1020X1320-7 - Jsp Fall 2015.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

1020X1320-7 - Jsp Fall 2015.Pdf Journal of Space Philosophy 4, no. 2 (Fall, 2015) Dedication The Kepler Space Institute Board of Directors dedicate this Fall 2015 issue of the Journal of Space Philosophy to the need for humankind to ensure Space becomes an environment for all to live, flourish, and survive in harmony and peace. 2 Journal of Space Philosophy 4, no. 2 (Fall 2015) Preface We continue to develop the presentation of the Journal of Space Philosophy, and we again thank Isabelle Ramirez and Naté Sushereba in our Florida Office for their ongoing creative work. There are two main foci in this issue. The first is on ensuring ethical behavior on Earth and in Space. Our first feature article by Yehezkel Dror, on preventing Hell on Earth, addresses the problem of the oppressive behavior that is likely to develop following the harsh transition crises we can expect to encounter as technology develops and humans move into space. In our second feature article, Mike Snead points the way forward into Space, introducing the second focus on productive uses of space. George Robinson contributes an assessment of the current state of Space law and in particular the absence of any explicit universal rights. Stephanie Thorburn offers some progressive etudes on consciousness. Terry Tang explains some key determinants for experimentation in space. William Mook offers some thoughts on the production and uses of positronium. We are proud to offer readers this seventh issue of the Journal of Space Philosophy. Submissions, to [email protected], will be considered for publication from anyone on Earth or in Space. Views contained in articles are those of the authors; they do not necessarily reflect the policy of Kepler Space Institute. Reproduction and downloading of Journal content for educational purposes is permitted; but authors hold copyrights of their material and professional accreditation is required. Bob Krone, PhD, Editor-in-Chief Gordon Arthur, PhD, Associate Editor 3 Journal of Space Philosophy 4, no. 2 (Fall 2015) JOURNAL OF SPACE PHILOSOPHY Vol. 4, No. 2, Fall 2015 CONTENTS REGULARS: 1. “Journal Cover”........................................................................................................................ 1 2. “Dedication” ............................................................................................................................. 2 3. “Preface,” Bob Krone and Gordon Arthur ............................................................................. 3 4. “Contents” ................................................................................................................................ 4 5. “Press Release: Issue #6,” Nate Sushereba ......................................................................... 5 6. “Notes from the Chairman,” Gordon Holder, KSI Board Chairman .................................... 7 7. “Letters-to-the-Editor,” James Michael “Mike” Snead ......................................................... 8 8. “Sponsors” ............................................................................................................................. 10 FEATURE ARTICLES: 9. “Preventing Hell on Earth,” Yehezkel Dror .......................................................................... 16 10. “Becoming Spacefaring: America’s Path Forward in Space.” James Michael “Mike” Snead ....................................................................................................................................... 28 OTHER ARTICLES: 11. “Passing the Philosophic Torch of Basic Rights and Freedoms for Space Migrants to Evolve and Survive … or become Extinct: A Proposed Modified US Declaration of Independence and Future Constitution Applicable to Long Duration and Permanent Spacekind Inhabitants,” George S. Robinson..................................................................... 74 12. “Progressive Etudes on Consciousness and Noetic Sciences,” Stephanie Lynn Thorburn ................................................................................................................................. 82 13. “Key Determinants in Space Science Experimentation,” Terry Tang .............................. 87 14. “Industrial Production of Positronium and Its Uses, William Mook ................................. 96 15. “Editors” ............................................................................................................................... 109 Access to the Journal of Space Philosophy and free downloading of its articles is available at bobkrone.com/node/120. Anyone on Earth or in Space may submit an article or Letter to the Editor to [email protected]. 4 Journal of Space Philosophy 4, no. 2 (Fall 2015) PRESS RELEASE December 11, 2015 By Naté Sushereba The Kepler Space Institute, Inc. (KSI) closes out its publications for 2015 with the seventh issue of the Journal of Space Philosophy. It is dedicated to the need for humankind to insure Space becomes an environment for all to live, flourish, and survive in harmony and peace; and has a Board of Editors composed of forty-two professional Space Community members. The KSI Chairman of the Board of Directors, Gordon Holder introduces this issue as follows: The leaders of Kepler Space Institute might best be described as dreamers – envisioning a not-too-distant future in which humans expand our world-wide civilization into extraterrestrial Space. There is a wide body of science and technology behind a global movement toward that end today, and it will continue to increase rapidly into the future. Kepler Space Institute is dedicated to providing an educational forum for today’s young professionals to become tomorrow’s leaders, and aims to combine disciplines and studies into an educational program. We are also exploring domains with other scientists where scientific advances are providing new, exciting areas of research that will complement our ventures into the current unknown of Space. Our ultimate goal is to enhance and enable those that seek to develop this adventure. The two featured articles address the serious problem of “Preventing Hell on Earth” by Professor Yehezkel Dror, the Co-Founder of the Policy Sciences, and America’s Spacefaring future by James Michael “Mike” Snead, one of the world’s leading researchers in that area. The co-editors of the Journal of Space Philosophy, Dr. Bob Krone and Dr. Gordon Arthur, continue the Journal’s history of the capturing of Space knowledge and research in this issue with articles by Dr. George S. Robinson, Stephanie Lynn Thorburn, Dr. Terry Tang, and Professional Space Engineer, William Mook. The directors of KSI are proud to announce in this issue the forthcoming special issue of the Journal of Space Philosophy, which will contain a major science paper by Dr. Louis H. Kauffman and Dr. Joel D. Isaacson titled “Recursive Distinctioning.” 4 Journal of Space Philosophy 4, no. 2 (Fall 2015) Readers will find the subject in the Joel Isaacson article, “Nature’s Cosmic Intelligence,” published in the Fall 2012 issue of this journal, and in the “Letter to the Editors” article in the Spring 2015 issue, titled “Recursive Distinguishing” by Joel D. Isaacson and Louis H. Kauffman, April 28, 2015. Space Educators will find the seven published issues of the Journal of Space Philosophy to be a unique professional research source for their classes and publications. 5 Journal of Space Philosophy 4, no. 2 (Fall 2015) A Note from the Chairman of the Board By Gordon Holder The leaders of Kepler Space Institute might best be described as dreamers – envisioning a not-too-distant future in which humans expand our world-wide civilization into extraterrestrial space. There is a wide body of science and technology behind a global movement toward that end today, and it will continue to increase rapidly into the future. This is an extremely interesting and maybe unique consideration given that our board has a quite diversified membership. For example, we have a retired Air Force officer with a PhD, a true scientist with a PhD, a former newspaper columnist, a retired engineer and US Air Force technical sergeant, and a retired Navy Vice Admiral with a specialty in surface warfare. Our other board members are in the supporting roles that allow us to highlight our desires for development and exploration of the space. The unifying aspect of all of these folks is the desire to prepare our future leaders to continue the expansion of space exploration and work on defining and refining those items that are not the province of NASA or other private space exploration agencies. It is most interesting that today’s television science fiction deals ever more with extraterrestrials and suggestions that there is life beyond our earth. We want to ensure that our future leaders are ready to deal with the unknowns that will be presented. There is also a tremendous amount of study and thought about the multiple ramifications of this movement – on economics and governance, international relations, on the human mind and body, and even on our spirituality. Kepler Space Institute is dedicated to providing an educational forum for today’s young professionals to become tomorrow’s leaders, and aims to combine these disciplines and studies into an educational program. Not only are we working to facilitate this education, but working with other distinguished scientific leaders, we are also exploring domains with other scientists where scientific advances are providing new, exciting areas of research that will complement our ventures into the current unknown of space. Our ultimate
Recommended publications
  • Mechanical Aspire
    Newsletter Volume 6, Issue 11, November 2016 Mechanical Aspire Achievements in Sports, Projects, Industry, Research and Education All About Nobel Prize- Part 35 The Breakthrough Prize Inspired by Nobel Prize, there have been many other prizes similar to that, both in amount and in purpose. One such prize is the Breakthrough Prize. The Breakthrough Prize is backed by Facebook chief executive Mark Zuckerberg and Google co-founder Sergey Brin, among others. The Breakthrough Prize was founded by Brin and Anne Wojcicki, who runs genetic testing firm 23andMe, Chinese businessman Jack Ma, and Russian entrepreneur Yuri Milner and his wife Julia. The Breakthrough Prizes honor important, primarily recent, achievements in the categories of Fundamental Physics, Life Sciences and Mathematics . The prizes were founded in 2012 by Sergey Brin and Anne Wojcicki, Mark Zuckerberg and Priscilla Chan, Yuri and Julia Milner, and Jack Ma and Cathy Zhang. Committees of previous laureates choose the winners from candidates nominated in a process that’s online and open to the public. Laureates receive $3 million each in prize money. They attend a televised award ceremony designed to celebrate their achievements and inspire the next generation of scientists. As part of the ceremony schedule, they also engage in a program of lectures and discussions. Those that go on to make fresh discoveries remain eligible for future Breakthrough Prizes. The Trophy The Breakthrough Prize trophy was created by Olafur Eliasson. “The whole idea for me started out with, ‘Where do these great ideas come from? What type of intuition started the trajectory that eventually becomes what we celebrate today?’” Like much of Eliasson's work, the sculpture explores the common ground between art and science.
    [Show full text]
  • Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
    ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture .........................................................................
    [Show full text]
  • Mathematics Calendar
    Mathematics Calendar Please submit conference information for the Mathematics Calendar through the Mathematics Calendar submission form at http:// www.ams.org/cgi-bin/mathcal-submit.pl. The most comprehensive and up-to-date Mathematics Calendar information is available on the AMS website at http://www.ams.org/mathcal/. June 2014 Information: http://www.tesol.org/attend-and-learn/ online-courses-seminars/esl-for-the-secondary- 1–7 Modern Time-Frequency Analysis, Strobl, Austria. (Apr. 2013, mathematics-teacher. p. 429) * 2–30 Algorithmic Randomness, Institute for Mathematical Sciences, 2–5 WSCG 2014 - 22nd International Conference on Computer National University of Singapore, Singapore. Graphics, Visualization and Computer Vision 2014, Primavera Description: Activities 1. Informal Collaboration: June 2–8, 2014. 2. Hotel and Congress Centrum, Plzen (close to Prague), Czech Repub- Ninth International Conference on Computability, Complexity and lic. (Jan. 2014, p. 90) Randomness (CCR 2014): June 9–13, 2014. The conference series 2–6 AIM Workshop: Descriptive inner model theory, American “Computability, Complexity and Randomness” is centered on devel- Institute of Mathematics, Palo Alto, California. (Mar. 2014, p. 312) opments in Algorithmic Randomness, and the conference CCR 2014 2–6 Computational Nonlinear Algebra, Institute for Computational will be part of the IMS programme. The CCR has previously been held and Experimental Research in Mathematics, (ICERM), Brown Univer- in Cordoba 2004, in Buenos Aires 2007, in Nanjing 2008, in Luminy sity, Providence, Rhode Island. (Nov. 2013, p. 1398) 2009, in Notre Dame 2010, in Cape Town 2011, in Cambridge 2012, and in Moscow 2013; it will be held in Heidelberg 2015. 3. Informal 2–6 Conference on Ulam’s type stability, Rytro, Poland.
    [Show full text]
  • On-Orbit Servicing and Refueling Concepts!
    On-orbit Servicing and Refueling Concepts! June 17, 2015 Benjamin B. Reed Deputy Project Manager Satellite Servicing Capabilities Office http://ssco.gsfc.nasa.gov Pre-decisional. Do not forward or post without the consent of [email protected] Introduction! • Over the past five years, NASA has: – Invested in satellite-servicing technologies and tested them on the ground and in orbit – Examined several different “design reference missions” • Non-Shuttle-based Hubble Space Telescope • Propellant depot • 30-m telescope assembly • GOES-12 refueling (GEO) • Landsat 7 refueling (LEO) Growing momentum towards robotic satellite servicing capability. Pre-decisional. Do not forward or post without the consent of [email protected] 2 In Space Robotic Servicing ! • The Satellite Servicing Capabilities Office is responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. To meet these objectives it: – Conducts studies – Conducts demonstration experiments in orbit and on the ground – Manages technology development and satellite servicing missions – Advises and designs cooperative servicing elements and subsystems Pre-decisional. Do not forward or post without the consent of [email protected] 3 In Space Robotic Servicing Team and Partners! Johnson Space Canadian Space Center Agency Goddard Space Flight Center Department of Defense Space Test Program Glenn Research Center WVU RPI JHU UMD Naval Research Kennedy Laboratory Space Center Pre-decisional. Do not forward or post without the consent of [email protected] 4 Servicing Supports Multiple Objectives! On-orbit Assembly Asteroid Infrastructure Redirection Inspection and Maintenance Fleet Management Government and Commercial Human Exploration Observatory Servicing Servicing Planetary Capabilities! Defense Propellant Depot 5 5 Pre-decisional.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Meetings & Conferences of The
    Meetings & Conferences of the AMS IMPORTANT INFORMATION REGARDING MEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in the print version of the Notices. However, comprehensive and continually updated meeting and program information with links to the abstract for each talk can be found on the AMS website. See http://www.ams.org/meetings/. Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL and in an electronic issue of the Notices as noted below for each meeting. abstract submission form found at http://www.ams.org/ Knoxville, Tennessee cgi-bin/abstracts/abstract.pl. University of Tennessee, Knoxville Algebraic Methods in Graph Theory and Combinator- ics (Code: SS 7A), Felix Lazebnik, University of Delaware, March 21–23, 2014 Andrew Woldar, Villanova University, and Bangteng Xu, Friday – Sunday Eastern Kentucky University. Arithmetic of Algebraic Curves (Code: SS 9A), Lubjana Meeting #1097 Beshaj, Oakland University, Caleb Shor, Western New Eng- Southeastern Section land University, and Andreas Malmendier, Colby College. Associate secretary: Brian D. Boe Commutative Ring Theory (in honor of the retirement Announcement issue of Notices: January 2014 of David E. Dobbs) (Code: SS 1A), David Anderson, Uni- Program first available on AMS website: February 6, 2014 versity of Tennessee, Knoxville, and Jay Shapiro, George Program issue of electronic Notices: March 2014 Mason University. Issue of Abstracts: Volume 35, Issue 2 Completely Integrable Systems and Dispersive Nonlinear Deadlines Equations (Code: SS 12A), Robert Buckingham, University of Cincinnati, and Peter Perry, University of Kentucky. For organizers: Expired Complex Analysis, Probability, and Metric Geometry For abstracts: January 28, 2014 (Code: SS 11A), Matthew Badger, Stony Brook University, Jim Gill, St.
    [Show full text]
  • January 2013 Prizes and Awards
    January 2013 Prizes and Awards 4:25 P.M., Thursday, January 10, 2013 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Eric Friedlander, President LEVI L. CONANT PRIZE: JOHN BAEZ, JOHN HUERTA American Mathematical Society E. H. MOORE RESEARCH ARTICLE PRIZE: MICHAEL LARSEN, RICHARD PINK DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY DAVID P. ROBBINS PRIZE: ALEXANDER RAZBOROV TEACHING OF MATHEMATICS RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: MARYAM MIRZAKHANI Mathematical Association of America LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: YAKOV SINAI EULER BOOK PRIZE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: JOHN GUCKENHEIMER, PHILIP HOLMES Mathematical Association of America LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: SAHARON SHELAH LEVI L. CONANT PRIZE OSWALD VEBLEN PRIZE IN GEOMETRY: IAN AGOL, DANIEL WISE American Mathematical Society DAVID P. ROBBINS PRIZE FOR AMS-SIAM American Mathematical Society NORBERT WIENER PRIZE IN APPLIED MATHEMATICS: ANDREW J. MAJDA OSWALD VEBLEN PRIZE IN GEOMETRY FOR AMS-MAA-SIAM American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY ALICE T. SCHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN AN UNDERGRADUATE STUDENT: FAN WEI Association for Women in Mathematics FOR AWM LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: AMY COHEN Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE
    [Show full text]
  • ANNEXURE 1 School of Mathematics Sciences —A Profile As in March 2010
    University Yearbook (Academic Audit Report 2005-10) ANNEXURE 1 School of Mathematics Sciences —A Profile as in March 2010 Contents 1. Introduction 1 1.1. Science Education: A synthesis of two paradigms 2 2. Faculty 3 2.1. Mathematics 4 2.2. Physics 12 2.3. Computer Science 18 3. International Links 18 3.1. Collaborations Set Up 18 3.2. Visits by our faculty abroad for research purposes 19 3.3. Visits by faculty abroad to Belur for research purposes 19 4. Service at the National Level 20 4.1. Links at the level of faculty 20 5. Student Placement 21 5.1. 2006-8 MSc Mathematics Batch 21 5.2. 2008-10 MSc Mathematics Batch 22 6. Research 23 1. Introduction Swami Vivekananda envisioned a University at Belur Math, West Bengal, the headquarters of the Ramakrishna Mission. In his conversation with Jamshedji Tata, it was indicated that the spirit of austerity, service and renun- ciation, traditionally associated with monasticism could be united with the quest for Truth and Universality that Science embodies. An inevitable fruit of such a synthesis would be a vigorous pursuit of science as an aspect of Karma Yoga. Truth would be sought by research and the knowledge obtained disseminated through teach- ing, making knowledge universally available. The VivekanandaSchool of Mathematical Sciences at the fledgling Ramakrishna Mission Vivekananda University, headquartered at Belur, has been set up keeping these twin ide- als in mind. We shall first indicate that at the National level, a realization of these objectives would fulfill a deeply felt National need. 1.1.
    [Show full text]
  • China's Strategic Modernization: Implications for the United States
    CHINA’S STRATEGIC MODERNIZATION: IMPLICATIONS FOR THE UNITED STATES Mark A. Stokes September 1999 ***** The views expressed in this report are those of the author and do not necessarily reflect the official policy or position of the Department of the Army, the Department of the Air Force, the Department of Defense, or the U.S. Government. This report is cleared for public release; distribution is unlimited. ***** Comments pertaining to this report are invited and should be forwarded to: Director, Strategic Studies Institute, U.S. Army War College, 122 Forbes Ave., Carlisle, PA 17013-5244. Copies of this report may be obtained from the Publications and Production Office by calling commercial (717) 245-4133, FAX (717) 245-3820, or via the Internet at [email protected] ***** Selected 1993, 1994, and all later Strategic Studies Institute (SSI) monographs are available on the SSI Homepage for electronic dissemination. SSI’s Homepage address is: http://carlisle-www.army. mil/usassi/welcome.htm ***** The Strategic Studies Institute publishes a monthly e-mail newsletter to update the national security community on the research of our analysts, recent and forthcoming publications, and upcoming conferences sponsored by the Institute. Each newsletter also provides a strategic commentary by one of our research analysts. If you are interested in receiving this newsletter, please let us know by e-mail at [email protected] or by calling (717) 245-3133. ISBN 1-58487-004-4 ii CONTENTS Foreword .......................................v 1. Introduction ...................................1 2. Foundations of Strategic Modernization ............5 3. China’s Quest for Information Dominance ......... 25 4.
    [Show full text]
  • A Value Proposition for Lunar Architectures Utilizing On-Orbit Propellant Refueling
    A VALUE PROPOSITION FOR LUNAR ARCHITECTURES UTILIZING ON-ORBIT PROPELLANT REFUELING By James Jay Young In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the School of Aerospace Engineering Georgia Institute of Technology May 2009 Copyright © 2009 by James J. Young A VALUE PROPOSITION FOR LUNAR ARCHITECTURES UTILIZING ON-ORBIT PROPELLANT REFUELING Approved by: Dr. Alan W. Wilhite, Chairman Dr. Douglas Stanley School of Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Trina M. Chytka Dr. Daniel P. Schrage Vehicle Analysis Branch School of Aerospace Engineering NASA Langley Research Center Georgia Institute of Technology Dr. Carlee A. Bishop Electronics Systems Laboratory Georgia Tech Research Institute Date Approved: October 29, 2008 ACKNOWLEDGEMENTS As I sit down to acknowledge all the people who have helped me throughout my career as a student I realized that I could spend pages thanking everyone. I may never have reached all of my goals without your endless support. I would like to thank all of you for helping me achieve me goals. I would like to specifically thank my thesis advisor, Dr. Alan Wilhite, for his guidance throughout this process. I would also like to thank my committee members, Dr. Carlee Bishop, Dr. Trina Chytka, Dr. Daniel Scharge, and Dr. Douglas Stanley for the time they dedicated to helping me complete my dissertation. I would also like to thank Dr. John Olds for his guidance during my first two years at Georgia Tech and introducing me to the conceptual design field. I must also thank all of the current and former students of the Space Systems Design Laboratory for helping me overcome any technical challenges that I encountered during my research.
    [Show full text]
  • Preface Issue 4-2014
    Jahresber Dtsch Math-Ver (2014) 116:199–200 DOI 10.1365/s13291-014-0108-4 PREFACE Preface Issue 4-2014 Hans-Christoph Grunau © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2014 The last few years have been a good time for solving long standing geometrical- topological conjectures. This issue reports on the solution of the Willmore conject-√ ure—the “best” topological torus is a “real” torus with ratio of radii equal to 2— and one of Thurston’s conjectures—every hyperbolic 3-manifold can be fibered over a circle, up to passing to a finite cover. Starting in the 1960s, Thomas Willmore studied the integral of the squared mean curvature of surfaces in R3 as the simplest but most interesting frame invariant elas- tic bending energy. This energy had shown up already in the early 19th century—too early for a rigorous investigation. Willmore asked: What is the shape of a compact surface of fixed genus minimising the Willmore energy in this class? (In the 1990s, existence of minimisers was proved by Leon Simon, with a contribution by Matthias Bauer and Ernst Kuwert.) Willmore already knew that the genus-0-minimiser is a sphere. Assuming that symmetric surfaces require less energy than asymmetric ones (which has not been proved, yet) he studied families√ of geometric tori with the smaller radius 1 fixed and found that the larger radius 2 would yield the minimum in this very special family. He conjectured that this particular torus would be the genus- 1-minimiser. Almost 50 years later Fernando Marques and André Neves found and published a 100-page-proof.
    [Show full text]
  • Depot for Martian and Extraterrestrial Transport Resupply (Demetr)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2018 Depot for Martian and Extraterrestrial Transport Resupply (DeMETR) Emily Beckman University of Tennessee-Knoxville, [email protected] Ethan Vogel University of Tennessee-Knoxville Caleb Peck University of Tennessee-Knoxville Nicholas Patterson University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Navigation, Guidance, Control and Dynamics Commons, Propulsion and Power Commons, Space Vehicles Commons, and the Systems Engineering and Multidisciplinary Design Optimization Commons Recommended Citation Beckman, Emily; Vogel, Ethan; Peck, Caleb; and Patterson, Nicholas, "Depot for Martian and Extraterrestrial Transport Resupply (DeMETR)" (2018). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/2191 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. PROPELLANT RESUPPLY CAPABILITY DEPOT FOR MARTIAN AND EXTRATERRESTRIAL TRANSPORT RESUPPLY (DEMETR) UNIVERSITY OF TENNESSEE Faculty Advisor: Dr. James Lyne I. INTRODUCTION This mission architecture was designed to meet the requirements of the NASA RASC-ALs propellant resupply capability theme. The Depot for Martian and Extraterrestrial Transport Resupply (DeMETR) station and the High-orbit Resupply Module for Exploratory Spacecraft (HRMES) will deliver 19.6 T of Xenon and a combined 8.1 T of dinitrogen tetroxide (NTO) and Monomethylhydrazine (MMH) oxidizer to the Deep Space Transport in cis-lunar space [1].
    [Show full text]