineage; representing Hill, 1992; Koopman, 1994; Bates & Harrison, 1997; possible M. pallidus species), nevertheless, these dif- Simmons, 2005), differed strongly from all other ferences were at the same level or even smaller than Western Palaearctic populations in both linear and differences between populations of M. schreibersii (see geometric morphometrics, as well as in non-metric Table S4). Found significant morphological differences traits. These findings, therefore, support a hypothesis between representative samples of M. schreibersii previously put forward by Maeda (1982), i.e. that this and possible M. pallidus species in a way correspond subspecies should be regarded as a separate species, to those found by Furman et al. (2010c) (and partly M. fuliginosus. Regrettably, there were no genetic by Bilgin et al., [2012]) between the Turkish inland samples available to us to back-up the morphological (ME lineage) and Turkish coastal (M lineage) popu- findings through molecular analysis. Nevertheless, lations, based on forearm length, body mass and wing according to the published phylogenetic analyses of shape. Any of these three characteristics (particularly Chinese and Japanese populations affiliated to M. forearm length data – a possible important diagno- fuliginosus (Appleton et al., 2004; Furman et al., stic character [see Furman et al., 2010c]) were not 2010b), the species status of this form appears to have analysed in our study thus comparison with data been demonstrated sufficiently as it has been shown obtained by Furman et al. (2010c) and Bilgin et al. to be genetically very distant from species of the C (2012) was not possible. Following a series of molecu- (West Palaearctic) clade (Fig. 2). A complex morpho- lar studies (Bilgin et al., 2006, 2008; Furman et al., logical and molecular genetic analysis of Indian 2009, 2010b), Furman et al. (2010c) suggested the subcontinent Miniopterus populations is needed, raising of Middle Eastern bent-winged bats to species however, to confirm taxonomic assignation of East level. Support for this came from Maraci et al. (2010) Afghanistan and other Oriental region populations and Bilgin et al. (2012), who found the two taxa in formerly co-identified with M. schreibersii s.l. (cf. sympatry, and even in syntopy, in the same roosts. Gaisler, 1970; Bates & Harrison, 1997). Here, we Considering all these and ours findings, we agree that tentatively suggest using the name M. cf. fuliginosus the ME lineage represents a separate species, M. pal- for the Jalalabad populations, in accordance with lidus, a sister species to M. schreibersii s.str., though previous authors, but as a full species. this remains rather cryptic morphologically (i.e. not easily distinguishable in the field). Genetic comparison of the Al Wardeh Cave popula- SOUTH-WESTERN ARABIA AND ETHIOPIA tion from north-western Jordan indicates that Of the Western Palaearctic Miniopterus populations this population belongs to M. pallidus.Uptonow, examined, that of south-western Arabia (Yemen) was however, representatives of this taxon are known only one of the most distinct. These bats demonstrated from the belt of mountainous habitats that stretch substantial similarities to African populations, and from central Turkey to Afghanistan. The record from yet genetically were very close to the samples exam- Jordan, therefore, represents a significant extension ined from Ethiopia. Yemeni and Ethiopian samples of this taxon’s range southward to the Levant. Unfor- appear to represent an identical taxon with regard to tunately, we had an insufficient number of specimens both genetic data (a low distance of 0.1–0.5%) and to provide a well-founded morphological analysis of morphology. Previously assigned to M. schreibersii s.l. the Jordanian population. The Jordanian site is geo- (Nader & Kock, 1987; Harrison & Bates, 1991), these graphically very close (c. 55 km) to Talsh’hab, south- populations have more recently been regarded as part west Syria, where an individual of M. schreibersii was of M. natalensis (Simmons, 2005). The separation of found. A transition zone between M. schreibersii African populations from M. schreibersii, suggested and M. pallidus may run along the Great Rift in the previously by Koopman (1994), has been confirmed north-south transect of the Levant, therefore, and through molecular analysis (Appleton et al., 2004; both taxa may be present there in sympatry [simi- Miller-Butterworth et al., 2005), and our results

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 184 J. ŠRÁMEK ET AL. further support this conclusion. M. natalensis, et al., 2010b), the presence of three or four additional however, is a species described as from South Africa, glacial refugia can also be detected within the M and bats of that origin represent a genetic lineage lineage. Based on the genetic structure observed in substantially distant from the YE lineage (11.5%). As this study (e.g. Fig. 3), we hypothesise, in accordance the level of genetic differentiation clearly exceeds the with Furman et al. (2010a), that the main refugium of 5% level recommended for species recognition accord- the WM sublineage was in the east in the Black Sea ing to the genetic species concept (Baker & Bradley, region. However, as the Spanish and coastal Moro- 2006; Mayer et al., 2007), and the two lineages ccan samples form a distinct clade within the WM (natalensis s.str. and YE) are clearly not in a sister sublineage, we cannot exclude the possibility of a phylogenetic relationship, it may be appropriate to further, western refugium in south-western Europe consider the YE lineage as a species distinct from the or lowland North Africa (cf. Pereira et al., 2009). Two South African M. natalensis. Nader & Kock (1987), distinct haplotype clusters observed within the EM the first to attempt taxonomic determination of south- sublineage, comprising southern Turkish and Levan- west Arabian Miniopterus populations, identified tine samples (including Cyprus), appear to correspond these bats as M. schreibersii arenarius, based on mor- with the locations of glacial refugia in southern phological and parasitological evidence. According Turkey and the Levant (western Syria, Lebanon). The to earlier classification, and in the light of our new haplotypes of the Cypriot population do not form a results, we regard south-west Arabian and Ethiopian monophyletic lineage, which suggests that colonisa- Miniopterus bats, formerly assigned to M. schreibersii tion of Cyprus from the adjacent mainland probably arenarius or M. natalensis arenarius (see Harrison occurred recently and through repeated episodes (as & Bates, 1991; Koopman, 1994), as representing a also suggested for some other Cypriot bats; see Benda separate species tentatively named M. cf. arenarius et al., 2007). Considering the supposed migratory Heller, 1912. As the name originates from Kenya, a nature of M. schreibersii (cf. Rodrigues & Palmeirim, genetic and/or morphologic comparison with type/ 2008; Pereira et al., 2009), and the fact that geo- topotypic material is needed to confirm this. graphic barriers do not appear to have a substantial effect on the evolutionary history of the species (Dobson, 1998; Appleton et al., 2004; Ibáñez et al., HISTORICAL BIOGEOGRAPHY OF 2006; Bilgin et al., 2008; García-Mudarra et al., 2009; MINIOPTERUS SCHREIBERSII Furman et al., 2010c), one could also speculate on the Observed genetic variation in M. schreibersii s.str. existence of additional Miniopterus refugia. It would also brings new insights into the species’ phylogeog- appear, therefore, that the genetic structure of M. sch- raphy. Furman et al. (2010a) suggested that shallow reibersii is a result of complex ecological-evolutionary genetic differentiation between the western and causalities that may be diverse in different regions of eastern European colonies, and the relatively high the Western Palaearctic. genetic diversity observed in the eastern colonies, may indicate a re-colonisation of Europe from a single glacial refugium located in north-western Anatolia. ACKNOWLEDGEMENTS Alternatively, Bilgin et al. (2008) localised such a possible refugium in Turkish Thrace, while Pereira We thank Rainer Hutterer (Bonn) and Riyad Sadek et al. (2009) suggested either southern Iberia or North (Beirut) for access to the museum specimens under Africa. Furman et al. (2010a) further speculated on their care, and Ivan Horácˇek and Pavel Hulva (Prague) the existence of another glacial refugium in Italy. Our for providing tissue samples. We are obliged to Ivan results, however, do not support such a hypothesis as Horácˇek for valuable comments regarding the research a widely distributed haplotype was detected in south- topic and previous versions of the manuscript. This ern Italy (Sicily; WM sublineage). To confirm such a study was supported by the Czech Science Foundation hypothesis, an in-depth analysis of both Italian and (# 206/09/0888) and the Ministry of Culture of the surrounding populations is needed. Moreover, accord- Czech Republic (#DKRVO 00023272). ing to the available evidence, M. schreibersii fossils are absent in Pleistocene-Holocene transition cave- deposits in Italy (Tata & Kotsakis, 2005). Taking all REFERENCES the intraspecific genetic data available (Bilgin et al., Aellen V, Strinati P. 1970. Chauves-souris cavernicoles de 2008; Pereira et al., 2009; Furman et al., 2010a; this Tunisie [Cave bats of Tunisia]. Mammalia 34: 228–236. study) into consideration, it would appear that, in Albayrak I, Coskun S. 2000. Geographic variations and addition to the apparent existence of a refugium in taxonomic status of Miniopterus schreibersii (Kuhl, 1819) the Atlas Mts. of Morocco (see above) dating from the in Turkey (Chiroptera: ). Turkish Journal of Middle Pleistocene (cf. molecular clock by Furman Zoology 24: 125–133.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 185

Ansell WFH, Topál G. 1976. The type locality of Miniopterus of Daubenton’s bat, Myotis daubentoni, in Europe. Journal of schreibersii (KUHL) (Mammalia: Chiroptera). Vertebrata Mammalogy 71: 205–218. Hungarica 17: 15–17. Boye P. 2004. Miniopterus schreibersii Natterer in Kuhl, 1819 Appleton BR, McKenzie JA, Christidis L. 2004. Molecular – Langflügelfledermaus. In: Krapp F, ed. Handbuch der systematics and biogeography of the bent-wing bat complex Säugetiere Europas. Band 4: Fledertiere. Teil II: Chiroptera Miniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vesper- II. Vespertilionidae 2. Molossidae, Nycteridae [Handbook of tilionidae). Molecular Phylogenetics and Evolution 31: 431– Mammals of Europe. Volume 4: Bats. No. II: Chiroptera II. 439. Vespertilionidae 2. Molossidae, Nycteridae]. Wiebelsheim: Baker RJ, Bradley RD. 2006. Speciation in mammals and Aula-Verlag, 1093–1122. the genetic species concept. Journal of Mammaliology 87: Clement M, Posada D, Crandall KA. 2000. TCS: a computer 643–662. program to estimate gene genealogies. Molecular Ecology 9: Bates PJJ, Harrison DL. 1997. Bats of the Indian Subcon- 1657–1659. tinent. Sevenoaks: Harrison Zoological Museum. Corbet GB. 1978. The mammals of the Palearctic region: a Benda P, Andreas M, Kock D, Lucˇan RK, Munclinger P, taxonomic review. London and Ithaca: British Museum Nová P, Obuch J, Ochman K, Reiter A, Uhrin M, (Natural History) and Cornell University Press. Weinfurtová D. 2006. Bats (Mammalia: Chiroptera) of Corbet GB, Hill JE. 1992. The mammals of the Indomalayan the Eastern Mediterranean. Part 4. Bat fauna of Syria: region: a systematic review. London: Oxford University distribution, systematics, ecology. Acta Societatis Zoologicae Press. Bohemicae 70: 1–329. Crucitti P. 1989. Distribution, diversity and abundance of Benda P, Hanák V, Horácˇek I, Hulva P, Lucˇan R, cave bats in Latium (Central Italy). In: Hanák V, Horácˇek Ruedi M. 2007. Bats (Mammalia: Chiroptera) of the I, Gaisler J, eds. European bat research 1987. Prague: Eastern Mediterranean. Part 5. Bat fauna of Cyprus: review Charles University Press, 381–388. of records with confirmation of six species new for the island Dobson M. 1998. distributions in the western Medi- and description of a new subspecies. Acta Societatis Zoo- terranean: the role of human intervention. Mammal Review logicae Bohemicae 71: 71–130. 28: 77–88. Benda P, Horácˇek I. 1995. Geographic variation in three Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evo- species of Myotis (Mammalia: Chiroptera) in South of the lutionary analysis by sampling trees. BMC Evolutionary Western Palaearctics. Acta Societatis Zoologicae Bohemicae Biology 7: 214. 59: 17–39. Ellerman JR, Morrison-Scott TCS. 1951. Checklist of Benda P, Vallo P, Reiter A. 2011. Taxonomic revision of the Palearctic and Indian mammals 1758 to 1946. London: genus Asellia (Chiroptera: Hipposideridae) with a descrip- British Museum (Natural History). tion of a new species from southern Arabia. Acta Chirop- Ferguson WW. 2002. The mammals of Israel. Jerusalem: terologica 13: 245–270. Gefen Publishing House. Bilgin IR. 2012. The conservation genetics of three cave- Fernandez R, Ibañez C. 1989. Patterns of distribution of dwelling bat species in southeastern Europe and Anatolia. bats in the Iberian Peninsula. In: Hanák V, Horácˇek I, Turkish Journal of Zoology 36: 275–282. Gaisler J, eds. European bat research 1987. Prague: Charles Bilgin R. 2011. Back to the suture: the distribution of University Press, 357–361. intraspecific genetic diversity in and around Anatolia. Fritz U, Fritzsch G, Lehr E, Ducotterd J-M, Müller A. International Journal of Molecular Sciences 12: 4080– 2005. The Atlas Mountains, not the Straits of Gibraltar, as 4103. a biogeographic barrier for Mauremys leprosa. Salamandra Bilgin R, Gürün K, Maracı Ö, Furman A, Hulva P, 41: 97–106. Çoraman E, Lucˇan RK, Bartonicˇka T, Horácˇek I. 2012. Furman A, Çoraman E, Bilgin R, Karatas¸ A. 2009. Syntopic occurrence in Turkey supports separate species Molecular ecology and phylogeography of the bent-wing bat status for Miniopterus schreibersii schreibersii and Miniopt- complex (Miniopterus schreibersii) (Chiroptera: Vespertilio- erus schreibersii pallidus (Mammalia: Chiroptera). Acta nidae) in Asia Minor and adjacent regions. Zoologica Scripta Chiropterologica 14. In press. 38: 129–141. Bilgin R, Karatas¸ A, Çoraman E, Disotell T, Morales JC. Furman A, Öztunç T, Postawa T, Çoraman E. 2010a. 2008. Regionally and climatically restricted patterns of dis- Shallow genetic differentiation in Miniopterus schreibersii tribution and genetic diversity in a migratory bat species, (Chiroptera: Vespertilionidae) indicates a relatively recent Miniopterus schreibersii (Chiroptera: Vespertilionidae). re-colonization of Europe from a single glacial refugium. BMC Evolutionary Biology 8: 209. Acta Chiroperologica 12: 51–59. Bilgin R, Karatas¸ A, Çoraman E, Pandurski I, Furman A, Öztunç T, Çoraman E. 2010b. On the phylog- Papadatou E, Morales JC. 2006. Molecular taxonomy eny of Miniopterus schreibersii schreibersii and Miniopterus and phylogeography of Miniopterus schreibersii (Kuhl, 1817) schreibersii pallidus from Asia Minor in reference to other (Chiroptera: Vespertilionidae), in the Eurasian transi- Miniopterus taxa (Chiroptera: Vespertilionidae). Acta Chi- tion. Biological Journal of the Linnean Society 87: 577– ropterologica 12: 61–72. 582. Furman A, Postawa T, Öztunç T, Çoraman E. 2010c. Bogdanowicz W. 1990. Geographic variation of the taxonomy Cryptic diversity of the bent-wing bat, Miniopterus schreib-

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 186 J. ŠRÁMEK ET AL.

ersii (Chiroptera: Vespertilionidae), in Asia Minor. BMC morphometrics and new fossils provide an integrated view Evolutionary Biology 10: 121–133. of the evolutionary history of Rhinopomatidae (Mammalia: Gaisler J. 1970. The bats (Chiroptera) collected in Afghanistan Chiroptera). BMC Evolutionary Biology 7: 165–180. by the Czechoslovak Expedition of 1965–67. Acta Scien- Hulva P, Fornu˚ sková A, Chudárková A, Evin A, tiarum Naturalium Academiae Scientiarum Bohemoslovacae Allegrini B, Benda P, Bryja J. 2010. Mechanisms of Brno, Series Nova 4: 1–56. radiation in a bat group from the genus Pipistrellus inferred Gaisler J. 1983. Nouvelles donées sur les chiroptères du nord by phylogeography, demography and population genetics. algérien. Mammalia 47: 359–369. Molecular Ecology 19: 5417–5431. García-Mudarra JL, Ibáñez C, Juste J. 2009. The Straits Hulva P, Horácˇek I, Strelkov PP, Benda P. 2004. Molecu- of Gibraltar: barrier or bridge to Ibero-Moroccan bat diver- lar architecture of Pipistrellus pipistrellus / P. pygmaeus sity? Biological Journal of the Linnean Society 96: 434–450. complex (Chiroptera: Vespertilionidae): further cryptic Gazaryan SV. 2005. Geograficˇeskaâ izmencˇivost dlinnokry- species and Mediterranean origin of the divergence. Molecu- lov Miniopterus schreibersii (Chiroptera) na territorii vos- lar Phylogenetics and Evolution 32: 1023–1035. tocˇnoj Evropy i severo-zapadnoj Azii [Geographical variation Ibanˇ ez C, García-Mudarra JL, Ruedi M, Stadelmann B, of Schreibers’ bat Miniopterus schreibersii (Chiroptera) Juste J. 2006. The Iberian contribution to cryptic diversity in the territory of eastern Europe and northwestern Asia]. in European bats. Acta Chiropterologica 8: 277–297. Zoologicheskiy Zhurnal 84: 1136–1143. (in Russian, with an Iliopoulou-Georgudaki J. 1986. The relationship between abstract in English). climatic factors and forearm length of bats: evidence from Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk the chiropterofauna of Lesbos island (Greece – East W, Gascuel O. 2010. New algorithms and methods to Aegean). Mammalia 50: 475–482. estimate maximum-likelihood phylogenies: assessing the Karatas¸ A, Sözen M. 2004. Contribution to karyology, dis- performance of PhyML 3.0. Systematic Biology 59: 307–321. tribution and taxonomic status of the Long-winged Bat, Gvoždík V, Moravec J, Klütsch C, Kotlík P. 2010. Phylo- Miniopterus schreibersii (Chiroptera: Vespertilionidae), in geography of the Middle Eastern tree frogs (Hyla, Hylidae, Turkey. Zoology in the Middle East 33: 51–64. Amphibia) as inferred from nuclear and mitochondrial DNA Kirchman JJ, Hackett SH, Goodman SM, Bates JM. variation, with a description of a new species. Molecular 2001. Phylogeny and systematics of ground rollers (Brach- Phylogenetics and Evolution 55: 1146–1166. ypteraciidae) of Madagaskar. The Auk 118: 849–863. Hall TA. 1999. BioEdit: a user-friendly biological sequence Koopman KF. 1993. Order Chiroptera. In: Wilson DE, alignment editor and analysis program for Windows 95/98/ Reeder DM, eds. Mammal species of the world. A taxonomic NT. Nucleic Acids Symposium Series 41: 95–98. and geographic reference. Washington and London: Smith- Hanák V, Horácˇek I. 1984. Some comments of the taxonomy sonian Institution Press, 137–241. of Myotis daubentoni (Kuhl, 1819) (Chiroptera, Mammalia). Koopman KF. 1994. Chiroptera: systematics. In: Nietham- Myotis 21–22: 7–19. mer J, Schliemann H, Starck D, eds. Handbuch der Zoolo- Harrison DL, Bates PJJ. 1991. The mammals of Arabia. gie. Band VIII. Mammalia. Teilband 60. Berlin and New Second Edition. Sevenoaks: Harrison Zoological Museum. York: Walter de Gruyter, 1–217. Hayman RW, Hill JE. 1971. Part 2. Order Chiroptera. In: Kowalski K, Rzebik-Kowalska B. 1991. Mammals of Meester J, Setzer HW, eds. The mammals of Africa: an Algeria. Kraków: Zakład Narodowy im. Ossolin´ skich – identification manual. Washington: Smithsonian Institution Wydawnictwo. Press, 1–73. Kuzâkin AP. 1950. Letucˇie myši (Sistematika, obraz žizni i Heller E. 1912. New races of insectivores, bats, and lemurs pol’za dlâ sel’skogo i lesnogo hozâjstva)[Bats (Systematic, from British East Africa. Smithsonian Miscellaneous Col- Life History and Utility in Agriculture and Forestry)]. lections 60: 1–13. Moskva: Sovetskaja Nauka, (in Russian). Hill JE. 1983. Bats from Indo-Australia (Mammalia: Chirop- Kuzâkin AP. 1965. Otrjad Rukokrylye. Ordo Chiroptera tera). Bulletin of the British Museum of Natural History 45: [Order Bats. Ordo Chiroptera]. In: Bobrinskij NA, Kuznecov 103–208. BA, Kuzâkin AP, eds. Opredelitel’ mlekopitaûsˆih SSSR [Key Horácˇek I, Hanák V, Gaisler J. 2000. Bats of the Palearctic to identification of Mammals of the USSR]. Moskva: Pros- region: a taxonomic and biogeographic review. In: Woloszyn vešcˇenije, 79–116. (in Russian). BW, ed. Proceedings of the VIIIth European Bat Research Lay DM. 1967. A study of the mammals of Iran. Resulting Symposium. Vol. 1. Approaches to Biogeography and Ecology from the Street Expedition of 1962–63. Fieldiana: Zoology of Bats. Kraków: Chiropterological Information Center, Insti- 54: 1–282. tute of Systematics and Evolution of PAS, 11–157. Librado P, Rozas J. 2009. DnaSP v5: a software for com- Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian prehensive analysis of DNA polymorphism data. Bioinfor- inference of phylogeny. Bioinformatics 17: 754–755. matics 25: 1451–1452. Hulva P, Benda P, Hanák V, Evin A, Horácˇek I. Lin Y-H, Penny D. 2001. Implications for bat evolution from 2007a. New mitochondrial lineages within the Pipistrellus two new complete mitochondrial genomes. Molecular pipistrellus complex from Mediterranean Europe. Folia Zoo- Biology and Evolution 18: 684–688. logica 56: 378–388. MacArthur RH, Wilson EO. 1967. The theory of island Hulva P, Horácˇek I, Benda P. 2007b. Molecules, biogeography. Princeton, NJ: Princeton University Press.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 187

Maeda K. 1982. Studies on the classification of Miniopterus Rohlf FJ. 1998. On applications of geometrics to studies in Eurasia, Australia and Melanesia. Honyurui Kagaku of ontogeny and phylogeny. Systematic Biology 47: 147– (Mammalian Science), Supplement 1: 1–176. 158. Maraci Ö, Bilgin R, Lucˇan RK, Bartonicˇka P, Hulva P, Rohlf FJ. 2004. Tpsdig. Version 1.40. Stony Brook: State Horácˇek I. 2010. The sympatry of Miniopterus schreibersii University of New York at Stony Brook, Department of schreibersii and Miniopterus s. pallidus in three caves: the Ecology and Evolution. smoking gun for their elevation to full species status. In: Rohlf FJ. 2008. Relative warps. Version 1.46. Stony Brook: Horácˇek I, Benda P, eds. 15th IBRC – the Conference State University of New York at Stony Brook, Department Manual: Programme, Abstracts, List of Participants. Volume of Ecology and Evolution. of Abstracts of the 15th International Bat Research Confer- Rohlf FJ. 2009. Tpsregr. Version 1.36. Stony Brook: State ence, held in Prague, 23–27 August 2010. Kostelec nad University of New York at Stony Brook, Department of Cˇ ernými lesy: Lesnická práce s.r.o., 220–221. Ecology and Evolution. Mayer F, Dietz C, Kiefer A. 2007. Molecular species iden- Rohlf FJ. 2010. Tps Utility program. Version 1.46. Stony tification boosts bat diversity. Frontiers in Zoology 4: 1–5. Brook: State University of New York at Stony Brook, Miller-Butterworth CM, Eick G, Jacobs DS, Schoeman Department of Ecology and Evolution. MC, Halley EH. 2005. Genetic and phenotypic differences Rohlf FJ, Loy A, Corti M. 1996. Morphometric analysis of between South African long-fingered bats, with a global Old World Talpidae (Mammalia, Insectivora) using partial- miniopterinae phylogeny. Journal of Mammalogy 86: 1121– warps scores. Systematic Biology 45: 344–362. 1135. Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian Moravec J, Kratochvíl L, Amr ZS, Jandzik D, Šmíd J, phylogenetic inference under mixed models. Bioinformatics Gvoždík V. 2011. High genetic differentiation within the 19: 1572–1574. Hemidactylus turcicus complex (Reptilia: Gekkonidae) in Simmons NB. 2005. Order Chiroptera. In: Wilson DE, the Levant, with comments on the phylogeny and system- Reeder DM, eds. Mammal species of the world. A taxonomic atics of the genus. Zootaxa 2894: 21–38. and geographic reference. Third Edition. Volume 1. Balti- Nader IA, Kock D. 1987. First record of Miniopterus sch- more: The John Hopkins University Press, 312–529. reibersii (Kuhl 1819) (Mammalia: Chiroptera) from North Spitzenberger F. 1981. Die Langflügelfledermaus (Miniopt- Yemen with zoogeographical relationship evidenced by wing erus schreibersii Kuhl, 1819) in Österreich – Mammalia mites (Acarina: Spinturnicidae). Senckenbergiana Biologica austriaca 5. Mitteilungen der Abteilung für Zoologie am 67: 225–229. Landesmuseum Joanneum 2: 139–156. Ognev SI. 1927. A synopsis of the Russian bats. Journal of Strelkov PP, Sosnovcena VP, Babaev NV. 1978. Letucˇie Mammalogy 8: 140–157. myši (Chiroptera) Turkmenii [The bats of Turkmenia]. Ognev SI. 1928. Zveri vostocˇnoj Evropy i severnoj Azii. Trudy Zoologicˇeskogo Instituta Akademii Nauk SSSR 79: Tom I. [The Mammals of the Eastern Europe and of the 3–71. (in Russian, with a subtitle in English). Northern Asia. Vol.I]. Moskva & Leningrad: Gosudarstven- Swofford DL. 2003. PAUP*. Phylogenetic Analysis Using noe Izdatel’stvo, (in Russian). Parsimony (* and other methods). Version 4. Sinauer Asso- Ondrias JC. 1978. Population variation in Miniopterus ciates, Sunderland. schreibersii from Greece. Biologia Gallo-Hellenica 7: 223– Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: 232. Molecular Evolutionary Genetics Analysis (MEGA) software Osborne MJ, Christidis L. 2001. Molecular Phylogenetics of version 4.0. Molecular Biology and Evolution 24: 1596– Australo-Papuan Possums and Gliders (Family Petauridae). 1599. Molecular Phylogenetics and Evolution 20: 211–224. Tata C, Kotsakis T. 2005. Italian fossil chiropteran assem- Pereira MJR, Salgueiro P, Rodrigues L, Coelho MM, blages: a preliminary report. Geologia Delle Alpi 2: 53–60. Palmeirim JM. 2009. Population structure of a cave dwell- Tate GHH. 1941. Results of the Archbold Expeditions. ing bat, Miniopterus schreibersii: does it reflect history and No. 40. Notes on vespertilionid bats of the subfamilies social organization? Journal of Heredity 100: 533–544. Miniopterinae, Murininae, Kerivoulinae, and Nyctophilinae. Posada D. 2008. JModelTest: phylogenetic model averaging. Bulletin of the American Museum of Natural History 78: Molecular Biology and Evolution 25: 1253–1256. 567–597. Qumsiyeh MB, Schlitter DA. 1982. The bat fauna of Jabal Tian L, Liang B, Maeda K, Metzner W, Zhang S. 2004. Al Akhdar, northeast Libya. Annals of Carnegie Museum 51: Molecular studies on the classification of Miniopterus 377–389. schreibersii (Chiroptera: Vespertilionidae) inferred from Rahmatulina IK. 2005. Rukokrylye Azerbajdžana (fauna, mitochondrial cytochrome b sequences. Folia Zoologica 53: ekologiâ, zoogeografiâ)[Bats of Azerbaijan (Fauna, Ecology, 303–311. Zoogeography)]. Baku: Nacional’naâ Akademiâ Nauk Velazco PM, Gardner AL, Patterson BD. 2010. Systemat- Azerbajdžana, (in Russian). ics of the Platyrrhinus helleri species complex (Chiroptera: Rodrigues L, Palmeirim JM. 2008. Migratory behaviour of Phyllostomidae), with descriptions of two new species. Zoo- the Schreiber’s bat: when, where and why do cave bats logical Journal of the Linnean Society 159: 785–812. migrate in a Mediterranean region? Journal of Zoology 264: Yoshiyuki M. 1989. A systematic study of the Japanese Chi- 116–125. roptera. Tokyo: The National Science Museum.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 188 J. ŠRÁMEK ET AL.

Zelditch ML, Fink WL, Swiderski DL. 1995. Morphomet- 1956), 9x (NMP: 80/66 – date unspecified; Cˇ D, Cˇ D1, rics, homology, and phylogenetics: quantified characters as Cˇ D2,Cˇ D3,Cˇ D4,Cˇ D5,Cˇ D6,Cˇ D-NX – 5. 11. 1958), synapomorphies. Systematic Biology 44: 179–189. Msch, leg.: V. Hanák; Drienovecká vyvieracˇka Cave (Drienovec) 6f (NMP: 150/58, 155/58 – 6. 2. 1958; APPENDIX 1 246/61 – 17. 2. 1961; 613/59 – 1. 6. 1959; pb4260, pb4261 – 17. 7. 2009), 2m (NMP: 156/58 – 6. 2. 1958; Specimens examined morphologically. Abbreviations: 570/59 – 31. 5. 1959), Msch, leg.: V. Hanák; P. Benda. NMP = National Museum in Prague, Czech Republic; Romania: Betfia Cave (Betfia) 11f (NMP: pb4247– ZFMK = Zoological Research Museum Alexander pb4254, pb4256–pb4258 – 13. 7. 2009), Msch, leg.: Koenig in Bonn, Germany; AUB = American Univer- P. Benda. sity of Beirut, Lebanon. Mare = Miniopterus cf. are- narius; Mful = M. cf. fuliginous; Msch = M. schreibersii s.str.; Mpal = M. pallidus; Msp = unidentified taxon GROUP 4: BALKANS of M. cf. schreibersii;f= female; m = male; x = Bulgaria: Maslen nos (Primorsko) 21f (NMP: 49191, unidentified sex. 49198, 49205, 49206, 49214, 49220, 49222, 49227, 49228, 49341 – 5. 6. 1957; 49686 – 27. 8. 1961; 49688 – 7. 8. 1961; 49690, 49692–49698, 49700 – 27. 8. GROUP 1: MOROCCO 1961), 12m (NMP: 49186, 49192, 49197, 49207, Morocco: Azigza Cave (Tazouguerte) 6f (NMP: 49226, 49229, 49231, 49232 – 5. 6. 1957; 49691, pb3910, pb3912–pb3914, pb3916, pb3917 – 26. 4. 49699, 49703 – 27. 8. 1961), Msch, leg.: V. Hanák; 2008), 4m (pb3907–pb3909, pb3911 – 26. 4. 2008), Zmejovi Dupki Cave (Sliven) 7f (NMP: 49148, 49151, Msch, leg.: P. Benda; Oued Tessaout Valley (Talkout) 49152, 49165 – 25. 5. 1957; 49177, 49178, 49180 – 27. 3f (NMP: 90046, 90049, 90054 – 30. 8. 2003), 4m 5. 1957), 4m (NMP: 49150, 49166 – 25. 5. 1957; (NMP: 90050–90052, 90055 – 30. 8. 2003), Msch, leg.: 49179, 49181 – 27. 5. 1957), Msch, leg.: V. Hanák; P. Benda; Oued El-Ammar River (Sebt-des-Ait- Karlukovo 5f (NMP: 49351 – 3. 7. 1976; 49356, 49361, Serhrouchen) 1f (NMP: 90103 – 9. 9. 2003), Msch, 49362 – 5. 7. 1976; 49367 – 6. 7. 1976), 1m (NMP: leg.: P. Benda. 49357 – 5. 7. 1976), Msch, leg.: M. Braniš et al.; Gardina Dupka Cave (Mostovo) 3f (NMP: 50059, GROUP 2: WESTERN EUROPE 50061, 50062 – 22. 8. 1987), 3m (NMP: 50040 – 22. 6. Spain: Bei Tremp (Pyrenees) 3f (ZFMK: 56.735, 1984; 50058, 50060 – 22. 8. 1987), Msch, leg.: P. 56.737, 56.738 – 28. 5. 1955), 4 m (ZFMK: 56.1068, Musil; Hajduška Peštera Cave (Devenci) 3f (NMP: 56.733, 56.734, 56.736 – 28. 5. 1955), Msch, leg.: J. 49647–49649 – 14. 6. 1977), Msch, leg.: V. Bejcˇek Niethammer; Ramales de la Victoria 1m (ZFMK: et al.; Nirica Peštera Cave (Kotel) 1f (NMP: 49799 – 97.246 – 19. 4. 1963), Msch, leg.: J. Niethammer. 15. 7. 1979), 1m (NMP: 49798 – 15. 7. 1979), Msch, France: Grotte de Povade (Banyuls) 9f (ZFMK: leg.: P.Donát et al.; Kamen Brjag 2f (NMP: 50049, 59.120, 59.124, 59.127-59.131, 59.133, 59.134 – 8. 4. 50050 – 12. 7. 1986), Msch, leg.: V. Hanzal et al.; 1959), 7m (NMP: 59.121-59.123, 59.125, 59.126, Ivanova voda Cave (Dobrostan) 1m (NMP: 49806 – 59.132 – 8. 4. 1959, 59.350 – 23. 5. 1959), Msch, leg.: 23. 7. 1979), Msch, leg.: P. Donát et al.; Ražiškata A. Heymer; Chateau de Collioure (Banuyls) 2f Cave (Lakatnik) 1m (NMP: 50143 – 21.12. 1956), (ZFMK: 59.348, 59.349 – 11. 5. 1959), 1m (ZFMK: Msch, leg.: J. Figala et al. Greece: Didimotichon 59.347 – 11. 5. 1959), Msch, leg.: A. Heymer; St. Remy (Thrakia) 1x (ZFMK: 97.247 – 3. 8. 1971), Msch, leg.: 3f (ZFMK: 59.531b, 59.531c, 59.531d – 5. 11. 1959), J. Niethammer; Xánthi (Kimmeria) 3f (NMP: 48622– 1m (ZFMK: 59.531a – 5. 11. 1959), Msch, leg.: H. 48624 – 16. 6. 1989), 1m (NMP: 48625 – 16. 6. 1989), Roer. Italy: Gargano 2f (ZFMK: 66.338 – 2. 8. 1961, Msch, leg.: V. Hanák & V. Vohrálík; Evros Cave (Didi- 66.360 – 4. 8. 1961), 2x (ZFMK: 66.359 – 2. 8. 1961, motiho) 2f (NMP: 48665, 48667 – 22. 6. 1989), 1m 66.357 – date unspecified), Msch, leg.: G’. Witte. (NMP: 48666 – 22. 6. 1989), Msch, leg.: V. Hanák & V. Country not stated: Kaiserstuhl 1x (ZFMK: 84.529 Vohrálík; Polyphemos (Maronia) 2f (NMP: 48632, – 27. 3. 1952), Msch, leg.: Eisentraut. 48633 – 18. 6. 1989), 1m (NMP: 48642 – 19. 6. 1989), Msch, leg.: V. Hanák & V. Vohrálík; Petralona 1f (NMP: 48611 – 28. 9. 1988), 1m (NMP: 48610 – 28. 9. GROUP 3: PANNONIA 1988), leg.: V. Hanák & V. Vohrálík et al., 1x (ZFMK: Slovakia:Cˇ ertova diera Cave (Dornica) 16f (NMP: 77.51 – 25. 5. 1962), leg.: Wolf, Msch; Ioánnina Cave 70/58, 76/58, 85/58, 89/58, 92/58, 94/58, 96/58, 100/58 (Papigo) 2f (NMP: 48578, 48579 – 26. 9. 1988), Msch, – 3. 2. 1958;J–114,J–117,J–118,J–123, J – 176, leg.: V. Hanák & V. Vohrálík et al.; Avas 1m (NMP: J – 177, J – 178, J – 180 – 10. 12. 1956), 4m (NMP: 48657 – 20. 6. 1989), Msch, leg.: V. Hanák & V. 93/58, 99/58 – 3. 2. 1958; J – 174, J – 181 – 10. 12. Vohrálík.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 TAXONOMY OF MINIOPTERUS 189

GROUP 5: CRETE petria (Kakopetria) 5m (NMP: pb2805–pb2807 – 11. Greece – Crete: Spilion Tsanis Cave (Omalos) 1f 4. 2005), Msp, leg.: P. Benda; Troodos Forest – valley (NMP: 91055 – 1. 10. 2006), 11m (NMP: 91054, 4 km SW of Kakopetria (Kakopetria) 2m (NMP: CH 91056–91064, 91069 – 1. 10. 2006), Msch, leg.: P. 45, CH 46 – 29. 3. 2005), Msp, leg.: I. Horácˇek et al.; Benda; Spilia Milatou Cave (Milatos) 2f (NMP: 91115, Kalavasos 1m (pb2836 – 19. 4. 2005), Msp, leg.: P. 91118 – 7. 10.), 3m (NMP: 91112–91114 – 7. 10. 2006), Benda. Msch, leg.: P. Benda; Vreikos Cave (Crete) 1f (NMP: 92316 – 12. 10. 2007), Msch, leg.: unspecified; Moni GROUP 7: MIDDLE EAST Kato Preveli (Lefkogia) 1m (NMP: 92311 – 11. 10. 2007), Msch, leg.: unspecified. Afghanistan: Samphshir Ghor (Kala bust) 1f (ZFMK: 97.237 – 29. 3. 1972), 2m (ZFMK: 97.235, 97.236 – 29. 3. 1972), Mpal, leg.: J. Niethammer; GROUP 6: LEVANT Kandahar 1f (ZFMK: 97.245 – 28. 2. 1965), Mpal, leg.: Syria: Safita (Hama) 4f (NMP: 48880–48883 – 29. 5. J. Niethammer. Iran: Mina 7m (NMP: 90825 – 90830 2001), Msp, leg.: P. Benda; Qala’ et al. Hosn (Hama) 2f – 22. 5. 2006), Mpal, leg.: P. Benda; Bisotun (Kerman- (NMP: 49989 – 10. 5. 2001, pb1904 – 29. 5. 2001), shah) 1f (NMP: 48150 – 10. 8. 1998), 2m (NMP: Msp, leg.: R. Lucˇan, P. Benda; Talsh’hab (Der’a) 1m 48149, 48151 – 10. 8. 1998), Mpal, leg.: P. Benda; (NMP: 48861 – 25. 5. 2001), Msp, leg.: P. Benda. Dorud (Lorestan) 1m (48154 – 10. 8. 1998), Mpal, leg.: Lebanon: Er Rouais Cave (Aaqura) 3f (NMP: 91778, P. Benda. 91779 – 22. 1. 2007; LE 86 – 26. 6. 2006), 7f (NMP: 91776, 91777 – 22. 1. 2007; LE 87–LE 91 – 26. 6. 2006), Msp, leg.: P. Benda et al.; I. Horácˇek et al.; GROUP 8: EASTERN AFGHANISTAN Saleh Cave (Amchite) 22f (NMP: LE 77 – 25. 6. 2006, (JALALABAD AREA) 91808 – 28. 1. 2007; AUB: M – 085–M – 089 – 13. 10. Afghanistan: Jalalabad 9f (ZFMK: 97.226, 97.227, 1960; M – 091 – 14. 8. 1960; M – 108–M – 111 – 13. 97.228, 97.229, 97.232, 97.234 – 1. 3. 1966; 97.238 – 10. 1960;M–113–13.10.1960;M–1162,M–1165 14. 5. 1965; 97.243, 97.243 – 4. 3. 1966), 16m (ZFMK: – 17. 4. 1960;M–119,M–124, M – 127, M – 129, 97.215, 97.216, 97.218, 97.220, 97.221, 97.222, 97.224, M – 133, M – 139, M – 140 – 18. 3. 1961), 31m (NMP: 97.225, two samples without number – 14. 5. 1965; LE 78 – 25. 6. 2006; AUB: M – 084 – 13. 10. 1960; M 97.231, 97.233 – 1. 3. 1966; 97.239, 97.240, 97.241 – – 092–M – 094 – 14. 8. 1960; M – 097 – 13. 10. 1960; 14. 5. 1965; 97.244 – 4. 3. 1966), 1x (ZFMK: 97.230 – M – 101–M – 105,M–112–13.10.1960;M–115– 1. 3. 1966), Mful, leg.: J. Niethammer. 18. 3. 1961;M–1163,M–1164–17.4.1965; M – 120–M – 123, M – 125, M – 126, M – 128, M – 130–M – 132, M – 134–M – 138, M – 142 – 18. 3. 1961), Msp, GROUP 9: YEMEN AND ETHIOPIA leg.: I. Horácˇek et al.; P. Benda, R. E. Lewis. Turkey: Yemen: Jebel Bura (Riqab) 1f (NMP: pb3129 – 30. 10. Indigu Majarasi Cave (Antalya) 1f (ZFMK: 66.626 – 2005), 5m (NMP: pb3126–pb3128, pb3130, pb3131 – 11. 4. 1966), 6m (ZFMK: 66.619 – 20. 4. 1966, 66.625, 30. 10. 2005), Mare, leg.: P. Benda; At Tur (Hajjah) 1m 66.627–630 – 11. 4. 1966), Msch, leg.: K. Dobat; Haru- (ZFMK: 85.64 – 1. 3. 1985), 1x (ZFMK: 85.63 – 1. 3. niye 2x (ZFMK: 58.282, 58.283 – 1953 (unspecified), 1985), Mare, leg.: F. Schutte, H.P. Fritéz; Halhal Msch, leg.: unspecified. Cyprus: Smigies Trail (Haja) 1m (NMP: pb3747 – 2. 11. 2007), Mare, leg.: P. (Akamas Peninsula) 5f (NMP: CH 32, CH 33, CH 35, Benda. Ethiopia: Baro River (Masha) 2f (NMP: CH 38 – 27. 3. 2005; CH 129 – 12. 10. 2005), 3m 92177, 92178 – 5. 9. 2003), Mare, leg.: P. Benda. (NMP: CH 34, CH 36, CH 39 – 27. 3. 2005), Msp, leg.: Sudan: (unspecified) 1x (ZFMK: 212 – date unspeci- I. Horácˇek et al.; Troodos forest – valley N of Kako- fied), Mare, leg.: unspecified.

SUPPORTING INFORMATION Additional Supporting Information may be found in the online version of this article: Figure S1. Cranio-dental measurements and landmarks used in the linear and geometric morphometric analyses. Figure S2. Dental measurements used in the linear morphometric analyses. Figure S3. Non-metric dental and cranial characters. Figure S4. Results of the discriminant function analyses based on the linear morphometric data of dental dimensions.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 190 J. ŠRÁMEK ET AL.

Figure S5. The main shape variable (RW1) plotted against the centroid size (CS2) of the lateral view of skull. Table S1. Non-metric dental and cranial characters. Letter codes are associated to those in Fig. S3. Table S2. Skull dimensions of the examined Miniopterus. Table S3. Dental dimensions of the examined Miniopterus. Table S4. Results of ANOVA analyses of Middle Eastern (representing M. pallidus) and Balkan (containing sequenced samples from the Levant) (representing M. schreibersii) sample sets. Table S5. Percentage share-values of the total variation of the first four relative warps of the examined sample sets for the respective view of skull and mandible. Table S6. Non-metric dental and cranial characters of the examined Miniopterus. Appendix S1. Supporting information to the methods. List of cranio-dental measurements. List of dental measurements. Landmark definitions for respective views of skull and mandible. Appendix S2. Supporting information to the results. Description of morphometric cranial and dental differ- entiation among the examined groups of Miniopterus. Description of non-metric dental and cranial differen- tiation among the examined groups of Miniopterus.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 SUPPORTING INFORMATION

Appendix S1: Supporting information to the methods - List of cranio-dental measurements. - List of dental measurements. - Landmark definitions for respective views of skull and mandible. - Table S1. Non-metric dental and cranial characters. - Figure S1. Cranio-dental measurements and landmarks used in the linear and geometric morphometric analyses. - Figure S2. Dental measurements used in the linear morphometric analyses. - Figure S3. Non-metric dental and cranial characters.

Appendix S2: Supporting information to the results - Description of morphometric cranial and dental differentiation among the examined groups of Miniopterus. - Description of non-metric dental and cranial differentiation among the examined groups of Miniopterus. - Table S2. Skull dimensions of the examined Miniopterus. - Table S3. Dental dimensions of the examined Miniopterus. - Table S4. Results of ANOVA analyses of Middle Eastern (representing M. pallidus) and Balkan (containing sequenced samples from the Levant) (representing M. schreibersii) sample sets. - Table S5. Percentage share-values of the total variation of the first four relative warps of the examined sample sets for the respective view of skull and mandible. - Table S6. Non-metric dental and cranial characters of the examined Miniopterus. - Figure S4. Results of the discriminant function analyses based on the linear morphometric data of dental dimensions. - Figure S5. The main shape variable (RW1) plotted against the centroid size (CS2) of the lateral view of skull.

1 Appendix S1

SUPPORTING INFORMATION TO THE METHODS

List of cranio-dental measurements: Skull length (LCr); condylobasal length (LCb); zygomatic width (LaZ); interorbital constriction width (LaI); rostral width – between infraorbital foramens (LaInf); neurocranium width (LaN); mastoidal width (LaM); neurocranium height (ANc); skull height (incl. tympanic bullae) (ACr); mandible length – condylar (LMd); coronoid process height (ACo); rostral width across the upper canines (CC); rostral width across the upper premolars (P4P4); rostral width across the third upper molars (M3M3); upper tooth-row length – between the first incisor and third molar (I1M3), – between the canine and third molar (CM3), – between the second (larger) premolar and third molar (P4M3); upper molar-row length (M1M3); upper tooth-row length – between the canine and second premolar (CP4). The last five measurements were taken also on mandible (I1M3, CM3, P4M3, M1M3, CP4). See Figure S1 below.

List of dental measurements: First and second incisor length (LI1, LI2), canine length (LCsup), first and second premolar length (LP2, LP4), third molar length (LM3) – in the upper tooth-row; first, second and third incisor length (LI1, LI2, LI3), canine length (LCinf), first, second and third premolar length

(LP2, LP3, LP4), first, second and third molar length (LM1, LM2, LM3) – in the lower tooth- row; first and second incisor width (WI1, WI2), canine width (WCsup), first and second premolar width (WP2, WP4), third molar width (WM3) – in the upper tooth-row; first, second inf and third incisor width (WI1, WI2, WI3), canine width (WC ), first, second and third premolar width (WP2, WP3, WP4) – in the lower tooth-row; first and second molar diagonal width (W1M1, W1M2); first and second molar largest (external) length (LoM1, LoM2); first and second molar smallest (internal) length (LiM1, LiM2); first and second molar width (in central part) (W2M1, W2M2); first and second molar largest width (in the distal half) (W3M1, 2 W3M ); first and second molar width (in central part of the mesial half) (W1M1, W1M2); first and second molar width (in central part of the distal half) (W2M1, W2M2); first molar diagonal width (W3M1); third molar smallest width (WM3); coronal height of all teeth except 1 2 sup 2 4 molars (HI , HI , C , HP , HP , HI1, HI2, HI3, Cinf, HP2, HP3, HP4). See Figure S2 below.

2 Landmark definitions for respective views of skull and mandible: Lateral view of mandible (Fig. S1A) – (1) mandible anterior extremity, on the level of the first incisor; (2) third molar posterior extremity; (3) lateral extremity of the mesial margin of ramus mandibulae; (4) top point of the processus coronoideus; (5) top point of the processus condylaris; (6) convex extremity on the level of incisura mandibulae inferior; (7) convex extremity at the base of processus angularius ; (8) convex extremity of the ventral margin of corpus mandibulae, in its distal half; (9) ventral extremity on the level of the contact of left and right corpora mandibulae. Lateral view of skull (Fig. S1B) – (1) skull anterior extremity, on the level of the first incisor; (2) nasal fossa dorsal extremity; (3) rostrum/skull congruent point; (4) skull anterior lateral extremity; (5) concave extremity of dorsal neurocranium; (6) intersection between interparietal and supraoccipital bone; (7) supraoccipital basis; (8) convex extremity of the occipital condyle; (9) top point of the processus mastoideus; (10) latero-anterior border of ocular orbit; (11) third molar posterior extremity; (12) alveolar limit between second premolar and first molar; (13) alveolar limit between canine and first premolar. Ventral view of skull (Fig. S1C) – (1) premaxillar incisura; (2) skull anterior extremity, on the level of the first incisor; (3) alveolar limit between canine and first premolar; (4) anterior extremity of the first molar; (5) lateral extremity of the third molar; (6) mandibular arcade incisura; (7) right lateral extremity of lacerated foramen; (8) left lateral extremity of articular fossa; (9) lateral extremity of processus mastoideus; (10) occipital condyle posterior extremity; (11) foramen magnum incisura. Dorsal view of skull (Fig. S1D) – (1) premaxillar incisura; (2) skull anterior extremity, on the level of the first incisor; (3) rostrum lateral extremity, on the level of canine; (4) largest rostrum lateral extremity; (5) interorbital most convex extremity; (6) neurocranial lateral extremity; (7) lateral mastoidal extremity; (8) lateral margin of squama occipitalis; (9) skull occipital posterior extremity.

3 Table S1. Non-metric dental and cranial characters. Letter codes are associated to those in Fig. S3.

Variable Sign Description

P4inf A The slant of the third lower premolar (P4)

P4inf2 B The shape of the third lower premolar cingulum (P4)

P3inf C The shape of the second lower premolar cingulum (P3)

P3inf2 D The rate of extension of latero-distal arch of the second lower premolar (P3)

P3inf3 E The slant of the second lower premolar (P3)

P2P4inf F Relative distance between tips of the first (P2) and third (P4) lower premolars

P2P4inf2 G Relative high of the first lower premolar (P2) to the third lower premolar (P4)

P3P4inf H Relative high of the second lower premolar (P3) to the third lower premolar (P4)

FmenP2inf I Position of foramen mentale to the first lower premolar (P2) Fmen J Absolute size of foramen mentale Cinf K The shape of the lower canine cingulum on the occlusal side

CingM1inf L The rate of the first lower molar (M1) protocingulum convexity (in ventral direction)

CingM1inf2 M The rate of the first lower molar (M1) protocingulum progression to postcingulum progresion (in ventral direction)

CingM1inf3 O Position of the top point of the first lower molar (M1) cingulum concavity

CingM1inf4 P The rate of deflection of the first lower molar (M1) postcingulum

CingM2inf Q The rate of the second lower molar (M2) protocingulum convexity (in ventral direction)

CingM2inf2 R The rate of the second lower molar (M2) protocingulum progression to postcingulum progresion (in ventral direction)

CingM2inf3 S Position of the top point of the second lower molar (M2) cingulum concavity

M3sup T The rate of the third lower molar (M3) metacone progression (in ventral direction) M3sup2 U The rate of the third upper molar (M3) palatal side progression M2sup V The slant of the second upper molar (M2) occlusal cant M2sup2 W The rate of the second upper molar (M2) deflection on mesial side M2sup3 X The greatest rate of the second upper molar (M2) depression on distal side M2Sup4 Y The rate of the second upper molar (M2) distal side progression (in lateral half) CingM2sup Z The rate of the second upper molar (M2) cingulum extremity progression on occluso-distal arch M1sup AA The slant of the first upper molar (M1) occlusal cant M1sup2 AB The greatest rate of the first upper molar (M1) depression on distal side M1sup3 AC The rate of the first upper molar (M1) distal side progression (in lateral half) M1sup4 AD The rate of the first upper molar (M1) occlusal side depression M1sup5 AE Position of the first upper molar (M1) palatal side depression P4sup AF The rate of the second upper premolar (P4) mesio-occlusal arch progression P4sup2 AG The rate of the second upper premolar (P4) depression on mesial side P4sup3 AH The rate of the second upper premolar (P4) depression on distal side P4sup4 AI The rate of the extremity progression on mesio-occlusal side of the second upper premolar (P4) P4sup5 AJ The rate of the second upper premolar (P4) mesio-lateral arch progression P4sup6 AK The rate of the second upper premolar (P4) deflection on lateral side (in mesial half of cingulum) P4sup7 AL The rate of the second upper premolar (P4) deflection on lateral side (in distal half of cingulum) P4sup8 AM Central position of the second upper premolar (P4) lateral side depression (in distal half of cingulum) P2sup AN Relative width of mesial arch of the first upper premolar (P2) P2sup2 AO The rate of depression on the first upper premolar (P2) distal side P2sup3 AP The rate of depression on the first upper premolar (P2) occlusal side P2sup4 AQ The rate of depression on the first upper premolar (P2) mesio-lateral side CingCsup AR The rate of upper canine cingular extremity progression ZygW AS The rate of zygomatic arch intension InfO AT Position of infraorbital foramen to first upper premolar (P2) I2supCsup AU Depth of depression between second upper incisor (I2) and upper canine ProcCW AV Relative width of procesus coronoideus RmanW AW Relative size of ramus mandibulae extremity before processus coronoideus Isup AX The slant of upper incisives

4

Figure S1. Cranio-dental measurements and landmarks used in the linear and geometric morphometric analyses. A – Lateral view of mandible, B – lateral, C – ventral and D – dorsal views of the skull. .

5

Figure S2. Dental measurements used in the linear morphometric analyses. View of A – right upper, B – left lower tooth-row, C – lower incisives, D – upper incisives, E – lower canine, F – from left to right: upper canine, 2nd premolar, 4th premolar; G – lower premolar-row, from left to right: 2nd, 3rd and 4th premolar.

6

Figure S3. Non-metric dental and cranial characters and the gradient scale system 1–5. Letter codes are explained in Table S1.

7

Figure S3. (continued)

8

Figure S3. (continued)

9

Figure S3. (continued)

10

Figure S3. (continued)

11

Figure S3. (continued)

12 Appendix S2

SUPPORTING INFORMATION TO THE RESULTS

Description of morphometric cranial and dental differentiation among the examined groups of Miniopterus: Morphometric differences among the examined groups as described below represent distinctions related to the material from Pannonia, which contains samples originating from the region of type locality of M. schreibersii in Romania (unless otherwise stated). The bats from the Moroccan inland were characterized by relatively wider rostrum in comparison to other examined samples, particularly at the level of infraorbital foramens (see LaInf, LCr/LaInf in Table S2), their skulls were relatively very high and short. Mandibles of the Moroccan bats were, among the all examined groups, the most distinct – the coronoid processes were relatively very high, molar-rows quite short (M1M3; LMd/M1M3 in table S2). Lower canines were relatively high, second upper premolars (P4) wide. The lower premolars

(P2 and P3) were markedly high and generally large, lower molariform teeth (P4 and M3) wide, third lower premolar (P4) generally small. The bats from Western Europe possessed skulls with relatively wide rostrum and markedly long upper molar-row (M1M3; M3M3/M1M3 in table S2). Their coronoid processes were very high (ACo; LMd/ACo in table S2), second upper premolars (P4) were markedly 1 high and generally large, first upper molars (M ) were large. First lower incisors (I1) were relatively wide; lower canines low but large; lower molariforms P2, P3, M1 and M3 long (in the mesiodistal direction); lower premolars (P3 and P4) were high; all three lower premolars were generally small, canines large. The bent-winged bats from the Balkans showed their skulls to be relatively high (ACr) and their upper molar-rows (M1M3) relatively long. The second upper incisors (I2) were relatively long, second upper premolars (P4) low and wide, first upper molars (M1) were – relatively to the largest length of the tooth – large in the smallest length of the tooth. First lower incisors (I1) were relatively wide; first lower molars (M1) were generally large. The samples from Crete were characterized by their relatively high skulls and very high coronoid processes and long lower molariform tooth-rows (P4M3). These bats showed relatively long second lower incisors (I2), while their second upper premolars (P4) were low and wide, first upper molars (M1) – in comparison to the largest length of the tooth –

13 relatively large in the smallest length of the tooth. The first lower incisors (I1) were relatively wide, the first lower molars (M1) large. The bats from the Levant showed high skulls, similarly as the Cretan bats and very high coronoid processes. The Levantine bats possessed generally large second upper 4 premolars (P ), relatively wide first lower incisors (I1), markedly low first lower premolars

(P2), long lower molars (M1 and M3), small lower premolars (especially P4) and large lower canines. The bats from the Middle East were characterized by relatively markedly narrow width of interorbital constriction (LaI, LCr/LaI in Table S2) and high skulls, mandibles with relatively high coronoid processes, in upper tooth-row relatively wide and low second (large) premolars (P4) and generally smaller second incisors (I2), premolars (P2, P3) and third molars 3 (M ); in lower tooth-row relatively wide third incisors (I3), long first molars (M1), markedly low second premolars (P2), but very high third and fourth premolars (P3, P4), very small canines and all premolars. The samples from Eastern Afghanistan (Jalalabad) showed relatively high coronoid processes, short mandibular molar-rows, relatively small and long second upper incisors (I2), long first upper premolars (P2), high second upper premolars (P4), large and markedly high upper canines, but the first upper incisors (I1) markedly small, relatively long second upper 2 molars (M ) in their smallest length of the tooth. In the mandibles, the first incisors (I1) were relatively wide, second incisors (I2), third and fourth premolars (P3, P4) long, second and third premolars (P2, P3) low, canines markedly large (especially in their high), but premolars rather small, as well as the third molars (M3) that were moreover relatively wide. The material of the M. schreibersii-like form from Yemen and Ethiopia were particularly distinct from other examined samples, particularly in their width dimensions – skulls were relatively narrow (LaM; LCr/LaM in Table S2), rostra generally very narrow (LaInf); mandibles had the coronoid processes relatively low; lower canines were relatively high, first upper premolars (P2) high and long, but generally small. Upper molars (M2 and M3) 2 were generally small, second upper incisors (I ) markedly. In the lower dentition, incisors (I1,

I3) and the last molars (M3) were relatively wide, first premolars (P2) low and markedly small, second premolars (P3) very high – as well as the third premolars (P4) – and very markedly small. For details concerning the skull sizes and other cranial and dental dimensions see Tables S2 and S3.

14 Description of non-metric dental and cranial differentiation among the examined groups of Miniopterus: Observed values of non-metric characters showed that the most distinct samples, in comparison to those from Pannonia, were samples from Eastern Afghanistan (Jalalabad), such a trend was less apparent concerning the group of the Afro-Arabian samples, Moroccan and the Middle Eastern samples. Differences among all other examined groups were rather minute. Distinctions of the above mentioned mostly differentiated groups were as follows: Moroccan samples had cingulum of canine palatal side without any extremity (Cinf), first upper molar occlusal side deflection quite expressive (M1sup4) and relatively expressive extremity on ramus mandibulae before processus coronoideus (RmanW). Samples from the Middle East possesed with first upper molar occlusal side deflection relatively expressive (M1sup4) and strong zygomatic arch intension (ZygW). Samples from Eastern Afghanistan (Jalalabad) were characterized by relatively small slant of the third lower premolar (P4inf), markedly relatively low first and second lower premolars in comparison to third lower premolar (P2P4inf2, P3P4inf), less expressive protocingulum in comparison to postcingulum of the first and second lower molars (CingM1inf2, CingM2inf2), mesial position of the top point of the second lower molar cingulum concavity (CingM2inf3), small rate of the third upper molar palatal side progression (M3sup2), small depression on the mesial side and small progression on the distal side of the second upper molar (M2sup2, M2sup4), small rate of the second upper premolar deflection on lateral side (in mesial half of cingulum) (P4sup6), small rate of deflection of the first upper molar mesio-lateral side (P2sup4) and small depth of depression between second upper incisor and upper canine (I2supCsup). Samples of the M. schreibersii-like form from Yemen and Ethiopia had mesial position of the top point of the first lower molar cingulum concavity (CingM1inf3), small rate of the third upper molar palatal side progression (M3sup2), distal slant of the second upper molar occlusal cant (M2sup) and its cingulum extremity of distal-occlusal arch markedly relatively small (CingM2sup), distal slant of the first upper molar occlusal cant (M1sup), strong rate of the second upper premolar mesio-occlusal arch extremity progression (P4sup4), relatively small rate of depression of the first upper premolar distal side (P2sup2), distal position of infraorbital foramen in comparison to the first upper premolar (InfO). For details concerning the non-metric traits see Table S5.

15 Table S2. Skull dimensions (in mm) of Miniopterus examined in this study. Codes in brackets stand for the respective genetic lineage or sublineage (see text). See Appendix S1 for explanation of dimension abbreviations. M= mean, min = minimum value, max = maximum value, and SD = standard deviation.

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD LCr 18 15.365 15.12 15.65 0.164 36 15.229 14.80 15.49 0.173 45 15.392 14.94 15.88 0.206 76 15.229 14.54 15.83 0.216 19 14.916 14.48 15.19 0.185 LCb 18 14.953 14.74 15.24 0.146 35 14.777 14.42 15.02 0.159 45 14.928 14.07 15.58 0.263 76 14.765 14.25 15.18 0.190 19 14.423 14.05 14.66 0.149 LaZ 18 8.688 8.39 9.00 0.137 35 8.566 8.25 8.88 0.137 46 8.609 8.10 9.00 0.208 74 8.551 8.13 8.85 0.139 19 8.478 8.15 8.74 0.129 LaI 18 3.777 3.63 3.98 0.089 36 3.711 3.57 3.88 0.071 47 3.761 3.53 4.02 0.108 82 3.710 3.52 3.93 0.087 19 3.621 3.48 3.77 0.084 LaInf 18 4.202 4.02 4.32 0.086 36 4.023 3.74 4.29 0.104 45 4.025 3.85 4.24 0.088 80 3.974 3.45 4.18 0.136 19 3.894 3.78 4.05 0.091 LaN 18 8.098 7.92 8.28 0.117 36 8.082 7.89 8.96 0.200 48 8.104 7.63 8.40 0.129 79 8.087 7.76 8.47 0.123 19 7.855 7.73 7.97 0.076 LaM 18 8.788 8.64 8.97 0.105 35 8.675 8.10 8.99 0.190 46 8.757 8.10 9.21 0.180 76 8.746 8.12 9.04 0.155 19 8.524 8.40 8.67 0.091 ANc 18 6.357 6.18 6.57 0.109 35 6.330 6.12 6.50 0.096 46 6.321 6.09 6.53 0.109 78 6.288 6.00 6.53 0.107 19 6.217 6.09 6.38 0.089 ACr 18 7.973 7.73 8.34 0.185 30 7.497 6.66 8.01 0.420 43 7.672 6.79 8.04 0.325 77 7.743 6.83 8.21 0.324 19 7.765 7.36 7.99 0.154 LMd 18 10.977 10.80 11.28 0.144 36 10.852 10.56 11.15 0.143 48 10.923 10.28 11.30 0.175 75 10.847 10.15 11.07 0.154 19 10.622 10.32 10.88 0.118 ACo 18 2.598 2.48 2.81 0.077 36 2.594 2.40 2.93 0.109 48 2.533 2.17 2.93 0.120 75 2.508 2.04 2.93 0.109 19 2.538 2.41 2.69 0.076 CC 18 4.656 4.38 4.83 0.119 27 4.504 4.27 4.74 0.121 44 4.549 4.34 4.77 0.103 74 4.484 4.14 4.72 0.112 18 4.477 4.33 4.64 0.086 P4P4 18 5.542 5.43 5.77 0.090 36 5.442 5.17 5.74 0.138 47 5.580 5.35 5.82 0.105 77 5.525 5.06 5.71 0.117 19 5.423 5.28 5.56 0.077 M3M3 18 6.398 6.23 6.60 0.099 32 6.264 5.78 6.47 0.133 46 6.327 5.89 6.61 0.134 76 6.334 6.00 6.53 0.093 19 6.212 6.08 6.35 0.074 I1M3 18 6.946 6.75 7.12 0.095 34 6.947 6.59 7.20 0.120 47 6.975 6.73 7.16 0.093 80 6.919 6.56 7.10 0.095 19 6.802 6.54 6.95 0.081 CM3 18 5.902 5.64 6.09 0.133 33 5.853 5.58 6.13 0.122 47 5.898 5.71 6.08 0.083 80 5.874 5.68 6.04 0.077 19 5.810 5.64 5.95 0.072 P4M3 18 4.302 4.17 4.45 0.076 35 4.275 4.06 4.43 0.086 48 4.291 4.01 4.44 0.087 80 4.306 4.06 4.47 0.065 19 4.268 4.11 4.37 0.063 M1M3 18 3.253 3.13 3.43 0.077 36 3.236 3.10 3.38 0.076 48 3.278 3.08 3.45 0.076 81 3.307 3.16 3.49 0.077 19 3.255 3.09 3.44 0.089 CP4 18 2.877 2.78 3.01 0.082 26 2.911 2.66 3.28 0.136 47 2.907 2.75 3.05 0.071 81 2.847 2.68 3.01 0.068 19 2.832 2.73 2.97 0.071

I1M3 18 7.285 7.10 7.56 0.108 35 7.203 6.87 7.41 0.121 48 7.317 7.02 7.54 0.124 75 7.333 6.98 7.60 0.130 19 7.056 6.96 7.21 0.073

CM3 18 6.193 6.03 6.38 0.098 35 6.185 5.90 6.35 0.097 48 6.215 6.07 6.36 0.072 74 6.177 5.98 6.38 0.075 19 6.090 6.00 6.26 0.069

P4M3 18 4.386 4.30 4.52 0.062 35 4.447 4.25 4.72 0.100 48 4.456 4.28 4.65 0.079 76 4.463 4.27 4.58 0.067 19 4.401 4.30 4.51 0.065

M1M3 18 3.606 3.52 3.73 0.059 36 3.720 3.54 4.00 0.103 48 3.764 3.57 3.97 0.102 77 3.768 3.49 3.95 0.099 19 3.691 3.55 3.81 0.077

CP4 18 2.369 2.23 2.47 0.070 30 2.371 2.22 2.55 0.081 48 2.406 2.24 2.56 0.065 74 2.345 2.19 2.50 0.071 19 2.283 2.20 2.38 0.049 M3M3/M1M3 18 1.968 1.88 2.04 0.047 35 1.768 0.00 2.00 0.551 46 1.931 1.80 2.05 0.055 77 1.890 0.00 2.00 0.223 19 1.910 1.77 2.01 0.057 M3M3/P4M3 18 1.487 1.45 1.53 0.022 32 1.464 1.40 1.53 0.030 46 1.475 1.40 1.56 0.034 76 1.471 1.42 1.54 0.025 19 1.456 1.41 1.51 0.024 M3M3/CM3 18 1.085 1.05 1.12 0.022 29 1.068 1.01 1.11 0.024 45 1.073 0.99 1.13 0.026 76 1.078 1.05 1.12 0.016 19 1.069 1.04 1.10 0.016 M3M3/I1M3 18 0.921 0.90 0.95 0.011 32 0.901 0.86 0.93 0.019 45 0.908 0.85 0.94 0.020 76 0.916 0.88 0.95 0.015 19 0.913 0.89 0.95 0.012 M3M3/P4P4 18 1.155 1.13 1.18 0.014 32 1.148 1.11 1.21 0.022 46 1.135 1.07 1.19 0.024 76 1.147 1.10 1.26 0.023 19 1.146 1.12 1.16 0.013 M3M3/CC 18 1.375 1.34 1.43 0.024 26 1.391 1.31 1.46 0.035 43 1.392 1.33 1.47 0.032 72 1.413 1.36 1.52 0.033 18 1.387 1.34 1.43 0.024 P4P4/CC 18 1.191 1.14 1.24 0.025 27 1.212 1.14 1.25 0.024 44 1.227 1.18 1.28 0.028 73 1.231 1.10 1.31 0.028 18 1.210 1.17 1.25 0.024 1 3 I M /I1M3 18 0.954 0.93 0.97 0.011 33 0.964 0.93 1.02 0.021 47 0.953 0.91 0.99 0.018 74 0.943 0.90 0.98 0.015 19 0.964 0.94 0.98 0.009 LMd/Aco 18 4.228 3.97 4.38 0.112 36 4.190 3.76 4.50 0.158 48 4.320 3.77 4.95 0.200 72 4.333 3.77 5.20 0.188 19 4.189 3.87 4.39 0.127

LMd/I1M3 18 1.507 1.47 1.53 0.018 35 1.508 1.46 1.57 0.020 48 1.493 1.44 1.57 0.026 75 1.480 1.37 1.55 0.027 19 1.505 1.48 1.53 0.013

LMd/CM3 18 1.773 1.74 1.80 0.016 35 1.756 1.71 1.83 0.026 48 1.758 1.69 1.81 0.025 74 1.756 1.65 1.82 0.022 19 1.744 1.72 1.77 0.016

LMd/P4M3 18 2.503 2.45 2.56 0.028 35 2.441 2.35 2.57 0.053 48 2.452 2.30 2.57 0.052 75 2.431 2.26 2.55 0.043 19 2.414 2.36 2.47 0.030 LMd/M1M3 18 3.044 2.93 3.11 0.046 36 2.919 2.69 3.06 0.081 48 2.904 2.68 3.10 0.095 75 2.880 2.68 3.12 0.081 19 2.879 2.78 3.03 0.065

16 Table S2. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

LCr/LaM 18 1.748 1.72 1.78 0.018 35 1.756 1.70 1.85 0.033 43 1.756 1.71 1.91 0.032 72 1.743 1.70 1.83 0.026 19 1.750 1.70 1.78 0.019 LCr/LaZ 18 1.769 1.74 1.82 0.020 35 1.778 1.72 1.86 0.028 43 1.785 1.72 1.92 0.040 71 1.782 1.72 1.85 0.026 19 1.760 1.70 1.85 0.032 LCr/LaI 18 4.069 3.93 4.19 0.072 36 4.105 3.93 4.32 0.084 44 4.094 3.87 4.44 0.119 75 4.111 3.88 4.32 0.086 19 4.121 3.84 4.28 0.106 LCr/LaInf 18 3.658 3.57 3.80 0.069 36 3.788 3.56 4.05 0.090 44 3.825 3.59 3.99 0.080 75 3.836 3.61 4.48 0.136 19 3.832 3.60 3.99 0.097 LCr/ANc 18 2.417 2.37 2.47 0.030 35 2.407 2.35 2.47 0.032 43 2.433 2.34 2.50 0.041 75 2.424 2.34 2.51 0.036 19 2.399 2.32 2.44 0.032 LCr/ACr 18 1.928 1.87 2.01 0.037 30 2.040 1.88 2.25 0.115 41 2.010 1.91 2.26 0.093 74 1.974 1.87 2.23 0.091 19 1.921 1.84 2.00 0.040 LCr/LMd 18 1.400 1.38 1.42 0.009 36 1.403 1.37 1.45 0.015 45 1.409 1.39 1.47 0.015 72 1.403 1.33 1.44 0.016 19 1.404 1.39 1.42 0.009 LaM/LaZ 18 1.012 0.98 1.04 0.012 34 1.013 0.94 1.05 0.019 45 1.017 0.94 1.08 0.024 71 1.023 0.96 1.06 0.017 19 1.006 0.98 1.05 0.016 LaM/LaInf 18 2.092 2.03 2.16 0.045 35 2.159 2.00 2.34 0.062 43 2.181 1.97 2.28 0.060 73 2.202 2.06 2.54 0.075 19 2.190 2.12 2.26 0.042 LaM/ACr 18 1.103 1.06 1.13 0.020 29 1.163 1.08 1.29 0.069 42 1.142 1.06 1.29 0.048 74 1.131 1.07 1.27 0.046 19 1.098 1.06 1.15 0.019 LaM/ANc 18 1.383 1.35 1.41 0.018 34 1.373 1.31 1.41 0.021 45 1.388 1.33 1.44 0.023 75 1.391 1.29 1.45 0.027 19 1.371 1.32 1.41 0.019 ACr/ANc 18 1.254 1.21 1.28 0.019 29 1.183 1.05 1.27 0.069 41 1.218 1.09 1.28 0.048 77 1.231 1.09 1.30 0.050 19 1.249 1.21 1.28 0.019 ACr/LaI 18 2.111 2.04 2.17 0.040 30 2.021 1.82 2.17 0.107 42 2.041 1.78 2.23 0.102 76 2.087 1.84 2.21 0.086 19 2.145 1.99 2.27 0.056 ACr/LaZ 18 0.918 0.88 0.95 0.018 29 0.874 0.78 0.95 0.052 42 0.891 0.80 0.95 0.037 72 0.904 0.81 0.95 0.037 19 0.916 0.88 0.96 0.018 LaZ/LCb 18 0.581 0.56 0.59 0.007 34 0.580 0.56 0.59 0.008 43 0.578 0.52 0.60 0.015 72 0.579 0.56 0.60 0.007 19 0.586 0.55 0.61 0.012 LCr/LCb 18 1.028 1.02 1.03 0.004 35 1.031 1.02 1.05 0.007 43 1.030 0.97 1.07 0.013 75 1.032 1.01 1.05 0.007 19 1.031 0.97 1.05 0.016 ANc/LaZ 18 0.732 0.72 0.75 0.009 34 0.738 0.72 0.77 0.013 44 0.733 0.71 0.77 0.013 73 0.736 0.70 0.76 0.013 19 0.733 0.71 0.78 0.014 ANc/LaI 18 1.683 1.65 1.73 0.024 35 1.705 1.62 1.78 0.035 45 1.682 1.57 1.78 0.046 77 1.696 1.57 1.79 0.038 19 1.718 1.65 1.78 0.040 (M3M3/P4M3)/(M3M3/M1M3) 18 0.756 0.74 0.78 0.010 32 0.757 0.73 0.79 0.014 46 0.764 0.72 0.81 0.017 76 0.769 0.74 0.82 0.015 19 0.763 0.75 0.80 0.018 (M3M3/I1M3)/(M3M3/CC) 18 0.670 0.64 0.69 0.014 26 0.650 0.62 0.68 0.016 43 0.652 0.62 0.68 0.014 72 0.648 0.60 0.67 0.014 18 0.659 0.64 0.70 0.015 (M3M3/I1M3)/(M3M3/P4P4) 18 0.798 0.78 0.83 0.015 32 0.785 0.74 0.82 0.023 45 0.800 0.76 0.85 0.018 76 0.799 0.72 0.84 0.017 19 0.797 0.78 0.84 0.015 (M3M3/I1M3)/(P4P4/CC) 18 0.774 0.74 0.81 0.018 26 0.746 0.72 0.77 0.014 43 0.739 0.69 0.79 0.023 72 0.743 0.69 0.83 0.020 18 0.755 0.73 0.79 0.017

(LMd/ACo)/(LMd/I1M3) 18 2.806 2.63 2.92 0.079 35 2.774 2.50 2.98 0.102 48 2.895 2.48 3.39 0.150 72 2.929 2.44 3.61 0.145 19 2.782 2.61 2.93 0.085

(LMd/ACo)/(LMd/CM3) 18 2.385 2.25 2.51 0.063 35 2.383 2.11 2.54 0.089 48 2.459 2.09 2.85 0.121 71 2.469 2.07 2.97 0.109 19 2.402 2.25 2.56 0.076

(LMd/ACo)/(LMd/P4M3) 18 1.689 1.58 1.76 0.045 35 1.717 1.51 1.85 0.077 48 1.763 1.51 2.05 0.093 72 1.782 1.49 2.20 0.084 19 1.735 1.62 1.84 0.058

(LMd/ACo)/(LMd/M1M3) 18 1.389 1.32 1.43 0.031 36 1.436 1.24 1.55 0.060 48 1.489 1.29 1.75 0.089 72 1.504 1.21 1.88 0.080 19 1.456 1.32 1.56 0.059 (LMd/ACo)/(LCr/ACr) 18 2.194 2.06 2.28 0.070 30 2.058 1.82 2.34 0.146 41 2.150 1.83 2.37 0.128 67 2.207 1.91 2.70 0.129 19 2.180 2.04 2.24 0.054 (M3M3/I1M3)/(LCr/LaM) 18 0.527 0.51 0.54 0.009 31 0.514 0.47 0.54 0.015 42 0.517 0.48 0.55 0.015 68 0.526 0.50 0.56 0.012 19 0.522 0.51 0.56 0.011 (M3M3/CC)/(LaM/LaZ) 18 1.359 1.32 1.39 0.021 25 1.368 1.29 1.43 0.039 42 1.370 1.29 1.48 0.041 65 1.379 1.29 1.51 0.040 18 1.379 1.31 1.44 0.037 (LaM/LaInf)/(ACr/ANc) 18 1.669 1.58 1.74 0.043 28 1.838 1.67 2.05 0.107 38 1.801 1.66 2.06 0.086 71 1.789 1.65 2.07 0.096 19 1.754 1.67 1.83 0.049 (LaM/LaZ)/(ACr/ANc) 18 0.807 0.77 0.83 0.014 27 0.864 0.80 0.95 0.053 40 0.839 0.79 0.93 0.037 69 0.833 0.77 0.94 0.039 19 0.805 0.78 0.85 0.019 (LaM/LaInf)/(LCr/LaM) 18 1.197 1.14 1.25 0.034 35 1.231 1.08 1.36 0.051 42 1.242 1.03 1.32 0.051 71 1.264 1.14 1.45 0.050 19 1.251 1.21 1.30 0.023 (LaM/ANc)/(LCr/ANc) 18 0.717 0.68 0.74 0.014 28 0.677 0.60 0.74 0.041 39 0.695 0.63 0.73 0.031 71 0.707 0.61 0.75 0.034 19 0.714 0.68 0.75 0.016 (LCr/LaInf)/(LCr/ANc) 18 1.513 1.45 1.55 0.028 35 1.575 1.49 1.69 0.042 42 1.573 1.52 1.66 0.032 74 1.584 1.44 1.86 0.059 19 1.597 1.52 1.68 0.037 (LCr/LaZ)/(LCr//ANc) 18 0.732 0.72 0.75 0.009 34 0.738 0.72 0.77 0.013 41 0.732 0.71 0.77 0.013 71 0.736 0.70 0.76 0.012 19 0.733 0.71 0.78 0.014 (LCr/ANc)/(LaZ/LCb) 18 4.161 4.02 4.38 0.085 34 4.148 3.96 4.33 0.098 40 4.207 3.93 4.63 0.152 71 4.183 3.97 4.37 0.093 19 4.083 3.84 4.22 0.093 (LCr/LCb)/(ACr/ANc) 18 0.820 0.80 0.85 0.013 29 0.876 0.81 0.99 0.051 38 0.846 0.79 0.95 0.036 74 0.841 0.80 0.95 0.038 19 0.828 0.80 0.86 0.013 (LCr/LaM)/(M3M3/I1M3) 18 1.898 1.84 1.97 0.034 31 1.949 1.86 2.11 0.060 42 1.937 1.83 2.08 0.057 68 1.900 1.79 1.99 0.043 19 1.916 1.79 1.96 0.038 (LCr/LaM)/(LCr/ANc) 18 0.723 0.71 0.74 0.010 34 0.729 0.71 0.76 0.011 42 0.720 0.70 0.75 0.012 72 0.720 0.69 0.77 0.014 19 0.729 0.71 0.76 0.010

17 Table S2. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

(LCr/LaM)/(LCr/LMd) 18 1.249 1.23 1.28 0.015 35 1.251 1.22 1.33 0.024 43 1.246 1.21 1.33 0.023 68 1.241 1.21 1.33 0.021 19 1.246 1.21 1.26 0.014 (LCr/LaZ)/(LCr/LaM) 18 1.012 0.98 1.04 0.012 34 1.013 0.94 1.05 0.019 42 1.015 0.94 1.08 0.024 68 1.023 0.96 1.06 0.018 19 1.006 0.98 1.05 0.016 (ANc/LaZ)/(ANc/LaI) 18 0.435 0.42 0.45 0.006 34 0.433 0.42 0.45 0.009 43 0.436 0.40 0.46 0.013 73 0.434 0.42 0.46 0.009 19 0.427 0.41 0.44 0.010 CS1 18 11.168 10.84 11.52 0.189 34 11.130 10.67 11.97 0.298 44 11.431 10.94 12.03 0.278 66 11.103 10.64 11.90 0.261 19 10.730 10.15 11.02 0.211 CS2 18 20.813 20.39 21.21 0.228 32 20.478 20.15 20.89 0.199 42 20.659 20.04 21.19 0.276 68 20.502 19.87 21.11 0.261 19 20.163 19.72 20.59 0.205 CS3 18 16.935 16.73 17.33 0.159 32 16.760 16.37 17.09 0.173 40 16.738 16.30 17.43 0.250 73 16.756 16.23 17.19 0.186 19 16.394 16.05 16.75 0.173 CS4 18 17.716 17.44 18.03 0.193 34 17.515 17.18 17.93 0.194 37 17.762 17.18 18.44 0.264 74 17.580 17.14 18.10 0.204 19 17.179 16.64 17.51 0.221 CS2/CS1 18 1.864 1.83 1.92 0.025 30 1.844 1.73 1.93 0.050 41 1.808 1.72 1.87 0.045 57 1.853 1.74 1.94 0.042 19 1.880 1.82 1.98 0.037 CS3/CS4 18 0.956 0.94 0.97 0.006 32 0.957 0.94 0.97 0.006 34 0.946 0.93 0.96 0.007 71 0.953 0.93 0.97 0.007 19 0.954 0.94 0.97 0.005 CS2/CS3 18 1.229 1.22 1.24 0.008 32 1.222 1.21 1.24 0.008 39 1.234 1.21 1.26 0.010 67 1.224 1.20 1.25 0.010 19 1.230 1.21 1.25 0.009 CS2/CS4 18 1.175 1.16 1.19 0.008 32 1.169 1.16 1.18 0.005 35 1.166 1.14 1.18 0.010 67 1.166 1.14 1.18 0.009 19 1.174 1.16 1.21 0.011 CS3/CS1 18 1.517 1.48 1.56 0.022 30 1.509 1.42 1.57 0.039 39 1.468 1.38 1.52 0.038 61 1.513 1.42 1.59 0.034 19 1.528 1.48 1.60 0.031 (CS2/CS1)/(CS3/CS4) 18 1.950 1.91 2.00 0.027 30 1.928 1.81 2.04 0.056 33 1.921 1.83 1.99 0.041 55 1.944 1.81 2.03 0.047 19 1.970 1.90 2.07 0.041 (CS2/CS4)/(CS3/CS1) 18 0.775 0.76 0.80 0.012 30 0.776 0.74 0.83 0.021 33 0.792 0.76 0.84 0.020 55 0.770 0.73 0.82 0.019 19 0.768 0.74 0.81 0.018

18 Table S2. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character/index n M min max SD n M min max SD n M min max SD n M min max SD LCr 93 15.148 14.71 15.74 0.217 14 15.497 15.11 15.84 0.222 28 15.636 15.03 16.13 0.254 10 15.058 14.71 15.50 0.229 LCb 93 14.653 14.25 15.29 0.223 14 15.049 14.69 15.33 0.211 28 15.296 14.86 15.65 0.213 10 14.493 13.93 15.01 0.293 LaZ 92 8.531 8.11 8.88 0.145 14 8.806 8.60 9.15 0.143 28 8.919 8.57 9.30 0.184 10 8.412 8.18 8.58 0.145 LaI 93 3.675 3.41 3.97 0.084 14 3.686 3.55 3.88 0.096 28 3.928 3.76 4.15 0.083 11 3.711 3.58 3.96 0.108 LaInf 93 3.987 3.74 4.18 0.086 14 4.039 3.94 4.18 0.080 28 4.124 3.82 4.43 0.141 12 3.712 3.46 3.87 0.115 LaN 93 7.986 7.70 8.30 0.126 14 8.129 7.95 8.32 0.125 28 8.178 7.75 8.51 0.159 11 7.719 7.58 8.13 0.162 LaM 93 8.697 8.27 9.05 0.142 14 8.914 8.74 9.09 0.092 28 8.840 8.51 9.21 0.168 10 8.299 7.97 8.68 0.224 ANc 93 6.292 6.02 6.57 0.112 14 6.400 6.21 6.91 0.179 28 6.491 5.97 6.77 0.177 10 6.149 6.01 6.36 0.121 ACr 90 7.819 7.14 8.11 0.188 14 8.005 7.76 8.34 0.162 28 7.779 6.99 8.36 0.434 11 7.504 7.13 7.87 0.215 LMd 91 10.763 10.32 11.17 0.155 14 11.072 10.74 11.23 0.149 28 11.304 11.00 11.60 0.166 11 10.645 10.29 11.04 0.208 ACo 91 2.568 2.35 2.93 0.113 14 2.621 2.48 2.73 0.074 28 2.647 2.44 3.04 0.117 11 2.412 2.24 2.65 0.115 CC 91 4.555 4.28 4.81 0.100 14 4.624 4.41 4.78 0.135 27 4.720 4.45 4.91 0.118 12 4.280 3.69 4.51 0.220 P4P4 91 5.508 5.18 5.80 0.103 14 5.610 5.38 5.77 0.108 28 5.782 5.23 6.03 0.148 12 5.327 4.79 5.52 0.197 M3M3 92 6.294 6.02 6.63 0.108 14 6.443 6.16 6.59 0.123 28 6.713 6.34 6.96 0.135 12 6.241 5.80 6.52 0.229 I1M3 92 6.884 6.65 7.10 0.097 14 7.025 6.82 7.23 0.105 28 7.243 6.85 7.45 0.137 12 6.812 6.50 7.09 0.182 CM3 93 5.851 5.68 6.06 0.096 14 6.001 5.85 6.08 0.077 28 6.117 5.89 6.34 0.107 12 5.793 5.55 6.03 0.154 P4M3 93 4.293 4.08 4.45 0.076 14 4.387 4.26 4.47 0.067 28 4.423 4.15 4.55 0.094 12 4.197 3.95 4.34 0.138 M1M3 93 3.264 3.07 3.49 0.082 14 3.360 3.20 3.45 0.090 28 3.373 3.26 3.51 0.073 12 3.199 3.02 3.34 0.094 CP4 92 2.887 2.71 3.08 0.077 14 2.889 2.74 3.02 0.094 28 3.031 2.84 3.15 0.087 12 2.826 2.56 2.98 0.113

I1M3 90 7.174 6.95 7.39 0.103 14 7.353 7.04 7.60 0.139 28 7.569 7.34 7.93 0.145 12 7.123 6.91 7.32 0.147

CM3 89 6.159 6.01 6.41 0.079 14 6.286 6.11 6.46 0.092 28 6.507 6.31 6.74 0.113 12 6.119 5.81 6.39 0.158

P4M3 90 4.408 4.18 4.57 0.070 14 4.538 4.43 4.72 0.082 28 4.581 4.33 4.75 0.107 12 4.372 4.14 4.55 0.112

M1M3 90 3.670 3.54 3.84 0.070 14 3.800 3.68 3.94 0.069 28 3.793 3.58 3.99 0.105 12 3.597 3.47 3.84 0.101

CP4 89 2.384 2.23 2.55 0.080 14 2.344 2.23 2.44 0.060 28 2.570 2.41 2.96 0.109 12 2.333 2.20 2.48 0.091 M3M3/M1M3 92 1.929 1.81 2.04 0.047 14 1.918 1.87 1.97 0.033 28 1.991 1.93 2.05 0.034 12 1.951 1.85 2.06 0.060 M3M3/P4M3 92 1.466 1.40 1.51 0.025 14 1.469 1.42 1.52 0.023 28 1.518 1.46 1.60 0.029 12 1.487 1.43 1.58 0.039 M3M3/CM3 92 1.076 1.04 1.11 0.019 14 1.074 1.02 1.09 0.020 28 1.098 1.05 1.13 0.020 12 1.077 1.02 1.12 0.029 M3M3/I1M3 91 0.915 0.89 0.95 0.014 14 0.917 0.89 0.93 0.013 28 0.927 0.88 0.99 0.020 12 0.916 0.88 0.96 0.025 M3M3/P4P4 91 1.143 1.09 1.18 0.020 14 1.149 1.11 1.18 0.018 28 1.161 1.11 1.21 0.020 12 1.172 1.12 1.22 0.027 M3M3/CC 91 1.383 1.33 1.45 0.027 14 1.394 1.36 1.44 0.022 27 1.423 1.37 1.52 0.030 12 1.460 1.39 1.58 0.051 P4P4/CC 90 1.210 1.15 1.26 0.022 14 1.214 1.18 1.30 0.034 27 1.226 1.17 1.29 0.029 12 1.246 1.20 1.30 0.028 1 3 I M /I1M3 89 0.959 0.93 1.00 0.014 14 0.956 0.93 0.98 0.015 28 0.957 0.91 1.00 0.022 12 0.956 0.93 0.98 0.015 LMd/Aco 91 4.197 3.72 4.47 0.157 14 4.226 4.07 4.47 0.117 28 4.278 3.80 4.70 0.181 11 4.421 4.03 4.69 0.200

LMd/I1M3 90 1.501 1.42 1.55 0.019 14 1.506 1.48 1.53 0.015 28 1.494 1.44 1.53 0.024 11 1.491 1.46 1.52 0.020

LMd/CM3 89 1.748 1.66 1.80 0.023 14 1.761 1.73 1.79 0.016 28 1.737 1.66 1.78 0.024 11 1.735 1.69 1.77 0.024

LMd/P4M3 90 2.443 2.29 2.55 0.046 14 2.440 2.34 2.49 0.042 28 2.468 2.35 2.59 0.054 11 2.431 2.39 2.49 0.034 LMd/M1M3 90 2.934 2.77 3.04 0.063 14 2.914 2.80 2.98 0.051 28 2.982 2.79 3.18 0.081 11 2.957 2.88 3.04 0.056

19 Table S2. (continued) Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character/index n M min max SD n M min max SD n M min max SD n M min max SD

LCr/LaM 93 1.742 1.69 1.80 0.020 14 1.738 1.71 1.78 0.020 28 1.769 1.72 1.85 0.031 10 1.815 1.77 1.87 0.034 LCr/LaZ 92 1.776 1.71 1.84 0.027 14 1.760 1.73 1.82 0.024 28 1.754 1.69 1.82 0.030 10 1.790 1.76 1.83 0.028 LCr/LaI 93 4.124 3.74 4.37 0.098 14 4.207 4.04 4.42 0.105 28 3.982 3.78 4.18 0.103 10 4.056 3.91 4.20 0.084 LCr/LaInf 93 3.801 3.58 3.98 0.079 14 3.838 3.73 3.96 0.070 28 3.794 3.58 3.93 0.096 10 4.028 3.90 4.22 0.097 LCr/ANc 93 2.408 2.33 2.50 0.035 14 2.423 2.25 2.50 0.061 28 2.410 2.33 2.53 0.050 10 2.449 2.40 2.51 0.039 LCr/ACr 90 1.939 1.85 2.13 0.051 14 1.936 1.88 1.97 0.034 28 2.017 1.87 2.26 0.126 10 1.997 1.97 2.09 0.038 LCr/LMd 91 1.407 1.38 1.47 0.018 14 1.400 1.38 1.42 0.014 28 1.383 1.36 1.42 0.015 10 1.410 1.40 1.42 0.009 LaM/LaZ 92 1.019 0.99 1.05 0.014 14 1.012 0.97 1.04 0.016 28 0.991 0.95 1.03 0.019 10 0.987 0.96 1.03 0.022 LaM/LaInf 93 2.182 2.07 2.29 0.047 14 2.208 2.13 2.28 0.045 28 2.145 2.02 2.26 0.068 10 2.220 2.15 2.37 0.062 LaM/ACr 90 1.113 1.07 1.22 0.029 14 1.114 1.08 1.15 0.025 28 1.140 1.07 1.29 0.063 10 1.101 1.08 1.13 0.019 LaM/ANc 93 1.382 1.33 1.43 0.020 14 1.394 1.30 1.45 0.037 28 1.362 1.30 1.43 0.035 10 1.350 1.33 1.37 0.015 ACr/ANc 90 1.242 1.14 1.29 0.029 14 1.251 1.15 1.30 0.035 28 1.199 1.07 1.29 0.067 10 1.226 1.19 1.25 0.018 ACr/LaI 90 2.128 1.95 2.30 0.058 14 2.173 2.10 2.28 0.057 28 1.981 1.75 2.15 0.112 11 2.023 1.94 2.10 0.049 ACr/LaZ 89 0.917 0.85 0.97 0.022 14 0.909 0.88 0.94 0.017 28 0.872 0.79 0.93 0.047 10 0.896 0.87 0.93 0.016 LaZ/LCb 92 0.582 0.56 0.60 0.008 14 0.585 0.57 0.60 0.008 28 0.583 0.56 0.61 0.010 10 0.581 0.56 0.60 0.012 LCr/LCb 93 1.034 1.00 1.05 0.007 14 1.030 1.02 1.04 0.005 28 1.022 1.01 1.04 0.008 10 1.039 1.02 1.06 0.008 ANc/LaZ 92 0.738 0.71 0.77 0.014 14 0.727 0.70 0.80 0.023 28 0.728 0.69 0.76 0.017 10 0.731 0.71 0.75 0.013 ANc/LaI 93 1.713 1.55 1.81 0.039 14 1.737 1.67 1.86 0.051 28 1.653 1.53 1.72 0.049 10 1.656 1.61 1.71 0.034 (M3M3/P4M3)/(M3M3/M1M3) 92 0.760 0.72 0.82 0.017 14 0.766 0.74 0.79 0.015 28 0.763 0.73 0.79 0.014 12 0.762 0.75 0.79 0.012 (M3M3/I1M3)/(M3M3/CC) 90 0.662 0.63 0.69 0.014 14 0.658 0.64 0.67 0.014 27 0.652 0.62 0.67 0.011 12 0.628 0.55 0.66 0.030 (M3M3/I1M3)/(M3M3/P4P4) 90 0.801 0.76 0.83 0.014 14 0.799 0.78 0.84 0.014 28 0.798 0.74 0.84 0.018 12 0.782 0.72 0.81 0.025 (M3M3/I1M3)/(P4P4/CC) 89 0.756 0.71 0.80 0.018 14 0.756 0.71 0.79 0.025 27 0.757 0.71 0.78 0.020 12 0.736 0.68 0.79 0.033

(LMd/ACo)/(LMd/I1M3) 90 2.797 2.44 3.01 0.112 14 2.806 2.68 2.96 0.076 28 2.864 2.50 3.15 0.124 11 2.966 2.68 3.21 0.162

(LMd/ACo)/(LMd/CM3) 89 2.400 2.10 2.60 0.098 14 2.400 2.31 2.54 0.066 28 2.463 2.18 2.69 0.104 11 2.550 2.32 2.76 0.130

(LMd/ACo)/(LMd/P4M3) 90 1.719 1.48 1.88 0.076 14 1.732 1.67 1.84 0.052 28 1.734 1.53 1.86 0.073 11 1.819 1.62 1.96 0.094

(LMd/ACo)/(LMd/M1M3) 90 1.431 1.23 1.59 0.067 14 1.451 1.39 1.56 0.054 28 1.435 1.26 1.54 0.060 11 1.496 1.34 1.63 0.082 (LMd/ACo)/(LCr/ACr) 89 2.165 1.85 2.40 0.102 14 2.184 2.07 2.36 0.085 28 2.126 1.95 2.32 0.112 10 2.220 2.02 2.34 0.100 (M3M3/I1M3)/(LCr/LaM) 91 0.525 0.50 0.55 0.011 14 0.528 0.51 0.54 0.011 28 0.524 0.49 0.56 0.015 10 0.508 0.49 0.53 0.013 (M3M3/CC)/(LaM/LaZ) 90 1.356 1.29 1.45 0.029 14 1.377 1.32 1.42 0.029 27 1.436 1.36 1.54 0.043 10 1.475 1.42 1.53 0.037 (LaM/LaInf)/(ACr/ANc) 90 1.758 1.63 1.97 0.059 14 1.766 1.70 1.98 0.074 28 1.794 1.65 1.98 0.097 10 1.810 1.74 1.91 0.059 (LaM/LaZ)/(ACr/ANc) 89 0.821 0.77 0.91 0.024 14 0.810 0.77 0.90 0.032 28 0.830 0.77 0.94 0.049 10 0.805 0.77 0.84 0.025 (LaM/LaInf)/(LCr/LaM) 93 1.253 1.16 1.34 0.035 14 1.270 1.20 1.32 0.035 28 1.213 1.11 1.30 0.053 10 1.224 1.18 1.32 0.051 (LaM/ANc)/(LCr/ANc) 90 0.713 0.66 0.75 0.019 14 0.720 0.66 0.75 0.020 28 0.678 0.59 0.74 0.045 10 0.676 0.65 0.69 0.015 (LCr/LaInf)/(LCr/ANc) 93 1.579 1.49 1.67 0.037 14 1.585 1.54 1.75 0.053 28 1.575 1.48 1.65 0.042 10 1.645 1.59 1.73 0.045 (LCr/LaZ)/(LCr//ANc) 92 0.738 0.71 0.77 0.014 14 0.727 0.70 0.80 0.023 28 0.728 0.69 0.76 0.017 10 0.731 0.71 0.75 0.013 (LCr/ANc)/(LaZ/LCb) 92 4.135 3.90 4.34 0.093 14 4.141 3.91 4.35 0.122 28 4.135 3.80 4.40 0.129 10 4.221 4.07 4.47 0.133 (LCr/LCb)/(ACr/ANc) 90 0.833 0.80 0.91 0.021 14 0.824 0.78 0.90 0.026 28 0.856 0.78 0.95 0.051 10 0.847 0.83 0.87 0.013 (LCr/LaM)/(M3M3/I1M3) 91 1.904 1.82 1.99 0.042 14 1.896 1.84 1.96 0.038 28 1.909 1.79 2.04 0.053 10 1.968 1.90 2.06 0.052 (LCr/LaM)/(LCr/ANc) 93 0.724 0.70 0.75 0.011 14 0.718 0.69 0.77 0.020 28 0.734 0.70 0.77 0.019 10 0.741 0.73 0.75 0.008

20 Table S2. (continued) Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character/index n M min max SD n M min max SD n M min max SD n M min max SD

(LCr/LaM)/(LCr/LMd) 91 1.238 1.18 1.29 0.016 14 1.242 1.21 1.26 0.014 28 1.279 1.24 1.34 0.024 10 1.287 1.25 1.32 0.024 (LCr/LaZ)/(LCr/LaM) 92 1.019 0.99 1.05 0.014 14 1.012 0.97 1.04 0.016 28 0.991 0.95 1.03 0.019 10 0.987 0.96 1.03 0.022 (ANc/LaZ)/(ANc/LaI) 92 0.431 0.41 0.46 0.009 14 0.419 0.40 0.43 0.008 28 0.441 0.41 0.46 0.010 10 0.442 0.42 0.47 0.013 CS1 85 11.005 10.45 11.89 0.312 13 11.153 10.90 11.60 0.210 23 11.551 11.03 12.29 0.291 11 10.677 10.39 10.87 0.157 CS2 91 20.437 19.85 21.37 0.291 14 20.830 20.17 21.39 0.342 28 21.076 20.42 21.74 0.311 10 20.073 19.52 20.73 0.327 CS3 92 16.621 16.13 17.39 0.245 14 17.045 16.63 17.42 0.243 28 17.227 16.80 17.70 0.243 10 16.548 16.02 17.06 0.285 CS4 92 17.321 16.56 17.99 0.260 14 17.838 17.42 18.33 0.306 28 17.902 17.25 18.39 0.293 11 17.278 16.79 17.89 0.302 CS2/CS1 84 1.859 1.73 1.95 0.049 13 1.870 1.80 1.96 0.037 23 1.827 1.70 1.91 0.046 10 1.876 1.85 1.92 0.023 CS3/CS4 92 0.960 0.94 0.98 0.007 14 0.956 0.94 0.97 0.008 28 0.962 0.95 0.97 0.008 10 0.956 0.94 0.97 0.008 CS2/CS3 91 1.230 1.21 1.25 0.010 14 1.222 1.21 1.24 0.009 28 1.223 1.21 1.24 0.010 10 1.213 1.20 1.24 0.011 CS2/CS4 91 1.180 1.15 1.21 0.012 14 1.168 1.15 1.19 0.010 28 1.177 1.16 1.19 0.011 10 1.159 1.14 1.17 0.007 CS3/CS1 85 1.511 1.42 1.58 0.038 13 1.529 1.47 1.58 0.026 23 1.492 1.38 1.58 0.039 10 1.547 1.50 1.58 0.025 (CS2/CS1)/(CS3/CS4) 84 1.937 1.79 2.04 0.056 13 1.958 1.86 2.08 0.052 23 1.898 1.79 1.97 0.049 10 1.963 1.94 2.01 0.023 (CS2/CS4)/(CS3/CS1) 84 0.782 0.75 0.84 0.023 13 0.764 0.74 0.80 0.017 23 0.790 0.74 0.84 0.022 10 0.750 0.73 0.78 0.014

21 Table S3. Dental dimensions (in mm) of Miniopterus examined in this study. Codes in brackets stand for the respective genetic lineage or sublineage (see text). See Appendix S1 for explanation of dimension abbreviations. M= mean, min = minimum value, max = maximum value, and SD = standard deviation.

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD LI1 18 0.490 0.44 0.53 0.026 27 0.511 0.45 0.63 0.040 45 0.499 0.40 0.58 0.031 80 0.495 0.40 0.55 0.031 19 0.478 0.43 0.50 0.021 LI2 18 0.615 0.48 0.73 0.059 27 0.624 0.55 0.65 0.034 45 0.604 0.43 0.70 0.059 81 0.619 0.53 0.70 0.037 19 0.650 0.65 0.65 0.000 WI1 18 0.447 0.43 0.48 0.021 27 0.451 0.41 0.55 0.028 45 0.449 0.38 0.53 0.033 80 0.442 0.40 0.51 0.023 19 0.432 0.41 0.48 0.017 WI2 18 0.575 0.48 0.66 0.042 27 0.592 0.53 0.64 0.028 45 0.595 0.55 0.66 0.025 81 0.578 0.45 0.65 0.029 19 0.567 0.51 0.63 0.026 LCsup 18 1.055 1.00 1.10 0.031 28 1.084 1.03 1.13 0.026 44 1.062 0.98 1.15 0.036 81 1.071 1.00 1.15 0.037 19 1.052 1.00 1.13 0.031 WCsup 18 0.883 0.81 0.93 0.035 28 0.896 0.81 0.98 0.032 44 0.840 0.78 0.90 0.030 81 0.833 0.76 0.93 0.033 19 0.825 0.78 0.85 0.024 LP2 18 0.841 0.75 0.90 0.046 36 0.816 0.78 0.88 0.027 48 0.829 0.73 0.93 0.047 82 0.829 0.78 0.94 0.036 19 0.818 0.78 0.88 0.025 WP2 18 1.131 1.03 1.20 0.048 36 1.138 1.08 1.19 0.031 48 1.087 0.90 1.16 0.051 82 1.094 1.00 1.20 0.040 19 1.083 1.04 1.13 0.027 WP4 18 1.390 1.31 1.46 0.041 36 1.444 1.38 1.51 0.032 48 1.328 1.15 1.48 0.083 82 1.377 1.23 1.50 0.053 19 1.389 1.26 1.45 0.046 LP4 18 1.220 1.10 1.38 0.068 36 1.283 1.18 1.35 0.042 48 1.231 1.13 1.38 0.066 82 1.231 1.13 1.38 0.057 19 1.181 1.15 1.23 0.023 LoM1 18 1.438 1.35 1.50 0.039 35 1.473 1.43 1.55 0.034 48 1.447 1.35 1.53 0.039 83 1.452 1.24 1.55 0.043 19 1.439 1.40 1.48 0.021 LiM1 18 0.924 0.88 1.03 0.035 35 0.983 0.93 1.05 0.031 48 0.947 0.83 1.04 0.049 83 0.984 0.85 1.09 0.041 19 0.970 0.90 1.03 0.036 W1M1 18 1.976 1.88 2.10 0.059 35 2.050 1.96 2.18 0.044 48 1.996 1.83 2.09 0.065 83 2.020 1.78 2.19 0.057 19 1.974 1.93 2.10 0.044 W2M1 18 1.631 1.58 1.71 0.046 35 1.689 1.63 1.78 0.032 48 1.619 1.49 1.83 0.060 83 1.648 1.55 1.74 0.041 19 1.614 1.55 1.70 0.048 W3M1 18 1.796 1.65 1.88 0.054 35 1.822 1.75 1.93 0.039 48 1.766 1.60 2.00 0.071 83 1.783 1.68 1.90 0.046 19 1.741 1.65 1.85 0.052 LoM2 18 1.440 1.39 1.48 0.028 36 1.429 1.38 1.50 0.033 48 1.426 1.35 1.50 0.035 82 1.422 1.29 1.58 0.040 19 1.399 1.35 1.48 0.031 LiM2 18 0.900 0.85 0.95 0.027 36 0.889 0.83 0.98 0.036 48 0.888 0.83 0.93 0.029 82 0.889 0.79 0.96 0.030 19 0.889 0.85 0.98 0.031 W1M2 18 1.972 1.93 2.04 0.035 36 1.981 1.90 2.06 0.037 48 1.948 1.88 2.03 0.040 82 1.950 1.85 2.04 0.042 19 1.912 1.85 1.95 0.027 W2M2 18 1.812 1.75 1.88 0.038 36 1.825 1.78 1.88 0.028 48 1.796 1.61 2.04 0.059 82 1.802 1.74 1.89 0.034 19 1.741 1.69 1.79 0.032 W3M3 18 1.930 1.83 2.03 0.057 36 1.951 1.88 2.05 0.041 48 1.910 1.80 2.00 0.047 82 1.916 1.78 2.03 0.045 19 1.870 1.80 2.03 0.050 WM3 18 1.748 1.65 1.83 0.048 36 1.758 1.70 1.81 0.024 48 1.742 1.65 1.83 0.039 81 1.754 1.66 1.83 0.032 19 1.707 1.65 1.76 0.026 LM3 18 0.803 0.78 0.83 0.015 36 0.795 0.76 0.85 0.018 48 0.790 0.75 0.85 0.019 81 0.793 0.75 0.89 0.021 19 0.778 0.75 0.80 0.014

LI1 18 0.400 0.36 0.45 0.023 23 0.399 0.35 0.48 0.027 41 0.413 0.38 0.60 0.041 75 0.397 0.35 0.48 0.020 19 0.397 0.38 0.44 0.019

LI2 18 0.428 0.35 0.45 0.026 28 0.404 0.35 0.48 0.024 45 0.407 0.38 0.45 0.018 75 0.403 0.38 0.43 0.016 19 0.389 0.35 0.41 0.016

LI3 18 0.531 0.36 0.58 0.047 30 0.545 0.38 0.58 0.037 45 0.555 0.50 0.60 0.027 75 0.555 0.51 0.63 0.020 19 0.527 0.49 0.55 0.017

WI1 18 0.236 0.20 0.26 0.021 24 0.255 0.23 0.30 0.022 41 0.242 0.20 0.29 0.019 75 0.246 0.21 0.28 0.016 19 0.241 0.23 0.28 0.017

WI2 18 0.393 0.35 0.43 0.021 28 0.400 0.35 0.55 0.034 45 0.396 0.35 0.43 0.020 75 0.397 0.25 0.48 0.025 19 0.385 0.35 0.40 0.019

WI3 18 0.530 0.50 0.55 0.019 30 0.529 0.50 0.60 0.023 45 0.536 0.38 0.63 0.032 75 0.539 0.45 0.58 0.019 19 0.519 0.49 0.55 0.016

LCinf 18 0.726 0.70 0.76 0.020 31 0.754 0.70 0.84 0.031 45 0.736 0.63 0.85 0.047 75 0.723 0.64 0.79 0.029 19 0.717 0.68 0.78 0.021

WCinf 18 0.829 0.78 0.88 0.032 31 0.821 0.79 0.86 0.022 45 0.799 0.74 0.86 0.024 75 0.804 0.68 0.85 0.027 19 0.789 0.78 0.81 0.013

LP2 18 0.594 0.55 0.64 0.023 28 0.587 0.55 0.63 0.021 46 0.567 0.53 0.60 0.022 75 0.566 0.53 0.63 0.022 19 0.551 0.53 0.58 0.020

WP2 18 0.651 0.63 0.68 0.017 28 0.626 0.59 0.65 0.017 46 0.645 0.60 0.71 0.028 75 0.643 0.53 0.69 0.027 19 0.626 0.59 0.68 0.020

LP3 18 0.643 0.60 0.70 0.025 32 0.627 0.58 0.68 0.028 47 0.625 0.55 0.68 0.025 77 0.614 0.48 0.71 0.033 19 0.595 0.53 0.68 0.032

WP3 18 0.673 0.60 0.73 0.034 31 0.628 0.55 0.68 0.029 47 0.661 0.59 0.75 0.035 77 0.650 0.45 0.73 0.041 19 0.641 0.60 0.68 0.020

WP4 18 0.791 0.73 0.85 0.029 34 0.762 0.70 0.85 0.030 48 0.781 0.68 0.85 0.035 77 0.767 0.63 0.88 0.040 19 0.759 0.63 0.79 0.036

LP4 18 0.607 0.55 0.68 0.037 34 0.613 0.51 0.75 0.055 48 0.639 0.54 0.71 0.041 76 0.603 0.50 0.78 0.050 19 0.605 0.54 0.68 0.039 LM1 18 1.433 1.40 1.48 0.026 36 1.475 1.40 1.56 0.032 48 1.445 1.33 1.53 0.044 78 1.467 1.35 1.53 0.031 19 1.468 1.44 1.50 0.020

22 Table S3. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

W1M1 18 0.892 0.85 0.95 0.031 36 0.857 0.79 0.91 0.032 48 0.889 0.83 1.00 0.031 78 0.862 0.79 0.91 0.027 19 0.866 0.83 0.91 0.028

W2M1 18 0.897 0.85 0.95 0.026 36 0.868 0.80 0.93 0.029 48 0.902 0.83 1.00 0.034 78 0.879 0.78 0.98 0.030 19 0.884 0.85 0.95 0.025

W3M1 18 0.974 0.93 1.05 0.033 36 0.958 0.90 1.13 0.035 48 0.986 0.91 1.13 0.045 78 0.975 0.85 1.31 0.051 19 0.964 0.93 1.00 0.024

LM2 18 1.396 1.35 1.45 0.025 36 1.408 1.34 1.48 0.028 48 1.387 1.30 1.56 0.047 78 1.396 1.30 1.48 0.032 19 1.372 1.30 1.40 0.025

W1M2 18 0.856 0.80 0.90 0.025 36 0.815 0.78 0.88 0.027 48 0.850 0.75 0.93 0.041 78 0.834 0.75 0.89 0.031 19 0.831 0.78 0.89 0.026

W2M2 18 0.847 0.80 0.88 0.023 36 0.822 0.78 0.88 0.021 48 0.845 0.73 0.93 0.041 78 0.838 0.75 0.90 0.029 19 0.841 0.80 0.88 0.019

LM3 18 1.219 1.15 1.29 0.036 36 1.273 1.19 1.35 0.032 48 1.253 1.19 1.33 0.032 78 1.254 1.18 1.33 0.027 19 1.235 1.15 1.31 0.035

WM3 18 0.666 0.60 0.73 0.029 36 0.634 0.60 0.68 0.019 48 0.659 0.59 0.78 0.036 78 0.642 0.60 0.73 0.024 19 0.641 0.59 0.70 0.024 WI1/LI1 18 0.913 0.83 1.00 0.044 27 0.888 0.72 1.10 0.084 45 0.905 0.70 1.27 0.094 80 0.897 0.76 1.19 0.077 19 0.905 0.83 1.00 0.052 WI2/LI2 18 0.939 0.84 1.07 0.071 27 0.950 0.88 1.16 0.062 45 0.996 0.82 1.47 0.118 81 0.936 0.72 1.14 0.064 19 0.872 0.79 0.96 0.040 WCsup/LCsup 18 0.837 0.79 0.90 0.029 28 0.826 0.74 0.89 0.031 44 0.792 0.70 0.85 0.033 81 0.778 0.68 0.88 0.032 19 0.785 0.73 0.83 0.025 HCsup/WCsup/LCsup 4 1.841 1.69 2.11 0.189 19 1.609 1.38 1.92 0.112 29 1.753 1.57 2.00 0.097 57 1.726 0.00 2.06 0.267 15 1.764 1.40 2.01 0.165 WP2/LP2 18 1.346 1.26 1.45 0.049 36 1.395 1.31 1.48 0.045 48 1.317 1.03 1.57 0.109 82 1.321 1.17 1.46 0.057 19 1.324 1.26 1.43 0.052 HP2/WP2/LP2 4 0.647 0.57 0.72 0.061 25 0.610 0.51 0.68 0.055 33 0.601 0.49 0.73 0.065 58 0.629 0.43 0.79 0.076 15 0.592 0.49 0.70 0.053 WP4/LP4 18 1.142 1.05 1.23 0.049 36 1.127 1.04 1.23 0.046 48 1.080 0.92 1.18 0.056 82 1.120 1.00 1.29 0.054 19 1.176 1.07 1.26 0.045 HP4/WP4/LP4 4 0.945 0.92 0.97 0.024 25 0.851 0.77 0.93 0.044 33 0.912 0.79 1.03 0.071 58 0.913 0.70 1.08 0.071 15 0.860 0.49 1.06 0.171 LoM1/LiM1 18 1.559 1.44 1.69 0.064 35 1.500 1.38 1.61 0.054 48 1.533 1.36 1.79 0.086 83 1.478 1.32 1.75 0.070 19 1.485 1.39 1.57 0.059 LoM2/LiM2 18 1.601 1.50 1.71 0.055 36 1.610 1.44 1.74 0.063 48 1.607 1.46 1.79 0.064 82 1.601 1.45 1.75 0.065 19 1.575 1.44 1.69 0.056 WM3/LM3 18 2.178 2.05 2.29 0.066 36 2.211 2.04 2.30 0.052 48 2.206 2.06 2.33 0.052 81 2.212 1.92 2.33 0.063 19 2.193 2.13 2.27 0.041 W2M1/LoM1 18 1.134 1.07 1.21 0.039 35 1.147 1.08 1.19 0.027 48 1.119 1.04 1.23 0.042 83 1.135 1.04 1.30 0.038 19 1.122 1.06 1.21 0.040 W2M2/LoM2 18 1.259 1.20 1.30 0.029 36 1.278 1.22 1.35 0.033 48 1.260 1.14 1.36 0.038 82 1.268 1.16 1.40 0.036 19 1.245 1.17 1.30 0.035 HCsup/HP2 4 2.835 2.60 2.98 0.174 21 2.808 2.46 3.45 0.294 29 2.888 2.52 3.32 0.206 56 2.779 2.09 3.53 0.264 15 2.933 2.36 3.33 0.246 HCsup/HP4 4 1.055 1.00 1.10 0.048 21 0.995 0.94 1.13 0.042 29 1.036 0.90 1.15 0.059 56 1.006 0.74 1.14 0.059 15 1.137 0.84 1.83 0.317 (HCsup/WCsup/LCsup)/(HP2/WP2/LP2) 4 2.856 2.57 3.24 0.311 19 2.648 2.02 3.10 0.306 29 2.944 2.26 3.48 0.300 56 2.822 1.98 3.65 0.345 15 2.989 2.50 3.44 0.234 (HP4/WP4/LP4)/(HP2/WP2/LP2) 4 1.472 1.29 1.68 0.163 25 1.404 1.23 1.58 0.108 33 1.535 1.18 2.10 0.214 58 1.466 1.15 1.80 0.160 15 1.462 0.83 1.79 0.304 (W2M1/LoM1)/(WM3/LM3) 18 0.521 0.49 0.57 0.019 35 0.519 0.49 0.56 0.015 48 0.508 0.46 0.58 0.023 81 0.514 0.47 0.60 0.023 19 0.512 0.48 0.55 0.019 (W2M1/LoM1)/(WP4/LP4) 18 0.995 0.91 1.06 0.044 35 1.021 0.92 1.12 0.047 48 1.039 0.93 1.23 0.067 82 1.015 0.89 1.18 0.052 19 0.955 0.88 1.03 0.047 (W2M1/LoM1)/(WP2/LP2) 18 0.844 0.76 0.95 0.053 35 0.823 0.75 0.90 0.034 48 0.855 0.70 1.02 0.069 82 0.861 0.77 0.98 0.047 19 0.849 0.77 0.97 0.053 (W2M1/LoM1)/(WCsup/LCsup) 18 1.357 1.27 1.51 0.063 27 1.394 1.31 1.56 0.063 44 1.413 1.26 1.60 0.074 81 1.461 1.29 1.78 0.081 19 1.432 1.33 1.57 0.063 (WI1LI1)/(WI2LI2) 18 0.630 0.51 1.08 0.123 26 0.617 0.52 0.87 0.074 45 0.630 0.37 0.89 0.092 80 0.613 0.43 0.81 0.062 19 0.560 0.47 0.63 0.038 (WCsupLCsup)/(WP2LP2) 18 0.983 0.90 1.15 0.073 28 1.050 0.86 1.22 0.087 44 0.989 0.85 1.23 0.074 81 0.985 0.80 1.11 0.072 19 0.980 0.90 1.05 0.048 (WP4LP4)/(WP2LP2) 18 1.794 1.54 2.20 0.188 36 1.999 1.74 2.25 0.118 48 1.828 1.34 2.32 0.231 82 1.874 1.55 2.29 0.166 19 1.852 1.67 2.00 0.084 (W2M1LiM1)/(WM3LM3) 18 1.073 1.02 1.14 0.039 35 1.187 1.09 1.28 0.051 48 1.114 0.97 1.28 0.077 81 1.168 1.02 1.38 0.067 19 1.180 1.09 1.31 0.054 (W2M1LiM1)/(W2M2LiM2) 18 0.923 0.89 0.96 0.020 35 1.022 0.88 1.12 0.054 48 0.961 0.83 1.07 0.056 82 1.012 0.85 1.18 0.054 19 1.012 0.90 1.09 0.049 (W2M1LiM1)/(WCsupLCsup) 18 1.620 1.53 1.83 0.079 27 1.713 1.54 1.98 0.104 44 1.723 1.42 1.99 0.144 81 1.827 1.58 2.11 0.120 19 1.807 1.66 2.01 0.086 (W2M1LiM1)/(WP4LP4) 18 0.890 0.79 1.00 0.056 35 0.897 0.83 0.97 0.044 48 0.944 0.70 1.21 0.105 82 0.961 0.82 1.10 0.068 19 0.956 0.85 1.01 0.046 1 1 2 2 (W2M LiM )/(WP LP ) 18 1.590 1.38 1.81 0.123 35 1.788 1.58 2.07 0.098 48 1.706 1.41 1.99 0.127 82 1.795 1.42 2.10 0.136 19 1.770 1.56 1.90 0.099

23 Table S3. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

(W2M1LiM1)/(WI2LI2) 18 4.344 3.45 7.16 0.832 27 4.526 4.02 5.74 0.381 45 4.307 3.34 5.43 0.406 81 4.574 3.79 5.90 0.427 19 4.261 3.59 5.00 0.320

LI1/WI1 18 1.707 1.43 2.00 0.175 23 1.569 1.33 1.78 0.136 41 1.713 1.36 2.40 0.205 75 1.616 1.36 2.00 0.126 19 1.654 1.45 1.94 0.154

LI2/WI2 18 1.093 0.88 1.29 0.089 28 1.014 0.73 1.21 0.096 45 1.029 0.88 1.18 0.061 75 1.019 0.87 1.60 0.084 19 1.014 0.88 1.14 0.064

LI3/WI3 18 1.002 0.71 1.15 0.090 30 1.033 0.70 1.15 0.090 45 1.041 0.80 1.50 0.100 75 1.030 0.95 1.39 0.057 19 1.016 0.89 1.07 0.047

WCsup/LCsup 18 1.142 1.05 1.21 0.051 31 1.091 0.98 1.21 0.049 45 1.089 0.98 1.32 0.074 75 1.114 0.87 1.27 0.059 19 1.102 1.00 1.19 0.040

HCinf/WCinf/LCinf 4 2.432 2.33 2.50 0.073 21 2.231 1.55 2.48 0.231 30 2.414 1.90 2.82 0.193 51 2.475 2.12 2.99 0.157 15 2.517 2.31 2.66 0.111

WP2/LP2 18 1.096 1.02 1.18 0.043 28 1.068 1.00 1.18 0.046 46 1.137 1.00 1.33 0.062 75 1.137 0.84 1.29 0.067 19 1.139 1.04 1.29 0.063

HP2/WP2/LP2 4 1.480 1.40 1.53 0.057 19 1.425 1.25 1.89 0.155 31 1.395 1.03 1.82 0.199 51 1.399 1.20 1.79 0.112 15 1.391 1.23 1.51 0.093

WP3/LP3 18 1.047 0.96 1.16 0.050 32 0.974 0.00 1.13 0.188 47 1.058 0.91 1.18 0.065 77 1.059 0.83 1.21 0.069 19 1.081 0.96 1.24 0.074

HP3/WP3/LP3 4 1.499 1.44 1.54 0.046 19 1.472 1.20 1.66 0.119 31 1.341 1.20 1.67 0.123 51 1.426 1.14 1.67 0.129 15 1.382 1.24 1.59 0.114

WP4/LP4 18 1.307 1.17 1.50 0.088 34 1.254 1.03 1.62 0.134 48 1.230 1.00 1.52 0.113 76 1.279 0.81 1.55 0.126 19 1.260 1.00 1.44 0.106

W2M1/W1M1 18 1.005 0.95 1.06 0.030 36 1.014 0.94 1.11 0.043 48 1.014 0.95 1.10 0.032 78 1.020 0.91 1.11 0.031 19 1.022 0.97 1.12 0.039

LM1/W2M1 18 1.599 1.50 1.68 0.051 36 1.701 1.51 1.88 0.079 48 1.604 1.50 1.76 0.065 78 1.669 1.51 1.87 0.062 19 1.661 1.53 1.74 0.050

W2M2/W1M2 18 0.990 0.97 1.00 0.013 36 1.009 0.96 1.10 0.026 48 0.995 0.86 1.07 0.041 78 1.005 0.94 1.11 0.028 19 1.013 0.96 1.13 0.034

LM2/W2M2 18 1.650 1.57 1.75 0.050 36 1.713 1.54 1.82 0.047 48 1.644 1.50 1.86 0.080 78 1.668 1.49 1.80 0.065 19 1.631 1.53 1.75 0.052

LM3/WM3 18 1.834 1.64 2.04 0.103 36 2.009 1.85 2.25 0.074 48 1.908 1.55 2.17 0.123 78 1.956 1.74 2.10 0.078 19 1.929 1.73 2.10 0.085

HCinf/HP2 4 2.627 2.40 2.90 0.224 20 2.699 1.91 3.31 0.335 30 2.847 2.26 3.68 0.338 51 2.854 2.42 3.39 0.175 15 2.971 2.67 3.38 0.220

HCinf/HP3 4 2.438 2.22 2.59 0.164 21 2.414 1.71 2.65 0.223 30 2.687 2.17 3.10 0.203 51 2.557 2.17 2.98 0.189 15 2.767 2.39 3.11 0.217

HCinf/HP4 4 1.631 1.53 1.79 0.126 20 1.617 1.05 2.59 0.275 30 1.723 1.53 2.05 0.138 51 1.648 1.43 1.90 0.100 15 1.692 1.37 1.88 0.143

(WP4/LP4)/(WP2/LP2) 18 1.194 1.05 1.31 0.082 27 1.191 0.95 1.49 0.145 46 1.086 0.83 1.35 0.102 74 1.126 0.94 1.33 0.098 19 1.106 0.96 1.26 0.072

(WCinf/LCinf)/(WP2/LP2) 18 1.043 0.96 1.12 0.041 28 1.026 0.91 1.12 0.056 45 0.961 0.74 1.17 0.088 75 0.983 0.81 1.12 0.070 19 0.970 0.86 1.14 0.069

(WCinf/LCinf)/(WP3/LP3) 18 1.093 0.99 1.20 0.062 30 1.089 0.93 1.31 0.081 45 1.032 0.86 1.27 0.088 75 1.057 0.87 1.38 0.086 19 1.024 0.88 1.15 0.080

(HCinf/WCinf/LCinf)/(HP2/WP2/LP2) 4 1.646 1.52 1.79 0.110 19 1.573 1.04 1.84 0.213 30 1.761 1.33 2.36 0.281 51 1.776 1.40 2.08 0.140 15 1.818 1.59 2.16 0.158

(HCinf/WCinf/LCinf)/(HP3/WP3/LP3) 4 1.622 1.61 1.64 0.014 19 1.517 1.05 1.94 0.197 30 1.815 1.34 2.20 0.227 51 1.746 1.42 2.12 0.160 15 1.834 1.51 2.08 0.170

(LM1/W2M1)/(LM3/WM3) 18 0.874 0.82 0.99 0.047 36 0.848 0.73 0.96 0.051 48 0.843 0.70 0.97 0.046 78 0.854 0.78 0.93 0.033 19 0.862 0.80 0.92 0.034

(LM1/W2M1)/(WP4/LP4) 18 1.228 1.08 1.35 0.080 34 1.368 0.98 1.71 0.166 48 1.315 1.04 1.63 0.133 76 1.319 1.06 1.97 0.151 19 1.328 1.15 1.71 0.129

(WI1LI1)/(WI2LI2) 18 0.564 0.47 0.69 0.070 23 0.635 0.45 0.79 0.082 41 0.627 0.50 1.00 0.088 75 0.614 0.50 1.03 0.077 19 0.642 0.51 0.73 0.060

(WI2LI2)/(WI3LI3) 18 0.604 0.48 0.80 0.073 28 0.572 0.45 1.09 0.113 45 0.545 0.45 0.76 0.063 75 0.536 0.36 0.71 0.049 19 0.549 0.47 0.61 0.042

(WCinfLCinf)/(WP2LP2) 18 1.561 1.41 1.82 0.118 28 1.686 1.50 2.01 0.102 45 1.616 1.28 2.01 0.152 75 1.600 1.35 1.83 0.101 19 1.644 1.48 1.79 0.082

(WCinfLCinf)/(WP3LP3) 18 1.398 1.19 1.63 0.123 30 1.574 1.32 1.88 0.112 45 1.432 1.18 1.75 0.140 75 1.469 1.25 2.45 0.161 19 1.489 1.37 1.65 0.077

(WCinfLCinf)/(WP4LP4) 18 1.261 1.07 1.53 0.117 30 1.350 0.96 1.69 0.157 45 1.190 0.96 1.48 0.116 74 1.267 0.97 1.59 0.133 19 1.242 1.08 1.44 0.108

(WP2LP2)/(WP4LP4) 18 0.810 0.71 0.95 0.074 27 0.799 0.58 0.98 0.092 46 0.739 0.59 0.88 0.073 74 0.793 0.66 1.00 0.082 19 0.756 0.66 0.88 0.061

(W1M1LM1)/(WCinfLCinf) 18 2.128 1.84 2.37 0.143 31 2.051 1.72 2.31 0.133 45 2.196 1.89 2.48 0.142 75 2.182 1.78 2.66 0.142 19 2.247 2.03 2.41 0.116

(W1M1LM1)/(WP2LP2) 18 3.311 3.01 3.69 0.183 28 3.451 3.05 3.82 0.196 46 3.531 3.04 4.17 0.220 75 3.483 3.02 3.94 0.201 19 3.692 3.36 4.09 0.215

(W1M1LM1)/(WP3LP3) 18 2.963 2.46 3.29 0.180 31 3.230 2.87 4.01 0.264 47 3.121 2.68 3.65 0.199 77 3.194 2.72 5.05 0.338 19 3.346 2.77 3.81 0.228

(W1M1LM1)/(WP4LP4) 18 2.675 2.30 3.11 0.207 34 2.730 2.16 3.24 0.249 48 2.588 2.27 3.18 0.202 76 2.759 2.23 3.65 0.271 19 2.789 2.33 3.28 0.254 (W1M1LM1)/(W1M2LM2) 18 1.071 0.97 1.14 0.049 36 1.103 0.97 1.19 0.059 48 1.093 0.93 1.21 0.057 78 1.087 0.96 1.22 0.048 19 1.116 1.04 1.23 0.049

24 Table S3. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD 18 1.580 1.41 1.80 0.110 36 1.569 1.40 1.77 0.085 48 1.560 1.42 1.78 0.071 78 1.574 1.38 1.72 0.079 19 1.611 1.43 1.86 0.123 (W1M1LM1)/(WM3LM3) HI2 4 0.638 0.60 0.68 0.043 19 0.649 0.63 0.73 0.028 30 0.616 0.50 0.69 0.047 57 0.646 0.55 0.73 0.039 15 0.571 0.50 0.64 0.047 HI1 4 0.597 0.55 0.65 0.054 19 0.579 0.38 0.70 0.069 30 0.549 0.45 0.65 0.058 56 0.602 0.45 0.70 0.056 15 0.574 0.50 0.63 0.037 HCsup 4 1.653 1.63 1.71 0.041 21 1.573 1.45 1.93 0.106 29 1.547 1.33 1.69 0.074 56 1.550 1.15 1.70 0.092 15 1.520 1.30 1.63 0.097 HP3 4 0.584 0.55 0.63 0.031 25 0.568 0.48 0.65 0.047 33 0.535 0.43 0.63 0.049 58 0.561 0.43 0.65 0.053 15 0.521 0.45 0.60 0.045 HP4 4 1.569 1.48 1.65 0.072 25 1.586 1.44 1.71 0.065 33 1.497 1.35 1.60 0.071 58 1.543 1.28 1.68 0.071 15 1.407 0.83 1.65 0.279

HI1 4 0.294 0.28 0.33 0.024 15 0.287 0.25 0.31 0.017 28 0.275 0.23 0.30 0.018 51 0.296 0.25 0.63 0.050 15 0.268 0.25 0.30 0.016

HI2 4 0.316 0.30 0.35 0.024 17 0.313 0.28 0.35 0.020 30 0.288 0.24 0.33 0.020 51 0.306 0.25 0.63 0.049 15 0.295 0.28 0.34 0.016

HI3 4 0.319 0.30 0.35 0.024 20 0.347 0.28 0.38 0.023 30 0.330 0.30 0.39 0.025 51 0.342 0.25 0.38 0.025 15 0.316 0.26 0.35 0.021

HCinf 4 1.503 1.49 1.53 0.016 21 1.394 1.03 1.50 0.108 30 1.435 1.30 1.56 0.063 51 1.435 1.25 1.63 0.064 15 1.424 1.30 1.50 0.058

HP2 4 0.575 0.53 0.63 0.046 20 0.519 0.45 0.63 0.045 31 0.509 0.40 0.61 0.051 51 0.504 0.45 0.60 0.028 15 0.481 0.43 0.52 0.028

HP3 4 0.619 0.58 0.68 0.043 21 0.579 0.53 0.65 0.032 32 0.538 0.48 0.60 0.032 52 0.563 0.46 0.68 0.037 15 0.517 0.48 0.58 0.032

HP4 4 0.925 0.85 0.98 0.061 22 0.874 0.58 0.98 0.076 33 0.836 0.74 0.98 0.062 52 0.872 0.73 1.00 0.050 15 0.845 0.75 0.95 0.047 I1M3/LoM1 18 4.833 4.65 5.15 0.156 34 4.719 4.48 4.93 0.116 47 4.820 4.58 5.21 0.137 80 4.766 4.47 5.64 0.157 19 4.728 4.59 4.86 0.075 M3M3/WM3 18 3.662 3.56 3.85 0.075 32 3.563 3.33 3.73 0.079 46 3.634 3.35 3.89 0.118 76 3.612 3.38 3.75 0.065 19 3.641 3.57 3.76 0.052 P4P4/WP4 18 3.988 3.83 4.24 0.104 36 3.770 3.46 4.03 0.139 47 4.219 3.73 5.01 0.305 77 4.026 3.57 4.49 0.152 19 3.909 3.72 4.33 0.135 M1M3/LoM1 18 2.263 2.19 2.45 0.072 35 2.199 2.11 2.37 0.059 48 2.266 2.16 2.40 0.062 81 2.280 2.15 2.75 0.080 19 2.263 2.19 2.46 0.072 M1M3/LoM2 18 2.260 2.17 2.33 0.051 36 2.266 2.12 2.36 0.060 48 2.300 2.15 2.44 0.063 81 2.326 2.11 2.63 0.074 19 2.327 2.18 2.46 0.079 CCsup/WCsup 18 5.279 5.06 5.50 0.130 27 5.038 4.57 5.51 0.232 41 5.440 5.06 5.92 0.201 74 5.392 4.53 5.90 0.224 18 5.430 5.18 5.70 0.139 CP4/LP4 18 2.365 2.04 2.61 0.159 26 2.280 2.01 2.57 0.129 47 2.373 2.09 2.65 0.140 81 2.317 2.07 2.61 0.122 19 2.399 2.28 2.58 0.084 (CP4/LP4)/(M3M3/WM3) 18 0.646 0.56 0.72 0.042 26 0.639 0.59 0.73 0.036 45 0.653 0.57 0.71 0.040 76 0.642 0.58 0.72 0.035 19 0.659 0.62 0.72 0.027 (CC/WCsup)/(P4P4/WP4) 18 1.324 1.27 1.40 0.038 27 1.330 1.26 1.41 0.038 41 1.295 1.11 1.52 0.098 73 1.342 1.21 1.46 0.056 18 1.391 1.30 1.44 0.037 (M1M3/LoM1)/(M3M3/WM3) 18 0.618 0.59 0.66 0.019 32 0.618 0.59 0.67 0.017 46 0.625 0.57 0.67 0.027 76 0.632 0.59 0.77 0.025 19 0.622 0.59 0.69 0.024 (M1M3/LoM1)/(P4P4/WP4) 18 0.568 0.52 0.61 0.021 35 0.583 0.54 0.62 0.021 47 0.540 0.44 0.62 0.038 77 0.567 0.49 0.67 0.028 19 0.580 0.50 0.64 0.029

M1M3/LM3 18 2.961 2.85 3.12 0.081 36 2.925 2.67 3.11 0.100 48 3.007 2.77 3.21 0.116 76 3.005 2.74 3.18 0.097 19 2.991 2.84 3.18 0.091

CP4/LP4 18 3.916 3.45 4.36 0.236 29 3.932 3.31 4.51 0.354 48 3.783 3.30 4.41 0.263 72 3.908 3.07 4.64 0.289 19 3.790 3.38 4.32 0.245

CP4/LCinf 18 3.264 2.92 3.43 0.129 30 3.154 2.65 3.64 0.187 45 3.277 2.72 3.94 0.243 73 3.245 2.90 3.77 0.176 19 3.187 2.89 3.47 0.120

I1M3/LP3 18 11.343 10.40 12.08 0.414 31 11.554 10.58 12.54 0.541 47 11.722 10.86 13.55 0.503 74 11.961 10.29 15.07 0.683 19 11.898 10.37 13.58 0.679

I1M3/LP2 18 12.272 11.61 13.13 0.489 28 12.333 11.57 13.47 0.506 46 12.917 11.87 14.36 0.522 73 12.973 11.46 14.29 0.541 19 12.827 12.14 13.49 0.428

M1M3/LM1 18 2.518 2.43 2.64 0.061 36 2.523 2.39 2.69 0.070 48 2.608 2.36 2.91 0.116 76 2.570 2.39 2.72 0.075 19 2.515 2.45 2.59 0.047

(M1M3/LM3)/(M1M3/LM1) 18 1.177 1.11 1.27 0.043 36 1.160 1.08 1.23 0.037 48 1.154 1.08 1.25 0.036 76 1.170 1.08 1.23 0.033 19 1.189 1.11 1.27 0.037

(CP4/LP4)/(M1M3/LM1) 18 1.557 1.31 1.78 0.111 29 1.559 1.29 1.82 0.151 48 1.453 1.21 1.71 0.120 72 1.523 1.17 1.88 0.126 19 1.507 1.36 1.71 0.093

(CP4/LCinf)/(M1M3/LM1) 18 1.297 1.16 1.40 0.062 30 1.250 1.01 1.40 0.081 45 1.258 1.05 1.51 0.090 73 1.264 1.10 1.45 0.082 19 1.268 1.12 1.38 0.058 (I1M3/LP3)/(CP4/LP4) 18 2.907 2.57 3.43 0.219 29 2.967 2.40 3.50 0.344 47 3.112 2.55 3.74 0.272 71 3.087 2.41 4.91 0.355 19 3.155 2.49 3.70 0.311

25 Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character n M min max SD n M min max SD n M min max SD n M min max SD LI1 92 0.489 0.41 0.63 0.031 14 0.485 0.45 0.53 0.024 26 0.507 0.43 0.58 0.033 12 0.460 0.40 0.49 0.024 LI2 92 0.620 0.53 0.73 0.031 14 0.616 0.55 0.66 0.032 26 0.623 0.55 0.68 0.035 12 0.563 0.50 0.65 0.045 WI1 92 0.445 0.25 0.50 0.028 14 0.454 0.40 0.51 0.031 26 0.455 0.35 0.50 0.032 12 0.428 0.38 0.48 0.032 WI2 92 0.590 0.53 0.71 0.032 14 0.579 0.43 0.65 0.055 26 0.571 0.53 0.65 0.029 12 0.589 0.56 0.60 0.012 LCsup 92 1.072 1.00 1.18 0.034 14 1.088 1.05 1.14 0.030 26 1.114 1.03 1.20 0.048 12 1.056 0.96 1.13 0.042 WCsup 92 0.865 0.80 1.15 0.041 14 0.858 0.81 0.90 0.025 26 0.933 0.85 1.00 0.042 12 0.860 0.80 0.95 0.036 LP2 93 0.832 0.78 0.93 0.034 14 0.835 0.80 0.89 0.027 27 0.895 0.79 1.00 0.055 12 0.850 0.75 0.90 0.041 WP2 93 1.124 0.91 1.25 0.051 14 1.118 1.06 1.16 0.031 27 1.081 0.90 1.19 0.061 12 1.028 0.80 1.15 0.096 WP4 93 1.403 1.30 1.53 0.039 14 1.368 1.29 1.43 0.046 27 1.413 1.33 1.58 0.057 12 1.350 1.26 1.43 0.060 LP4 93 1.266 1.08 1.40 0.064 14 1.196 1.09 1.28 0.056 27 1.282 1.23 1.45 0.057 12 1.200 1.03 1.28 0.069 LoM1 93 1.455 1.31 1.56 0.035 14 1.482 1.43 1.55 0.032 27 1.491 1.38 1.55 0.050 12 1.447 1.36 1.50 0.047 LiM1 93 0.957 0.85 1.05 0.042 14 0.994 0.95 1.05 0.034 27 0.991 0.90 1.10 0.044 12 0.951 0.88 1.03 0.040 W1M1 93 2.024 1.93 2.13 0.044 14 2.027 1.94 2.10 0.053 27 2.016 1.89 2.16 0.061 12 1.923 1.88 2.04 0.049 W2M1 93 1.650 1.58 1.80 0.039 14 1.671 1.60 1.80 0.054 27 1.681 1.60 1.80 0.059 12 1.616 1.56 1.69 0.038 W3M1 93 1.778 1.18 1.90 0.082 14 1.783 1.68 1.86 0.049 27 1.758 1.65 1.90 0.066 12 1.681 1.60 1.78 0.061 LoM2 93 1.412 1.33 1.53 0.033 14 1.445 1.40 1.48 0.024 27 1.473 1.40 1.56 0.039 12 1.385 1.33 1.41 0.032 LiM2 93 0.877 0.75 0.95 0.033 14 0.902 0.86 0.93 0.020 27 0.966 0.90 1.04 0.032 12 0.889 0.80 0.96 0.047 W1M2 93 1.944 1.88 2.06 0.038 14 1.967 1.90 2.05 0.049 27 1.986 1.90 2.10 0.054 12 1.841 1.73 1.90 0.054 W2M2 93 1.792 1.71 1.90 0.035 14 1.826 1.73 1.90 0.052 27 1.824 1.75 1.93 0.048 12 1.732 1.63 1.80 0.052 W3M3 93 1.896 1.79 2.00 0.049 14 1.888 1.80 1.95 0.049 27 1.947 1.83 2.08 0.071 12 1.754 1.65 1.83 0.050 WM3 93 1.744 1.65 1.83 0.036 14 1.750 1.71 1.78 0.021 27 1.783 1.68 1.88 0.055 12 1.693 1.58 1.75 0.058 LM3 93 0.792 0.75 0.85 0.021 14 0.806 0.78 0.85 0.023 27 0.808 0.78 0.88 0.021 12 0.765 0.73 0.80 0.026

LI1 86 0.396 0.35 0.46 0.023 14 0.406 0.38 0.48 0.029 27 0.404 0.35 0.48 0.029 11 0.383 0.35 0.40 0.018

LI2 90 0.396 0.35 0.43 0.018 14 0.427 0.38 0.45 0.023 27 0.419 0.38 0.48 0.023 12 0.379 0.33 0.40 0.021

LI3 90 0.538 0.49 0.63 0.023 14 0.526 0.50 0.55 0.014 27 0.555 0.50 0.60 0.025 12 0.493 0.45 0.55 0.032

WI1 87 0.242 0.20 0.28 0.018 14 0.244 0.23 0.28 0.020 27 0.260 0.20 0.30 0.023 11 0.234 0.20 0.28 0.020

WI2 90 0.389 0.35 0.45 0.018 14 0.405 0.38 0.48 0.028 27 0.387 0.35 0.43 0.019 12 0.359 0.33 0.38 0.016

WI3 90 0.524 0.49 0.56 0.015 14 0.535 0.51 0.55 0.012 27 0.534 0.50 0.73 0.041 12 0.508 0.48 0.53 0.016

LCinf 89 0.736 0.68 0.80 0.026 14 0.741 0.70 0.78 0.027 26 0.787 0.71 0.86 0.040 12 0.745 0.68 0.80 0.033

WCinf 89 0.807 0.75 0.86 0.025 14 0.821 0.78 0.85 0.027 26 0.853 0.75 0.93 0.045 12 0.780 0.73 0.85 0.033

LP2 89 0.569 0.53 0.63 0.022 14 0.549 0.51 0.58 0.017 26 0.575 0.53 0.63 0.032 12 0.567 0.53 0.60 0.022

WP2 89 0.627 0.58 0.68 0.021 14 0.634 0.60 0.66 0.018 26 0.651 0.61 0.68 0.019 12 0.610 0.58 0.65 0.024

LP3 89 0.622 0.54 0.68 0.026 14 0.612 0.56 0.66 0.028 27 0.657 0.60 0.70 0.026 12 0.585 0.54 0.61 0.021

WP3 89 0.636 0.58 0.70 0.026 14 0.638 0.60 0.66 0.023 27 0.624 0.55 0.68 0.026 12 0.609 0.58 0.65 0.023

WP4 90 0.761 0.68 0.85 0.030 14 0.781 0.70 0.83 0.035 27 0.767 0.73 0.83 0.027 12 0.751 0.71 0.80 0.022

LP4 90 0.601 0.50 0.68 0.037 14 0.634 0.55 0.70 0.037 27 0.668 0.58 0.76 0.058 12 0.633 0.53 0.70 0.049 LM1 90 1.458 1.36 1.51 0.027 14 1.483 1.40 1.55 0.036 27 1.468 1.39 1.55 0.043 12 1.428 1.33 1.50 0.045

26 Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character/index n M min max SD n M min max SD n M min max SD n M min max SD

W1M1 90 0.852 0.78 0.95 0.033 14 0.879 0.80 0.95 0.037 27 0.859 0.80 0.95 0.038 12 0.846 0.78 0.90 0.037

W2M1 90 0.873 0.80 0.98 0.031 14 0.903 0.88 0.95 0.022 27 0.916 0.85 1.01 0.048 12 0.888 0.83 0.93 0.035

W3M1 90 0.959 0.90 1.03 0.028 14 1.000 0.93 1.13 0.051 27 0.997 0.93 1.05 0.029 12 0.994 0.93 1.03 0.034

LM2 90 1.393 1.30 1.45 0.027 14 1.411 1.38 1.46 0.026 27 1.402 1.33 1.46 0.038 12 1.365 1.28 1.45 0.054

W1M2 90 0.825 0.73 0.93 0.032 14 0.847 0.81 0.88 0.023 27 0.833 0.75 0.90 0.038 12 0.829 0.75 0.89 0.039

W2M2 90 0.831 0.78 0.91 0.024 14 0.861 0.83 0.90 0.023 27 0.873 0.83 0.93 0.028 12 0.839 0.80 0.88 0.028

LM3 90 1.249 1.15 1.33 0.031 14 1.257 1.20 1.31 0.033 27 1.268 1.20 1.31 0.029 12 1.221 1.15 1.28 0.034

WM3 90 0.638 0.58 0.88 0.034 14 0.665 0.63 0.70 0.023 27 0.688 0.64 0.75 0.032 12 0.665 0.60 0.73 0.034 WI1/LI1 92 0.913 0.53 1.09 0.083 14 0.939 0.84 1.11 0.074 26 0.901 0.61 1.03 0.079 12 0.931 0.81 1.03 0.064 WI2/LI2 92 0.953 0.81 1.19 0.071 14 0.940 0.71 1.02 0.088 26 0.920 0.80 1.11 0.070 12 1.052 0.90 1.18 0.085 WCsup/LCsup 92 0.807 0.71 1.07 0.038 14 0.789 0.76 0.83 0.020 26 0.838 0.78 0.88 0.033 12 0.816 0.76 0.91 0.046 HCsup/WCsup/LCsup 57 1.707 1.27 1.92 0.122 9 1.744 1.43 1.97 0.156 15 1.634 1.43 1.82 0.141 3 1.787 1.69 1.90 0.109 WP2/LP2 93 1.353 1.10 1.52 0.064 14 1.340 1.25 1.42 0.053 27 1.212 0.92 1.35 0.089 12 1.209 1.03 1.35 0.095 HP2/WP2/LP2 58 0.622 0.44 0.72 0.060 9 0.638 0.49 0.73 0.068 15 0.606 0.48 0.70 0.077 3 0.635 0.61 0.66 0.024 WP4/LP4 93 1.110 1.00 1.26 0.055 14 1.147 1.04 1.26 0.071 27 1.104 0.97 1.18 0.056 12 1.128 1.03 1.24 0.067 HP4/WP4/LP4 58 0.850 0.53 0.98 0.087 9 0.917 0.49 1.11 0.229 15 0.863 0.81 0.93 0.040 3 0.936 0.92 0.97 0.030 LoM1/LiM1 93 1.523 1.25 1.71 0.076 14 1.493 1.41 1.58 0.049 27 1.508 1.31 1.72 0.086 12 1.523 1.42 1.61 0.056 LoM2/LiM2 93 1.612 1.49 1.83 0.056 14 1.603 1.54 1.71 0.044 27 1.526 1.43 1.65 0.056 12 1.563 1.45 1.70 0.079 WM3/LM3 93 2.204 2.03 2.33 0.059 14 2.172 2.07 2.29 0.059 27 2.208 2.08 2.29 0.060 12 2.214 2.14 2.26 0.038 W2M1/LoM1 93 1.135 1.06 1.22 0.031 14 1.127 1.08 1.19 0.030 27 1.128 1.04 1.21 0.041 12 1.117 1.07 1.15 0.027 W2M2/LoM2 93 1.270 1.16 1.35 0.034 14 1.264 1.21 1.32 0.029 27 1.239 1.16 1.33 0.032 12 1.251 1.16 1.32 0.038 HCsup/HP2 57 2.749 2.29 3.56 0.229 9 2.771 2.20 3.69 0.408 15 2.917 2.62 3.14 0.173 3 2.742 2.51 2.89 0.204 HCsup/HP4 57 1.060 0.81 1.83 0.167 8 1.082 0.87 1.74 0.273 15 1.103 0.96 1.25 0.076 3 1.064 1.00 1.11 0.057 (HCsup/WCsup/LCsup)/(HP2/WP2/LP2) 57 2.764 1.99 3.84 0.292 9 2.765 2.15 3.57 0.398 15 2.731 2.11 3.69 0.370 3 2.815 2.66 2.89 0.134 (HP4/WP4/LP4)/(HP2/WP2/LP2) 58 1.381 0.85 1.96 0.204 9 1.423 0.94 1.61 0.272 15 1.449 1.18 1.88 0.214 3 1.475 1.40 1.53 0.067 (W2M1/LoM1)/(WM3/LM3) 93 0.515 0.47 0.56 0.020 14 0.519 0.49 0.55 0.018 27 0.511 0.47 0.55 0.021 12 0.505 0.49 0.54 0.016 (W2M1/LoM1)/(WP4/LP4) 93 1.025 0.86 1.15 0.059 14 0.986 0.86 1.11 0.066 27 1.024 0.93 1.22 0.066 12 0.994 0.88 1.09 0.061 (W2M1/LoM1)/(WP2/LP2) 93 0.841 0.74 1.02 0.044 14 0.842 0.78 0.90 0.037 27 0.936 0.81 1.21 0.079 12 0.930 0.85 1.08 0.083 (W2M1/LoM1)/(WCsup/LCsup) 92 1.408 1.04 1.60 0.066 14 1.430 1.37 1.53 0.048 26 1.350 1.24 1.49 0.069 12 1.373 1.26 1.45 0.065 (WI1LI1)/(WI2LI2) 91 0.595 0.34 0.71 0.055 14 0.624 0.47 0.79 0.076 26 0.653 0.50 0.95 0.090 12 0.599 0.45 0.70 0.068 (WCsupLCsup)/(WP2LP2) 92 0.997 0.83 1.44 0.077 14 1.002 0.90 1.13 0.060 26 1.080 0.85 1.33 0.121 12 1.053 0.87 1.49 0.154 (WP4LP4)/(WP2LP2) 93 1.906 1.51 2.51 0.168 14 1.754 1.59 1.94 0.114 27 1.885 1.50 2.42 0.204 12 1.886 1.55 2.89 0.367 (W2M1LiM1)/(WM3LM3) 93 1.144 0.97 1.29 0.066 14 1.178 1.05 1.26 0.073 27 1.158 0.98 1.32 0.083 12 1.189 1.10 1.32 0.065 (W2M1LiM1)/(W2M2LiM2) 93 1.005 0.85 1.15 0.044 14 1.009 0.94 1.07 0.044 27 0.946 0.84 1.05 0.052 12 1.000 0.88 1.10 0.055 (W2M1LiM1)/(WCsupLCsup) 92 1.706 1.33 2.01 0.109 14 1.781 1.59 2.08 0.121 26 1.612 1.24 2.10 0.174 12 1.694 1.55 1.87 0.102 (W2M1LiM1)/(WP4LP4) 93 0.893 0.74 1.10 0.075 14 1.018 0.90 1.13 0.076 27 0.923 0.77 1.15 0.080 12 0.953 0.81 1.06 0.080 1 1 2 2 (W2M LiM )/(WP LP ) 93 1.694 1.32 2.16 0.135 14 1.783 1.55 1.96 0.126 27 1.731 1.49 2.09 0.160 12 1.777 1.58 2.34 0.215

27 Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character/index n M min max SD n M min max SD n M min max SD n M min max SD

(W2M1LiM1)/(WI2LI2) 92 4.334 3.57 5.18 0.332 14 4.731 3.60 6.31 0.729 26 4.702 4.12 5.59 0.441 12 4.664 4.09 5.40 0.370

LI1/WI1 86 1.641 1.36 2.06 0.160 14 1.674 1.45 2.00 0.152 27 1.564 1.27 1.90 0.163 11 1.648 1.40 2.00 0.179

LI2/WI2 90 1.020 0.78 1.14 0.067 14 1.056 0.94 1.16 0.075 27 1.085 0.94 1.29 0.080 12 1.056 0.93 1.15 0.057

LI3/WI3 90 1.028 0.93 1.15 0.048 14 0.984 0.93 1.05 0.035 27 1.045 0.76 1.14 0.079 12 0.970 0.86 1.05 0.059

WCsup/LCsup 89 1.098 0.98 1.19 0.046 14 1.110 1.03 1.18 0.048 26 1.086 1.00 1.21 0.054 12 1.048 1.00 1.12 0.033

HCinf/WCinf/LCinf 55 2.460 1.92 2.80 0.175 9 2.432 2.31 2.59 0.105 15 2.361 2.16 2.68 0.143 3 2.398 2.37 2.44 0.041

WP2/LP2 89 1.105 0.96 1.26 0.059 14 1.155 1.04 1.22 0.043 26 1.135 1.00 1.29 0.066 12 1.078 1.02 1.18 0.048

HP2/WP2/LP2 55 1.379 1.09 1.54 0.098 8 1.504 1.37 1.72 0.115 15 1.302 1.03 1.47 0.139 3 1.326 1.31 1.34 0.016

WP3/LP3 89 1.024 0.88 1.17 0.058 14 1.043 0.92 1.11 0.054 27 0.951 0.88 1.06 0.043 12 1.042 0.96 1.16 0.056

HP3/WP3/LP3 55 1.461 1.13 1.94 0.133 9 1.634 1.38 1.88 0.162 15 1.274 1.12 1.48 0.109 3 1.686 1.53 1.79 0.135

WP4/LP4 90 1.272 1.08 1.58 0.100 14 1.236 1.08 1.33 0.081 27 1.156 0.98 1.39 0.097 12 1.192 1.07 1.43 0.088

W2M1/W1M1 90 1.025 0.94 1.10 0.029 14 1.027 0.97 1.09 0.031 27 1.067 0.97 1.19 0.057 12 1.050 0.94 1.10 0.041

LM1/W2M1 90 1.672 1.47 1.84 0.062 14 1.643 1.59 1.70 0.035 27 1.606 1.43 1.77 0.084 12 1.611 1.51 1.71 0.064

W2M2/W1M2 90 1.007 0.94 1.07 0.025 14 1.016 1.00 1.06 0.020 27 1.049 0.94 1.14 0.045 12 1.012 0.96 1.07 0.034

LM2/W2M2 90 1.678 1.53 1.81 0.048 14 1.640 1.57 1.76 0.055 27 1.608 1.47 1.71 0.069 12 1.627 1.57 1.71 0.041

LM3/WM3 90 1.963 1.46 2.15 0.092 14 1.891 1.79 1.96 0.056 27 1.848 1.72 2.02 0.081 12 1.841 1.66 1.98 0.093

HCinf/HP2 55 2.967 2.18 3.35 0.220 8 2.891 2.66 3.11 0.167 15 3.281 2.71 3.97 0.274 3 3.086 2.89 3.39 0.266

HCinf/HP3 55 2.562 2.09 3.03 0.174 9 2.385 2.14 2.70 0.179 15 2.951 2.38 3.33 0.257 3 2.351 2.20 2.65 0.261

HCinf/HP4 55 1.648 1.31 2.00 0.109 9 1.575 1.45 1.68 0.069 15 1.771 1.51 2.00 0.129 3 1.590 1.41 1.74 0.168

(WP4/LP4)/(WP2/LP2) 89 1.155 0.97 1.51 0.098 14 1.070 0.93 1.18 0.062 26 1.029 0.85 1.31 0.114 12 1.107 0.98 1.31 0.095

(WCinf/LCinf)/(WP2/LP2) 89 0.996 0.84 1.14 0.067 14 0.961 0.89 1.02 0.045 26 0.961 0.83 1.16 0.087 12 0.974 0.85 1.05 0.058

(WCinf/LCinf)/(WP3/LP3) 89 1.076 0.91 1.24 0.080 14 1.066 0.93 1.16 0.065 26 1.141 0.99 1.31 0.080 12 1.008 0.86 1.08 0.060

(HCinf/WCinf/LCinf)/(HP2/WP2/LP2) 55 1.790 1.36 2.29 0.162 8 1.629 1.43 1.79 0.132 15 1.833 1.61 2.36 0.224 3 1.808 1.76 1.84 0.039

(HCinf/WCinf/LCinf)/(HP3/WP3/LP3) 55 1.695 1.30 2.12 0.173 9 1.500 1.26 1.71 0.139 15 1.867 1.51 2.16 0.208 3 1.428 1.36 1.55 0.109

(LM1/W2M1)/(LM3/WM3) 90 0.853 0.73 1.14 0.049 14 0.870 0.82 0.93 0.035 27 0.871 0.73 1.01 0.056 12 0.878 0.81 1.00 0.065

(LM1/W2M1)/(WP4/LP4) 90 1.323 1.01 1.62 0.121 14 1.336 1.20 1.50 0.101 27 1.397 1.21 1.80 0.124 12 1.357 1.19 1.52 0.091

(WI1LI1)/(WI2LI2) 86 0.626 0.47 0.83 0.064 14 0.576 0.39 0.68 0.072 27 0.650 0.45 0.79 0.086 11 0.665 0.58 0.78 0.063

(WI2LI2)/(WI3LI3) 90 0.546 0.47 0.63 0.037 14 0.615 0.51 0.72 0.053 27 0.551 0.36 0.66 0.060 12 0.546 0.48 0.60 0.041

(WCinfLCinf)/(WP2LP2) 89 1.670 1.40 1.94 0.109 14 1.750 1.61 1.96 0.092 26 1.795 1.50 2.07 0.146 12 1.683 1.55 1.89 0.114

(WCinfLCinf)/(WP3LP3) 89 1.506 1.29 1.88 0.112 14 1.563 1.39 1.71 0.102 26 1.631 1.34 1.90 0.147 12 1.633 1.42 1.97 0.132

(WCinfLCinf)/(WP4LP4) 89 1.306 1.11 1.60 0.102 14 1.236 0.97 1.50 0.116 26 1.330 0.99 1.67 0.184 12 1.233 1.07 1.73 0.176

(WP2LP2)/(WP4LP4) 89 0.784 0.67 0.95 0.064 14 0.707 0.60 0.86 0.064 26 0.742 0.61 0.97 0.097 12 0.732 0.63 0.91 0.078

(W1M1LM1)/(WCinfLCinf) 89 2.097 1.82 2.42 0.132 14 2.147 1.87 2.45 0.147 26 1.893 1.55 2.41 0.208 12 2.086 1.71 2.27 0.158

(W1M1LM1)/(WP2LP2) 89 3.491 3.06 3.88 0.180 14 3.752 3.25 4.01 0.210 26 3.381 2.93 4.02 0.318 12 3.498 3.19 3.78 0.202

(W1M1LM1)/(WP3LP3) 89 3.149 2.80 3.68 0.190 14 3.350 2.91 3.75 0.234 27 3.089 2.72 3.72 0.272 12 3.391 3.13 3.70 0.191

(W1M1LM1)/(WP4LP4) 90 2.731 2.26 3.42 0.204 14 2.645 2.37 3.18 0.211 27 2.480 2.06 2.92 0.247 12 2.554 2.24 2.95 0.235 (W1M1LM1)/(W1M2LM2) 90 1.082 0.97 1.22 0.038 14 1.092 0.99 1.21 0.057 27 1.080 1.01 1.20 0.047 12 1.070 0.98 1.18 0.076

28 Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character/index n M min max SD n M min max SD n M min max SD n M min max SD 90 1.565 1.10 1.81 0.094 14 1.563 1.38 1.74 0.113 27 1.449 1.27 1.68 0.083 12 1.492 1.36 1.63 0.094 (W1M1LM1)/(WM3LM3) HI2 57 0.636 0.55 0.74 0.036 14 0.613 0.53 0.68 0.037 26 0.705 0.58 0.80 0.060 3 0.613 0.55 0.66 0.057 HI1 57 0.557 0.40 0.65 0.048 14 0.603 0.48 0.65 0.049 26 0.606 0.50 0.74 0.059 3 0.600 0.55 0.65 0.050 HCsup 57 1.579 1.25 1.73 0.088 14 1.569 1.30 1.73 0.130 26 1.645 1.28 2.00 0.178 3 1.629 1.60 1.66 0.031 HP3 58 0.580 0.45 0.70 0.052 14 0.542 0.25 0.68 0.107 27 0.556 0.38 0.70 0.077 3 0.596 0.58 0.64 0.036 HP4 58 1.514 0.88 1.70 0.153 14 1.411 0.79 1.71 0.311 27 1.531 1.35 1.75 0.104 3 1.533 1.50 1.60 0.058

HI1 53 0.288 0.23 0.35 0.024 14 0.290 0.25 0.33 0.019 27 0.256 0.23 0.30 0.022 2 0.269 0.26 0.28 0.009

HI2 56 0.302 0.26 0.35 0.020 14 0.305 0.30 0.33 0.009 27 0.275 0.23 0.33 0.026 3 0.271 0.26 0.28 0.007

HI3 56 0.336 0.28 0.38 0.020 14 0.338 0.28 0.43 0.041 27 0.311 0.23 0.38 0.031 3 0.308 0.30 0.33 0.014

HCinf 55 1.452 1.15 1.55 0.088 14 1.436 1.25 1.55 0.084 25 1.557 1.29 1.80 0.148 3 1.425 1.38 1.53 0.087

HP2 55 0.490 0.43 0.55 0.025 13 0.468 0.25 0.55 0.079 26 0.472 0.36 0.55 0.056 3 0.463 0.45 0.48 0.013

HP3 55 0.568 0.43 0.64 0.038 14 0.566 0.36 0.73 0.102 27 0.534 0.41 0.63 0.050 3 0.608 0.58 0.63 0.029

HP4 55 0.883 0.75 0.95 0.050 14 0.918 0.78 1.00 0.056 27 0.879 0.75 1.03 0.076 3 0.900 0.85 0.98 0.066 I1M3/LoM1 92 4.734 4.42 5.10 0.123 14 4.742 4.52 4.93 0.112 27 4.861 4.42 5.33 0.185 12 4.710 4.51 4.96 0.123 M3M3/WM3 92 3.610 3.45 3.90 0.086 14 3.682 3.57 3.76 0.057 27 3.766 3.62 3.92 0.088 12 3.689 3.36 3.83 0.125 P4P4/WP4 91 3.932 3.65 4.23 0.121 14 4.105 3.87 4.30 0.123 27 4.096 3.66 4.46 0.194 12 3.954 3.42 4.37 0.251 M1M3/LoM1 93 2.245 2.10 2.45 0.062 14 2.267 2.13 2.35 0.058 27 2.263 2.14 2.44 0.077 12 2.212 2.09 2.30 0.056 M1M3/LoM2 93 2.313 2.16 2.54 0.068 14 2.326 2.21 2.41 0.058 27 2.290 2.12 2.39 0.055 12 2.310 2.16 2.48 0.085 CCsup/WCsup 91 5.272 4.06 5.75 0.217 14 5.392 5.06 5.75 0.187 26 5.074 4.45 5.46 0.235 12 4.987 3.88 5.30 0.376 CP4/LP4 92 2.288 2.05 2.73 0.129 14 2.420 2.27 2.65 0.121 27 2.364 2.12 2.50 0.109 12 2.360 2.14 2.56 0.123 (CP4/LP4)/(M3M3/WM3) 92 0.634 0.56 0.73 0.034 14 0.657 0.62 0.73 0.033 27 0.628 0.57 0.68 0.029 12 0.640 0.58 0.70 0.034 (CC/WCsup)/(P4P4/WP4) 90 1.341 1.03 1.48 0.057 14 1.315 1.21 1.44 0.069 26 1.240 1.10 1.37 0.057 12 1.261 1.14 1.35 0.067 (M1M3/LoM1)/(M3M3/WM3) 92 0.622 0.58 0.70 0.021 14 0.616 0.59 0.64 0.015 27 0.601 0.56 0.66 0.025 12 0.600 0.57 0.63 0.018 (M1M3/LoM1)/(P4P4/WP4) 91 0.572 0.52 0.64 0.024 14 0.553 0.51 0.58 0.024 27 0.554 0.49 0.63 0.032 12 0.561 0.51 0.61 0.033

M1M3/LM3 90 2.940 2.76 3.17 0.073 14 3.024 2.90 3.18 0.071 27 2.993 2.81 3.18 0.088 12 2.947 2.81 3.07 0.067

CP4/LP4 89 3.986 3.36 4.64 0.261 14 3.706 3.41 4.05 0.181 27 3.871 3.31 4.49 0.295 12 3.698 3.39 4.27 0.218

CP4/LCinf 89 3.243 2.88 3.57 0.147 14 3.166 2.97 3.41 0.128 26 3.277 2.99 3.70 0.191 12 3.138 2.80 3.34 0.164

I1M3/LP3 89 11.551 10.65 13.30 0.472 14 12.029 11.17 12.82 0.539 27 11.543 10.80 12.87 0.478 12 12.181 11.36 13.40 0.512

I1M3/LP2 89 12.639 11.44 13.64 0.478 14 13.400 12.80 14.30 0.414 26 13.202 11.84 14.21 0.776 12 12.583 12.00 13.31 0.449

M1M3/LM1 90 2.518 2.40 2.74 0.058 14 2.563 2.45 2.71 0.067 27 2.586 2.35 2.77 0.087 12 2.520 2.36 2.64 0.077

(M1M3/LM3)/(M1M3/LM1) 90 1.168 1.10 1.26 0.032 14 1.180 1.10 1.24 0.040 27 1.158 1.08 1.24 0.040 12 1.170 1.12 1.22 0.033

(CP4/LP4)/(M1M3/LM1) 89 1.584 1.30 1.90 0.118 14 1.446 1.35 1.56 0.072 27 1.498 1.31 1.69 0.112 12 1.470 1.35 1.74 0.112

(CP4/LCinf)/(M1M3/LM1) 89 1.288 1.13 1.44 0.066 14 1.235 1.18 1.35 0.050 26 1.266 1.13 1.48 0.083 12 1.246 1.14 1.34 0.070 (I1M3/LP3)/(CP4/LP4) 89 2.910 2.39 3.62 0.224 14 3.256 2.78 3.70 0.261 27 3.002 2.53 3.60 0.291 12 3.306 2.83 3.80 0.262

29 Table S4. Results of ANOVA of all dental and cranial characteristics of Middle Eastern (representing M. (s.) pallidus; on the right) or Cretan (representing geographically limited population of M. schreibersii; on the left) sample sets, and Balkan (with addition of the genotyped Levantine samples) (representing M. schreibersii) samples. See Appendix S1 for explanation of dimension abbreviations. * = p < 0.05, ** = p < 0.001, *** = p < 0.0001.

Middle Eastern vs. Balkan (with addition of the genotyped Levantine samples) Cretan vs. Balkan (with addition of the genotyped Levantine samples) sample set sample set Character df F p Character df F p Character df F p Character df F p LCr 106 26.47 *** WCsup 111 1.68 LCr 101 21.66 *** LCsup 106 2.40 LCb 106 38.78 *** HCsup 110 0.04 LCb 101 29.11 *** WCsup 106 6.74 * LaZ 104 4.16 * LP2 112 1.31 LaZ 99 43.84 *** HCsup 105 2.25 LaI 112 16.97 *** WP2 112 1.78 LaI 107 0.84 LP2 107 0.46 LaInf 110 6.72 * HP3 111 3.05 LaInf 105 3.39 WP2 107 3.98 * LaN 109 46.47 *** WP4 112 0.63 LaN 104 2.60 HP3 106 0.09 LaM 106 29.14 *** LP4 112 12.42 *** LaM 101 18.31 *** WP4 107 0.58 ANc 108 6.33 * HP4 112 8.17 ** ANc 103 11.35 ** LP4 107 4.05 * ACr 107 0.02 LoM1 113 2.22 ACr 102 9.00 ** HP4 107 3.25 LMd 105 32.18 *** LiM1 113 1.70 LMd 100 31.35 *** LoM1 108 6.52 * ACo 105 1.22 W1M1 113 10.26 ** ACo 100 14.95 *** LiM1 108 0.78 CC 103 0.52 W2M1 113 8.64 ** CC 99 14.36 *** W1M1 108 0.39 P4P4 107 13.22 *** W3M1 113 8.67 ** P4P4 102 7.21 ** W2M1 108 4.34 * M3M3 106 27.10 *** LoM2 112 4.82 * M3M3 101 17.20 *** W3M1 108 0.09 I1M3 110 22.57 *** LiM2 112 0.01 I1M3 105 18.13 *** LoM2 107 5.39 * CM3 110 8.20 ** W1M2 112 14.02 *** CM3 105 33.84 *** LiM2 107 2.66 P4M3 110 5.11 * W2M2 112 43.63 *** P4M3 105 19.23 *** W1M2 107 2.35 M1M3 111 6.55 * W3M3 112 12.57 *** M1M3 106 5.85 * W2M2 107 6.91 ** CP4 111 1.03 WM3 111 26.50 *** CP4 106 3.73 W3M3 107 3.08 3 3 I1M3 105 52.64 *** LM 111 6.03 * I1M3 100 1.51 WM 106 0.01 3 CM3 104 21.85 *** LI1 105 0.00 CM3 99 28.83 *** LM 106 5.40 *

P4M3 106 13.47 *** WI1 105 1.15 P4M3 101 17.21 *** LI1 100 1.96

M1M3 107 7.97 ** HI1 105 2.65 M1M3 102 2.43 WI1 100 0.18

CP4 104 10.61 ** LI2 105 8.17 ** CP4 99 0.08 HI1 100 0.12

CS1 95 25.91 *** WI2 105 3.13 CS1 89 1.43 LI2 100 24.80 ***

CS2 97 22.28 *** HI2 105 0.02 CS2 92 20.69 *** WI2 100 2.11

CS3 102 43.14 *** LI3 105 19.33 *** CS3 97 29.67 *** HI2 100 0.56

CS4 103 34.40 *** WI3 105 13.76 CS4 98 18.77 *** LI3 100 16.51 ***

G1RW1 95 14.26 ** HI3 105 0.85 G1RW1 89 5.44 * WI3 100 0.13

G1RW2 95 3.89 LCinf 105 1.03 G1RW2 89 2.39 HI3 100 1.28

G1RW3 95 0.65 WCinf 105 5.94 * G1RW3 89 3.40 LCinf 100 4.32 *

G1RW4 95 49.70 *** HCinf 105 0.23 G1RW4 89 0.46 WCinf 100 4.80 *

G2RW1 97 6.62 LP2 105 6.27 * G2RW1 92 2.21 HCinf 100 0.77

G2RW2 97 9.82 ** WP2 105 6.27 * G2RW2 92 5.72 * LP2 100 6.11 *

G2RW3 97 13.23 *** HP2 105 3.96 * G2RW3 92 0.07 WP2 100 1.36

G2RW4 97 0.01 LP3 107 5.40 * G2RW4 92 2.75 HP2 99 4.32 *

G3RW1 102 3.58 WP3 107 0.97 G3RW1 97 0.70 LP3 102 0.03

G3RW2 102 2.54 HP3 107 15.04 *** G3RW2 97 2.25 WP3 102 1.34

G3RW3 102 14.60 *** WP4 107 0.78 G3RW3 97 22.05 *** HP3 102 1.14

G3RW4 102 0.25 LP4 106 0.04 G3RW4 97 3.51 WP4 102 1.67

G4RW1 103 2.77 HP4 107 2.31 G4RW1 98 0.03 LP4 101 5.53 *

G4RW2 103 0.03 LM1 108 0.04 G4RW2 98 0.67 HP4 102 13.04 ***

G4RW3 103 0.44 W1M1 108 0.34 G4RW3 98 0.01 LM1 103 3.42

G4RW4 103 3.29 W2M1 108 0.41 G4RW4 98 5.59 * W1M1 103 4.55 * 1 1 LI 110 4.26 * W3M1 108 0.55 LI 105 0.87 W2M1 103 8.12 ** 1 1 WI 110 4.05 LM2 108 9.06 ** WI 105 3.03 W3M1 103 3.76 1 1 HI 110 0.34 W1M2 108 0.29 HI 105 2.35 LM2 103 3.15 2 2 LI 111 14.40 *** W2M2 108 0.28 LI 106 0.11 W1M2 103 2.25 2 2 WI 111 1.85 LM3 108 7.24 ** WI 106 0.03 W2M2 103 8.94 ** 2 2 HI 111 17.23 *** WM3 108 0.01 HI 106 0.68 LM3 103 0.09 sup LC 111 5.04 * WM3 103 12.90 ***

30 Table S5. Percentage share-values of the total variation of the first four relative warps of the examined sample sets for the respective view of skull and mandible (all groups 1 – 9 and subset 1 – 7). G1 – lateral view of mandible, G2 – lateral view of skull, G3 – ventral view of skull, G4 – dorsal view of skull.

Groups G1RW1 G1RW2 G1RW3 G1RW4 G2RW1 G2RW2 G2RW3 G2RW4 G3RW1 G3RW2 G3RW3 G3RW4 G4RW1 G4RW2 G4RW3 G4RW4 1–7 23.3 17.3 16.9 9.8 20.0 14.9 12.6 8.4 20.9 11.4 10.9 9.3 27.8 13.4 10.8 8.3 1–9 24.3 16.7 16.6 10.0 18.7 15.7 12.1 8.4 19.6 11.7 11.0 9.0 27.0 12.7 11.6 8.4

31 Table S6. Non-metric dental and cranial characters of Miniopterus examined in this study. Codes in brackets stand for the respective genetic lineage or sublineage (see text). See Appendix S1 for explanation of dimension abbreviations. M= mean, min = minimum value, max = maximum value, and SD = standard deviation.

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM) Character n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

P4inf 18 2.376 1.00 3.00 0.757 36 2.771 1.00 4.00 0.636 48 2.458 1.00 4.00 0.798 76 2.260 1.00 4.00 0.800 19 2.389 1.00 3.00 0.591 P4inf2 18 4.111 3.00 5.00 0.676 36 3.714 3.00 5.00 0.613 48 3.292 2.00 5.00 0.713 76 3.500 2.00 5.00 0.572 19 3.737 3.00 4.00 0.452 P3inf 18 3.444 2.00 5.00 0.705 36 3.567 2.00 5.00 0.704 48 3.659 2.00 5.00 0.713 76 3.433 2.00 5.00 0.716 19 3.211 2.00 4.00 0.535 P3inf2 18 3.333 2.00 4.00 0.686 36 3.097 2.00 4.00 0.438 48 2.979 2.00 4.00 0.565 76 2.853 2.00 4.00 0.604 19 3.368 3.00 4.00 0.496 P3inf3 18 3.111 3.00 4.00 0.323 36 3.129 2.00 4.00 0.665 48 2.851 2.00 4.00 0.583 76 2.973 2.00 4.00 0.516 19 2.684 2.00 4.00 0.582 P2P4inf 18 2.858 2.00 4.00 0.580 36 3.310 2.00 5.00 0.721 48 2.848 2.00 4.00 0.714 76 3.183 2.00 5.00 0.788 19 2.444 2.00 4.00 0.598 P2P4inf2 18 3.944 3.00 5.00 0.725 36 3.433 2.00 5.00 0.577 48 3.630 2.00 5.00 0.596 76 3.366 2.00 5.00 0.787 19 3.705 3.00 5.00 0.647 P3P4inf 18 3.785 2.00 5.00 0.781 36 3.578 2.00 5.00 0.594 48 3.532 2.00 5.00 0.680 76 3.110 2.00 5.00 0.758 19 3.588 2.00 5.00 0.672 FmenP2inf 18 3.167 3.00 4.00 0.383 36 2.969 2.00 4.00 0.377 48 2.979 2.00 4.00 0.385 76 3.043 2.00 4.00 0.528 19 3.474 3.00 4.00 0.513 Fmen 18 3.177 2.00 4.00 0.513 36 3.080 2.00 4.00 0.530 48 2.927 2.00 4.00 0.696 76 3.108 2.00 5.00 0.581 19 2.053 1.00 3.00 0.621 Cinf 18 2.444 1.00 3.00 0.616 36 3.386 2.00 4.00 0.570 48 2.933 2.00 4.00 0.726 76 2.767 2.00 4.00 0.622 19 2.842 2.00 4.00 0.501 CingM1inf 18 2.722 2.00 3.00 0.461 36 2.382 1.00 4.00 0.793 48 3.083 2.00 5.00 0.846 76 2.382 1.00 4.00 0.748 19 2.684 1.00 4.00 0.885 CingM1inf2 18 2.889 2.00 4.00 0.583 36 3.500 3.00 5.00 0.644 48 3.646 2.00 5.00 0.729 76 3.368 2.00 5.00 0.690 19 3.842 3.00 5.00 0.602 CingM1inf3 18 2.278 1.00 3.00 0.575 36 2.971 2.00 4.00 0.506 48 2.813 1.00 4.00 0.607 76 2.733 2.00 5.00 0.573 19 2.316 1.00 3.00 0.671 CingM1inf4 18 2.611 2.00 3.00 0.502 36 2.139 1.00 4.00 0.639 48 2.354 2.00 3.00 0.483 76 2.253 1.00 3.00 0.544 19 2.842 2.00 4.00 0.501 CingM2inf 18 2.944 2.00 4.00 0.539 36 2.556 1.00 4.00 0.695 48 2.646 1.00 4.00 0.729 76 2.224 1.00 4.00 0.665 19 2.579 2.00 4.00 0.769 CingM2inf2 18 2.500 2.00 4.00 0.618 36 3.167 2.00 4.00 0.447 48 2.896 2.00 4.00 0.660 76 2.921 1.00 5.00 0.669 19 2.842 2.00 4.00 0.602 CingM2inf3 18 3.167 2.00 4.00 0.514 36 3.167 2.00 4.00 0.447 48 3.146 1.00 4.00 0.583 76 3.092 2.00 4.00 0.495 19 3.000 2.00 4.00 0.577 M3sup 18 2.389 1.00 3.00 0.698 36 2.697 2.00 4.00 0.736 48 3.292 2.00 5.00 0.849 83 2.854 2.00 5.00 0.701 19 2.842 2.00 4.00 0.602 M3sup2 18 2.833 2.00 4.00 0.514 36 3.147 2.00 5.00 0.682 48 3.574 2.00 5.00 0.676 83 3.232 2.00 5.00 0.737 19 2.947 2.00 4.00 0.621 M2sup 18 3.000 3.00 3.00 0.000 36 3.556 3.00 5.00 0.695 48 3.438 3.00 5.00 0.542 83 3.120 2.00 4.00 0.425 19 3.000 3.00 3.00 0.000 M2sup2 18 3.333 2.00 4.00 0.594 36 3.444 2.00 4.00 0.558 48 3.646 2.00 5.00 0.785 83 3.530 2.00 5.00 0.650 19 3.842 3.00 4.00 0.375 M2sup3 18 3.056 2.00 4.00 0.416 36 2.806 2.00 4.00 0.624 48 3.174 2.00 4.00 0.662 83 2.855 2.00 4.00 0.646 19 2.895 2.00 4.00 0.567 M2sup4 18 2.722 2.00 3.00 0.461 36 3.056 2.00 4.00 0.630 48 3.458 2.00 5.00 0.582 83 3.036 2.00 4.00 0.528 19 2.947 2.00 4.00 0.405 CingM2sup 18 3.000 2.00 4.00 0.594 36 2.583 1.00 5.00 1.273 48 2.667 1.00 5.00 1.018 83 2.325 1.00 4.00 0.925 19 2.526 1.00 4.00 1.073 M1sup 18 3.778 3.00 5.00 0.548 36 3.371 2.00 4.00 0.590 48 3.604 2.00 5.00 0.676 83 3.549 2.00 5.00 0.647 19 3.842 3.00 5.00 0.602 M1sup2 18 3.111 2.00 4.00 0.583 36 3.371 2.00 4.00 0.636 48 3.542 2.00 5.00 0.713 83 3.378 2.00 4.00 0.618 19 3.684 3.00 5.00 0.582 M1sup3 18 3.222 3.00 4.00 0.428 36 3.229 2.00 4.00 0.590 48 2.681 2.00 4.00 0.622 83 2.839 2.00 4.00 0.551 19 3.263 3.00 4.00 0.452 M1sup4 18 3.333 1.00 5.00 0.907 36 2.257 1.00 3.00 0.498 48 2.375 1.00 3.00 0.570 83 2.695 1.00 5.00 0.675 19 2.579 2.00 3.00 0.507 M1sup5 18 2.529 2.00 3.00 0.499 36 3.188 2.00 4.00 0.607 48 3.349 1.00 5.00 0.711 83 3.342 2.00 5.00 0.629 19 3.764 3.00 4.00 0.412 P4sup 18 2.500 1.00 5.00 0.924 36 2.000 1.00 4.00 0.894 48 2.292 1.00 4.00 0.713 83 2.329 1.00 4.00 0.812 19 1.842 1.00 3.00 0.765 P4sup2 18 3.278 3.00 4.00 0.461 36 3.400 2.00 4.00 0.545 48 3.271 2.00 4.00 0.494 83 3.304 1.00 4.00 0.651 19 3.368 3.00 4.00 0.496 P4sup3 18 3.267 3.00 4.00 0.415 36 2.731 2.00 5.00 0.657 48 2.906 2.00 4.00 0.738 83 2.220 1.00 4.00 0.881 19 2.882 2.00 4.00 0.657 P4sup4 18 2.611 2.00 4.00 0.608 36 2.571 1.00 4.00 0.767 48 2.958 2.00 4.00 0.771 83 2.927 2.00 4.00 0.620 19 2.526 2.00 4.00 0.697 P4sup5 18 3.444 3.00 4.00 0.511 36 3.514 3.00 5.00 0.554 48 3.354 2.00 5.00 0.601 83 3.494 2.00 4.00 0.544 19 3.421 3.00 4.00 0.507 P4sup6 18 3.389 2.00 4.00 0.608 36 3.543 3.00 4.00 0.498 48 3.489 2.00 4.00 0.541 83 3.402 3.00 4.00 0.490 19 3.421 3.00 4.00 0.507 P4sup7 18 3.389 3.00 4.00 0.502 36 3.314 3.00 4.00 0.464 48 3.250 2.00 4.00 0.565 83 3.305 1.00 4.00 0.578 19 3.158 3.00 4.00 0.375 P4sup8 18 3.556 3.00 4.00 0.511 36 3.229 2.00 4.00 0.539 48 2.708 2.00 4.00 0.544 83 3.222 2.00 5.00 0.584 19 3.737 3.00 5.00 0.562 P2sup 18 2.611 1.00 5.00 1.092 36 2.457 1.00 4.00 0.648 48 2.167 1.00 3.00 0.630 83 2.159 1.00 4.00 0.757 19 2.105 1.00 3.00 0.567 P2sup2 18 3.111 2.00 4.00 0.471 36 4.000 3.00 5.00 0.756 48 3.583 3.00 5.00 0.613 83 3.238 2.00 4.00 0.500 19 3.474 3.00 4.00 0.513 P2sup3 18 3.000 2.00 4.00 0.686 36 2.429 1.00 3.00 0.645 48 2.479 1.00 3.00 0.545 83 2.317 1.00 4.00 0.696 19 2.632 2.00 4.00 0.597 P2sup4 18 2.059 1.00 3.00 0.539 36 2.171 1.00 3.00 0.506 48 2.500 1.00 4.00 0.652 83 2.098 1.00 3.00 0.484 19 2.789 2.00 3.00 0.419 CingCsup 18 2.000 1.00 5.00 1.138 36 2.377 1.00 3.00 0.624 48 2.117 1.00 4.00 0.880 83 2.079 1.00 4.00 0.777 19 1.500 1.00 4.00 0.764 ZigW 18 3.833 2.00 5.00 0.857 36 2.514 1.00 4.00 0.649 48 2.758 2.00 4.00 0.507 83 2.626 1.00 4.00 0.671 19 3.368 2.00 5.00 0.684 InfO 18 2.889 2.00 4.00 0.583 36 3.028 2.00 4.00 0.736 48 2.787 1.00 4.00 0.682 83 2.638 1.00 4.00 0.629 19 3.263 3.00 4.00 0.452 InfO2 18 3.167 3.00 4.00 0.383 36 3.222 2.00 4.00 0.591 48 2.745 2.00 4.00 0.482 83 3.062 2.00 4.00 0.687 19 2.579 2.00 3.00 0.507 I2supCsup 18 2.889 2.00 4.00 0.676 36 2.778 2.00 4.00 0.591 48 2.738 2.00 4.00 0.464 83 2.480 1.00 4.00 0.683 19 2.316 1.00 3.00 0.582 ProcCW 18 2.944 2.00 4.00 0.639 36 3.031 1.00 5.00 0.696 48 3.318 2.00 5.00 0.698 83 3.085 2.00 5.00 0.711 19 2.421 2.00 3.00 0.507 RmanW 18 3.556 3.00 4.00 0.511 36 2.929 2.00 4.00 0.409 48 2.729 1.00 4.00 0.676 83 2.710 1.00 4.00 0.713 19 2.684 2.00 4.00 0.582 Isup 18 3.222 2.00 4.00 0.548 36 2.332 1.00 3.00 0.569 48 2.863 1.00 4.00 0.605 83 2.936 2.00 5.00 0.817 19 3.000 2.00 4.00 0.333

32 Table S6. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE) Character n M min max SD n M min max SD n M min max SD n M min max SD

P4inf 91 2.573 1.00 4.00 0.881 14 2.500 2.00 4.00 0.650 28 3.429 2.00 4.00 0.573 12 3.363 3.00 4.00 0.481 P4inf2 91 3.539 2.00 5.00 0.633 14 3.643 3.00 5.00 0.633 28 2.821 1.00 4.00 0.863 12 2.917 2.00 4.00 0.669 P3inf 91 3.124 2.00 5.00 0.647 14 3.429 2.00 4.00 0.646 28 2.679 1.00 4.00 0.670 12 2.917 2.00 3.00 0.289 P3inf2 91 3.000 1.00 5.00 0.667 14 2.786 1.00 4.00 0.802 28 2.679 2.00 4.00 0.670 12 2.500 2.00 3.00 0.522 P3inf3 91 2.775 2.00 4.00 0.489 14 2.786 2.00 4.00 0.802 28 2.536 1.00 4.00 0.693 12 2.917 2.00 4.00 0.669 P2P4inf 91 2.932 2.00 4.00 0.742 14 3.643 3.00 5.00 0.633 28 2.179 2.00 4.00 0.476 12 2.900 2.00 4.00 0.667 P2P4inf2 91 3.146 2.00 5.00 0.782 14 3.000 2.00 4.00 0.784 28 2.049 1.00 3.00 0.580 12 3.000 2.00 4.00 0.739 P3P4inf 91 3.079 2.00 5.00 0.859 14 3.143 2.00 4.00 0.770 28 2.179 1.00 3.00 0.612 12 3.111 2.00 4.00 0.667 FmenP2inf 91 3.270 2.00 4.00 0.466 14 3.357 3.00 4.00 0.497 28 2.821 2.00 4.00 0.612 12 3.167 2.00 4.00 0.577 Fmen 91 2.803 2.00 5.00 0.570 14 2.527 2.00 4.00 0.624 28 2.774 2.00 4.00 0.541 12 2.273 1.00 3.00 0.617 Cinf 91 3.135 2.00 5.00 0.653 14 2.857 2.00 4.00 0.535 28 3.254 2.00 5.00 0.644 12 3.417 3.00 4.00 0.515 CingM1inf 91 2.722 2.00 5.00 0.578 14 2.429 1.00 3.00 0.646 28 3.464 2.00 5.00 0.962 12 3.250 1.00 5.00 1.055 CingM1inf2 91 3.600 2.00 5.00 0.757 14 3.214 2.00 4.00 0.802 28 2.357 1.00 5.00 0.780 12 2.833 2.00 4.00 0.718 CingM1inf3 91 2.911 2.00 4.00 0.509 14 2.714 2.00 4.00 0.611 28 2.357 1.00 4.00 0.678 12 1.833 1.00 3.00 0.835 CingM1inf4 91 2.244 1.00 3.00 0.455 14 2.786 2.00 4.00 0.802 28 2.214 1.00 3.00 0.568 12 2.750 1.00 4.00 0.754 CingM2inf 91 2.400 1.00 4.00 0.581 14 2.071 1.00 3.00 0.475 28 2.393 1.00 5.00 0.875 12 2.583 1.00 3.00 0.669 CingM2inf2 91 2.900 2.00 4.00 0.539 14 2.286 1.00 4.00 0.726 28 1.536 1.00 3.00 0.576 12 2.333 2.00 4.00 0.651 CingM2inf3 91 3.111 2.00 4.00 0.482 14 3.143 2.00 4.00 0.535 28 2.000 1.00 3.00 0.471 12 2.417 1.00 3.00 0.669 M3sup 93 2.667 1.00 4.00 0.727 14 2.857 2.00 4.00 0.535 28 3.107 2.00 5.00 0.629 12 2.250 1.00 3.00 0.754 M3sup2 93 2.495 1.00 4.00 0.619 14 2.857 2.00 4.00 0.535 28 2.266 2.00 3.00 0.440 12 2.083 2.00 3.00 0.289 M2sup 93 3.108 2.00 4.00 0.345 14 3.214 3.00 4.00 0.426 28 3.571 2.00 5.00 0.742 12 2.500 2.00 4.00 0.674 M2sup2 93 3.215 2.00 4.00 0.623 14 3.143 3.00 4.00 0.363 28 2.571 2.00 4.00 0.573 12 3.250 3.00 4.00 0.452 M2sup3 93 2.946 2.00 4.00 0.518 14 2.714 2.00 4.00 0.611 28 2.179 1.00 3.00 0.476 12 2.583 2.00 4.00 0.669 M2sup4 93 3.000 2.00 4.00 0.417 14 2.714 2.00 4.00 0.611 28 1.786 1.00 3.00 0.630 12 2.500 2.00 3.00 0.522 CingM2sup 93 2.667 1.00 5.00 1.097 14 1.929 1.00 3.00 0.829 28 2.643 1.00 5.00 1.339 12 1.667 1.00 3.00 0.651 M1sup 93 3.677 2.00 5.00 0.645 14 3.429 3.00 4.00 0.514 28 3.393 2.00 5.00 0.737 12 2.833 2.00 5.00 0.835 M1sup2 93 3.075 2.00 4.00 0.663 14 3.134 2.00 4.00 0.666 28 2.746 1.00 4.00 0.798 12 2.667 2.00 4.00 0.651 M1sup3 93 3.000 2.00 4.00 0.442 14 2.989 2.00 4.00 0.556 28 2.780 2.00 4.00 0.497 12 2.500 2.00 3.00 0.522 M1sup4 93 2.581 1.00 4.00 0.577 14 3.357 2.00 4.00 0.745 28 2.179 1.00 3.00 0.670 12 2.583 2.00 3.00 0.515 M1sup5 93 3.456 2.00 5.00 0.586 14 2.571 2.00 3.00 0.514 28 2.989 2.00 5.00 0.721 12 3.554 2.00 5.00 0.752 P4sup 93 2.043 1.00 4.00 0.721 14 1.929 1.00 3.00 0.475 28 1.964 1.00 4.00 0.838 12 2.083 1.00 3.00 0.515 P4sup2 93 3.376 2.00 5.00 0.588 14 3.214 2.00 4.00 0.699 28 2.500 1.00 3.00 0.638 12 2.583 2.00 3.00 0.515 P4sup3 93 2.769 1.00 4.00 0.511 14 2.984 2.00 4.00 0.665 28 2.090 1.00 4.00 0.613 12 2.000 1.00 3.00 0.426 P4sup4 93 3.215 2.00 5.00 0.640 14 3.071 2.00 4.00 0.616 28 2.643 1.00 4.00 0.780 12 3.833 3.00 5.00 0.577 P4sup5 93 3.355 1.00 5.00 0.717 14 3.143 2.00 4.00 0.663 28 2.750 1.00 4.00 0.645 12 2.833 2.00 3.00 0.389 P4sup6 93 3.380 2.00 5.00 0.549 14 2.929 2.00 4.00 0.475 28 2.357 1.00 3.00 0.559 12 2.667 2.00 3.00 0.492 P4sup7 93 3.304 2.00 4.00 0.566 14 3.357 3.00 4.00 0.497 28 2.571 2.00 3.00 0.504 12 2.417 2.00 3.00 0.515 P4sup8 93 3.522 2.00 5.00 0.580 14 3.500 3.00 4.00 0.519 28 3.036 2.00 4.00 0.693 12 2.750 2.00 3.00 0.452 P2sup 93 2.086 1.00 4.00 0.747 14 2.286 1.00 3.00 0.825 28 2.333 1.00 5.00 1.054 12 3.083 2.00 4.00 0.669 P2sup2 93 3.387 2.00 5.00 0.590 14 3.357 2.00 4.00 0.633 28 3.470 2.00 5.00 0.660 12 2.417 2.00 4.00 0.793 P2sup3 93 2.879 1.00 4.00 0.507 14 2.643 2.00 4.00 0.633 28 2.886 2.00 4.00 0.497 12 3.167 2.00 4.00 0.835 P2sup4 93 1.968 1.00 3.00 0.453 14 1.857 1.00 2.00 0.363 28 1.706 1.00 4.00 0.808 12 2.167 2.00 3.00 0.389 CingCsup 93 2.044 1.00 4.00 0.896 14 2.286 1.00 4.00 1.069 28 2.443 1.00 4.00 0.956 12 1.818 1.00 3.00 0.716 ZigW 93 2.767 2.00 4.00 0.676 14 3.857 3.00 4.00 0.363 28 3.359 2.00 5.00 0.860 12 3.700 3.00 4.00 0.437 InfO 93 2.753 2.00 4.00 0.686 14 3.500 3.00 4.00 0.519 28 2.357 1.00 4.00 0.826 12 3.728 2.00 5.00 0.750 InfO2 93 2.903 2.00 4.00 0.490 14 2.714 2.00 3.00 0.469 28 3.500 2.00 5.00 0.839 12 2.728 2.00 4.00 0.617 I2supCsup 93 2.544 1.00 4.00 0.710 14 2.739 2.00 4.00 0.630 28 3.644 2.00 5.00 0.764 12 2.400 2.00 3.00 0.467 ProcCW 93 2.899 2.00 4.00 0.676 14 3.214 2.00 5.00 0.893 28 3.406 2.00 5.00 0.843 12 2.900 2.00 4.00 0.667 RmanW 93 2.974 1.00 4.00 0.466 14 3.061 2.43 4.00 0.447 28 2.118 1.00 3.00 0.489 12 2.300 1.00 3.00 0.611 Isup 93 2.615 1.00 4.00 0.688 14 2.571 1.00 4.00 0.852 28 3.068 2.00 4.00 0.767 12 3.463 2.56 4.00 0.573

33

Figure S4. Results of the discriminant function analyses based on the linear morphometric data of dental dimensions – first two canonical axes. Polygons follow marginal points of particular groups with coloured dots as centroids. A – all upper tooth-row dimensions of all specimens; B – all lower tooth-row dimensions employed in a separate analysis without individuals from marginal areas (eastern Afghanistan, Arabia and Ethiopia).

34 Figure S5. The main shape variable (RW1) plotted against the centroid size (CS2) of the lateral view of skull. Polygons and coloured dots as in Fig. S4.

35