Neutrosophic Logic, Wave Mechanics, and Other Stories

Total Page:16

File Type:pdf, Size:1020Kb

Neutrosophic Logic, Wave Mechanics, and Other Stories FLORENTIN SMARANDACHE & V. CHRISTIANTO NEUTROSOPHIC LOGIC, WAVE MECHANICS, AND OTHER STORIES SELECTED WORKS 2005-2008 FLORENTIN SMARANDACHE & V. CHRISTIANTO NEUTROSOPHIC LOGIC, WAVE MECHANICS, AND OTHER STORIES SELECTED WORKS 2005-2008 KOGAÏON ÉDITIONS, 2009 1 The front cover image represents the first author at a conference in Indonesia in 2006 showing the journals "Progress in Physics" and "Infinite Energy". KOGAÏON ÉDITIONS, 2009 Division of CASA GROUP OF COMPANIES SRL ,Κcoala Her۷str۷u street, code 014153 ,62 Bucharest - Romania, Europe Website: www.kogaion-editions.com e-mail: [email protected] Tél./fax: 0040-21-317.01.14 Copyright 2009 by Kogaïon Éditions and the Authors. Plenty of ebooks can be downloaded from the following Science Digital Library: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm Peer Reviewers: (a) Dr. M. Khoshnevisan -- School of Accounting and Finance, Griffith University, Gold Coast, Queensland 9726, Australia (b) Mark Alford, AFRL/RIEA, 525 Brooks Road, Rome, NY 13441-4503, USA (c) Alok Dhital, Math & Sciences Dept., University of New Mexico, Gallup, NM 87301, USA (ISBN-13): 978-973-7609-31-1 (EAN): 9789737609311 Published in Romania 2 FOREWORD There is beginning for anything; we used to hear that phrase. The same wisdom word applies to us too. What began in 2005 as a short email on some ideas related to interpretation of the Wave Mechanics results in a number of papers and books up to now. Some of these papers can be found in Progress in Physics or elsewhere. It is often recognized that when a mathematician meets a physics-inclined mind then the result is either a series of endless debates or publication. In our story, we prefer to publish rather than perish. Therefore, our purpose with this book is to present a selection of published papers in a compilation which enable the readers to find some coherent ideas which appear in those articles. For this reason, the ordering of the papers here is based on categories of ideas. While some of these articles have been published in book format elsewhere, we hope that reading this book will give the readers an impression of the progress of our thoughts. A few other papers are not yet published elsewhere, or being planned to publish in other journal. We wish to extend our sincere gratitude to plenty of colleagues, friends and relatives all around the world for sharing their ideas, insightful discussions etc. Special thanks to D. Rabounski, S. Crothers, L. Borissova for their great service in Progress in Physics journal. One of these authors (VC) would like to thank to Profs. A. Yefremov and M. Fil’chenkov for all hospitality extended to him in the Institute of Gravitation and Cosmology of PFUR, where this book is prepared. Discussions with Prof. V.V. Kassandrov, Prof. V. Ivashchuk, & Prof. Yu P. Rybakov are appreciated. Many thanks also to Dr. S. Trihandaru and others from UKSW, Central 3 Java,Indonesia. Sincere thanks to good friends in PFUR, especially to D. Kermite, Y. Umniyati, Anastasia Golubtsova & Serguey– all other friends are of course worth mentioning here, but the margin of this book is quite limited to mention all of you. And to all other scientist colleagues, allow us to say: Full speed ahead! FS & VC, March 2009 4 NEUTROSOPHIC LOGIC, WAVE MECHANICS, AND OTHER STORIES: SELECTED WORKS 2005-2008 CONTENT Foreword 3 Content 5 A. Unmatter and the Elementary Particles 1. “A new form of Matter-Unmatter, composed of Particles and Anti- Particles,” – F. Smarandache (PIP, Vol. 1, 2005) 8 2. “Verifying Unmatter by Experiments, More types of Unmatter, and a Quantum Chromodynamics formula,” – F. Smarandache (PIP, Vol. 2, 2005) 11 3. “Unmatter Entities inside Nuclei, predicted by the Brightsen Nucleon Cluster Model,” – F. Smarandache & D. Rabounski (PIP, Vol. 1, 2006) 15 4. “On Emergent Physics, Unparticles and Exotic Unmatter States,” – E. Goldfain & F. Smarandache, (PIP Vol. 4, 2008) 20 5. “Thirty Unsolved problems in the physics of elementary particles,” - V. Christianto & F. Smarandache (PIP Vol.4, 2007) 26 B. Entanglement, Neutrosophic Logic, and applications 6. “There is no speed barrier for a wave phase nor for Entangled Particles,” – F. Smarandache (PIP, Vol. 1, 2005) 29 7. “Entangled states and Quantum Causality Threshold in the General Theory of Relativity,” – D. Rabounski, L. Borissova, & F. Smarandache (PIP, Vol. 2, 2005) 31 8. “Quantum Quasi-Paradoxes and Quantum Sorites Paradox,” – F. Smarandache (PIP, Vol. 1, 2005) 38 9. “The Neutrosophic Logic view to Schrödinger’s cat paradox,” – F. Smarandache & V. Christianto (PIP, Vol. 2, 2006) 40 10. “The Neutrosophic Logic view to Schrödinger’s cat paradox, Revisited,” – V. Christianto & F. Smarandache (PIP, Vol. 3, 2008) 45 11. “A note on Geometric and Information Fusion Interpretation of Bell’s theorem and Quantum Measurement,”– F. Smarandache & V. Christianto (PIP, Vol. 4, 2006) 50 5 12. “Extension of Inagaki General Weighted Operators and a new fusion Rule Class,”– F. Smarandache (June 2008) 55 13. “n-ary Fuzzy Logic and Neutrosophic Logic Operators,”– F. Smarandache & V. Christianto (Octogon, to appear 2009) 59 C. Wave Mechanics, Gravitation and Quantization in Astrophysics 14. “Schrödinger equation and the Quantization of Celestial systems,”– F. Smarandache & V. Christianto (PIP, Vol. 2, 2006) 74 15. “Plausible explanation of quantization of intrinsic redshift from Hall effect and Weyl Quantization,”– F. Smarandache & V. Christianto (PIP, Vol. 4, 2006) 79 16. “Numerical Solution of Time-dependent Gravitational Schrödinger equation,”– V. Christianto & F. Smarandache (PIP, Vol. 2, 2007) 83 17. “Kaluza-Klein-Carmeli metric from Quaternion-Clifford-space, Lorentz’s force and some observables,”– V. Christianto & F. Smarandache (PIP, Vol. 2, 2008) 88 18. “A note of Extended Proca equations and Superconductivity,”– V. Christianto & F. Smarandache (PIP, Vol. 1, 2009) 95 D. Other topics: Quaternion space and their applications 19. “Less mundane explanation of Pioneer anomaly from Q- relativity,”– F. Smarandache & V. Christianto (PIP, Vol. 1, 2007) 99 20. “Notes on Pioneer anomaly acceleration by Satellite-Shift formula of Quaternion Relativity,”– A.P. Yefremov (PIP, Vol. 2, 2007) 103 21. “Reply to Notes on Pioneer anomaly acceleration by Satellite-Shift formula of Quaternion Relativity,”–V. Christianto & F. Smarandache (PIP, Vol. 3, 2007) 107 22. “Yang-Mills field from Quaternion Space Geometry, and its Klein- Gordon representation,” – A.P. Yefremov, F. Smarandache , V. Christianto (PIP, Vol. 4, 2007) 110 23. “Numerical solution of biquaternion Klein-Gordon equation,”–V. Christianto & F. Smarandache (PIP, Vol. 1, 2008) 119 24. “On PT-symmetric periodic potential, Quark Confinement,” –V. Christianto & F. Smarandache (PIP, Vol. 1, 2009) 121 Pictures at an exhibition (2006) 124 6 FLORENTIN SMARANDACHE & V. CHRISTIANTO NEUTROSOPHIC LOGIC, WAVE MECHANICS, AND OTHER STORIES SELECTED WORKS 2005-2008 7 April, 2005 PROGRESS IN PHYSICS Volume 1 A New Form of Matter — Unmatter, Composed of Particles and Anti-Particles Florentin Smarandache Dept. of Mathematics, University of New Mexico, 200 College Road, Gallup, NM 87301, USA E-mail: [email protected]; [email protected] Besides matter and antimatter there must exist unmatter (as a new form of matter) in accordance with the neutrosophy theory that between an entity <A> and its opposite <AntiA> there exist intermediate entities <NeutA>. Unmatter is neither matter nor antimatter, but something in between. An atom of unmatter is formed either by (1): electrons, protons, and antineutrons, or by (2): antielectrons, antiprotons, and neutrons. At CERN it will be possible to test the production of unmatter. The existence of unmatter in the universe has a similar chance to that of the antimatter, and its production also difficult for present technologies. 1 Introduction Etymologically “un-matter” comes from [ME <OE, akin to Gr. an-, a-, Latin in-, and to the negative elements in no, This article is an improved version of an old manuscript [1]. not, nor] and [ME matiere` < OFr < Latin material] matter This is a theoretical assumption about the possible existence (see [3]), signifying no/without/off the matter. of a new form of matter. Up to day the unmatter was not There are two types of unmatter atoms, that we call checked in the lab. unatoms: According to the neutrosophy theory in philosophy [2], u1. The first type is derived from matter; and a such between an entity <A> and its opposite <AntiA> there exist unmatter atom is formed by electrons, protons, and intermediate entities <NeutA> which are neither <A> nor antineutrons; <AntiA>. u2. The second type is derived from antimatter, and a such Thus, between “matter” and “antimatter” there must exist unmatter atom is formed by antielectrons, antiprotons, something which is neither matter nor antimatter, let’s call it and neutrons. UNMATTER. In neutrosophy, <NonA> is what is not <A>, i. e. One unmatter type is oppositely charged with respect to <NonA> = <AntiA> ∪ <NeutA>. Then, in physics, NON- the other, so when they meet they annihilate. MATTER is what is not matter, i. e. nonmatter means anti- The unmatter nucleus, called unnucleus, is formed either matter together with unmatter. by protons and antineutrons in the first type, or by antiprotons and neutrons in the second type. The charge of unmatter should be neutral, as that of 2 Classification matter or antimatter. The charge of un-isotopes will also be neutral, as that A. Matter is made out of electrons, protons, and neutrons. of isotopes and anti-isotopes. But, if we are interested in a Each matter atom has electrons, protons, and neutrons, negative or positive charge of un-matter, we can consider except the atom of ordinary hydrogen which has no neutron. an un-ion. For example an anion is negative, then its cor- The number of electrons is equal to the number of pro- responding unmatter of type 1 will also be negative. While tons, and thus the matter atom is neutral. taking a cation, which is positive, its corresponding unmatter of type 1 will also be positive.
Recommended publications
  • General Relativity and Cosmology: Unsolved Questions and Future Directions
    Article General Relativity and Cosmology: Unsolved Questions and Future Directions Ivan Debono 1,∗,† and George F. Smoot 1,2,3,† 1 Paris Centre for Cosmological Physics, APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris CEDEX 13, France; [email protected] 2 Physics Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720 CA, USA 3 Helmut and Anna Pao Sohmen Professor-at-Large, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China * Correspondence: [email protected]; Tel.: +33-1-57276991 † These authors contributed equally to this work. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 21 August 2016; Accepted: 14 September 2016; Published: 28 September 2016 Abstract: For the last 100 years, General Relativity (GR) has taken over the gravitational theory mantle held by Newtonian Gravity for the previous 200 years. This article reviews the status of GR in terms of its self-consistency, completeness, and the evidence provided by observations, which have allowed GR to remain the champion of gravitational theories against several other classes of competing theories. We pay particular attention to the role of GR and gravity in cosmology, one of the areas in which one gravity dominates and new phenomena and effects challenge the orthodoxy. We also review other areas where there are likely conflicts pointing to the need to replace or revise GR to represent correctly observations and consistent theoretical framework. Observations have long been key both to the theoretical liveliness and viability of GR.
    [Show full text]
  • Conceptual Barriers to a Unified Theory of Physics 1 Introduction
    Conceptual barriers to a unified theory of physics Dennis Crossley∗ Dept. of Physics, University of Wisconsin-Sheboygan, Sheboygan, WI 53081 August 31, 2012 Abstract The twin pillars of twentieth-century physics, quantum theory and general relativity, have conceptual errors in their foundations, which are at the heart of the repeated failures to combine these into a single unified theory of physics. The problem with quantum theory is related to the use of the point-particle model, and the problem with general relativity follows from a misinterpretation of the significance of the equivalence principle. Correcting these conceptual errors leads to a new model of matter called the space wave model which is outlined here. The new perspective gained by space wave theory also makes it clear that there are conceptual errors in the two main thrusts of twenty-first- century theoretical physics, string theory and loop quantum gravity. The string model is no more satisfactory than the point-particle model and the notion that space must be quantized is, frankly, nonsensical. In this paper I examine all of these conceptual errors and suggest how to correct them so that we can once again make progress toward a unified theory of physics. 1 Introduction { the challenge of the unification program The goal of theoretical physics is to construct a single unified description of fundamental particles and their interactions, but flaws in the foundations of physics have prevented physi- cists from achieving this goal. In this essay I examine conceptual errors that have led to this impasse and propose alternatives which break this impasse and let us once again move forward toward the goal of a unified theory of physics.
    [Show full text]
  • (TEGR) As a Gauge Theory: Translation Or Cartan Connection? M Fontanini, E
    Teleparallel gravity (TEGR) as a gauge theory: Translation or Cartan connection? M Fontanini, E. Huguet, M. Le Delliou To cite this version: M Fontanini, E. Huguet, M. Le Delliou. Teleparallel gravity (TEGR) as a gauge theory: Transla- tion or Cartan connection?. Physical Review D, American Physical Society, 2019, 99, pp.064006. 10.1103/PhysRevD.99.064006. hal-01915045 HAL Id: hal-01915045 https://hal.archives-ouvertes.fr/hal-01915045 Submitted on 7 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Teleparallel gravity (TEGR) as a gauge theory: Translation or Cartan connection? M. Fontanini1, E. Huguet1, and M. Le Delliou2 1 - Universit´eParis Diderot-Paris 7, APC-Astroparticule et Cosmologie (UMR-CNRS 7164), Batiment Condorcet, 10 rue Alice Domon et L´eonieDuquet, F-75205 Paris Cedex 13, France.∗ and 2 - Institute of Theoretical Physics, Physics Department, Lanzhou University, No.222, South Tianshui Road, Lanzhou, Gansu 730000, P R China y (Dated: November 7, 2018) In this paper we question the status of TEGR, the Teleparallel Equivalent of General Relativity, as a gauge theory of translations. We observe that TEGR (in its usual translation-gauge view) does not seem to realize the generally admitted requirements for a gauge theory for some symmetry group G: namely it does not present a mathematical structure underlying the theory which relates to a principal G-bundle and the choice of a connection on it (the gauge field).
    [Show full text]
  • On the Goldstonic Gravitation Theory
    Pramina-J. Phys., Voi. 29, No. 1, July 1987, pp. 21-37. © Printed in India. On the Goldstonic gravitation theory D IVANENKO and G SARDANASHVILY Physics Faculty, Moscow University, 117234, Moscow, USSR Abstract. The physical specificity of gravity as a Goldstone-typ¢ field responsible for spontaneous breaking of space-time symmetries is investigated and extended up to supcrgrav- ity. Problems of the Higgs gravitation vacuum and its matter sources are discussed. A particular"dislocation" structure of a space-time due to Poincar6 translation gauge fields and the corresponding modification of Newton's gravitational potential are predicted. Keywords. Gauge theory; gravity; supergravity; Goldstone field. PACS Nos 04.50; 11.15 1. Introduction The geometric nature of gravity as a metric field was established by Einstein's general relativity which we take as the base of gravitation theory. The physical specificity of gravity as the Goldstone-type field is now clarified by means of gauge approach to gravitation theory (Sardanashvily 1980; Ivanenko and Sardanashvily 1983; Ivanenko et al 1985). At present, gauge theory is well known to provide the theoretical base of most part of current unification attempts in particle physics. Apparently, a necessary step for including gravity in the unified gauge picture of, fundamental interactions consists in constructing a comprehensive gauge gravitation theory itself. We share the opinion of many authors that a gauge gravitation theory must contain Einstein's general relativity as the particular case. However, the main dilemma that one faces is that Einstein's gravitational field is a metric (or tetrad) field, whereas gauge potentials are connections on fibre bundles.
    [Show full text]
  • Spacetime Geometric Structures and the Search for a Quantum Theory of Gravity
    Spacetime geometric structures and the search for a Quantum Theory of Gravity Mihaela Iftime Abstract. One of the biggest challenges to theoretical physics of our time is to ¯nd a background-independent quantum theory of gravity. Today one encounters a profusion of di®erent attempts at quantization, but no fully accepted - or acceptable, theory of quantum gravity. Any such approach requires a response to a question that lies at the heart of this problem. \How shall we resolve the tension between the background de- pendence of all hitherto-successful quantum theories, both non-relativistic quantum mechanics and special-relativistic quantum ¯eld theory, and the background independence of classical general relativity?" (see [28]) The need for a background-independent quantization procedure forms the starting point of my approach. In this paper I shall present a gauge-natural formulation of general relativity, and provide some insights into the struc- ture of the space of geometries, which plays an important role in the construction of a non-perturbative quantum gravity using a path integral approach, as well as in string theory (see e.g., [2, 18, 31]) M.S.C. 2000: 53-XX, 83-XX. Key words: Di®erential geometry, Relativity and gravitational theory. 1 Historical-Physical Motivation The most succesful among all gravitational theories is Einstein's theory of general relativity. In general relativity the ¯eld equations 1 are described in purely geometric terms: the space-time is a fairly smooth manifold M of dim n = 4 with a normal hyperbolic Riemannian structure { Lorentzian metric tensor g transforms at each point to the flat Minkowski metric ´ = diag(1; 1; 1; ¡1), and its timelike and null geodesics represent the paths of freely falling particles and light rays.
    [Show full text]
  • The Gauge Condition in Gravitation Theory with a Background Metric
    The gauge condition in gravitation theory with a background metric G. A. Sardanashvily Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia E-mail: [email protected] URL: http://webcenter.ru/∼sardan/ Abstract. In gravitation theory with a background metric, a gravitational field is described by a two-tensor field. The energy-momentum conservation law imposes a gauge condition on this field. Gravitation theory in the presence of a background metric remains under considera- tion. In particular, there are two variants of gauge gravitation theory [9, 10, 12]. The first of them leads to the metric-affine gravitation theory, while the second one (hence- forth BMT) deals with a background pseudo-Riemannian metric gµν and a non-degenerate µ (1,1)-tensor field q ν, regarded as a gravitational field. A Lagrangian of BMT is of the form LBMT = ǫLq + LAM + Lm, (1) µ where Lq is a Lagrangian of a tensor gravitational field q ν in the presence of a background µν µν metric g , LAM is a Lagrangian of the metric-affine theory where a metric g is replaced with an effective metric µν µ ν αβ g = q αq βg , (2) e and Lm is a matter field Lagrangian depending on an effective metric g and a general linear connection K (see, e.g., [5]). Note that, strictly speaking, g (2)e is not a metric, but there exists a metric whose coefficients equal gµν (2). Therefore,e one usually assumes that Lq depends on q only via an effective metriceg. arXiv:gr-qc/0301066v1 19 Jan 2003 A glance at the expression (1) shows that thee matter field equation in BMT is that of affine-metric theory where a metric g is replaced with an effective metric g.
    [Show full text]
  • Introduction to Physics of Elementary Particles
    INTRODUCTION TO PHYSICS OF ELEMENTARY PARTICLES INTRODUCTION TO PHYSICS OF ELEMENTARY PARTICLES O.M. BOYARKIN Nova Science Publishers, Inc. New York c 2007 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. For permission to use material from this book please contact us: Telephone 631-231-7269; Fax 631-231-8175 Web Site: http://www.novapublishers.com NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter cover herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services.
    [Show full text]
  • Scalar Fields in Particle Physics
    UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO Scalar Fields in Particle Physics Leonardo Antunes Pedro Supervisor: Doctor Gustavo da Fonseca Castelo Branco Thesis approved in public session to obtain the PhD Degree in Physics Jury final classification: Pass With Merit Jury Chairperson: Chairman of the IST Scientific Board Members of the Committee: arXiv:1608.01928v1 [hep-ph] 5 Aug 2016 Doctor Francisco José Botella Olcina Doctor Gustavo da Fonseca Castelo Branco Doctor Jorge Manuel Rodrigues Crispim Romão Doctor Maria Margarida Nesbitt Rebelo da Silva Doctor Paulo André de Paiva Parada Doctor David Emanuel da Costa 2015 UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO Scalar Fields in Particle Physics Leonardo Antunes Pedro Supervisor: Doctor Gustavo da Fonseca Castelo Branco Thesis approved in public session to obtain the PhD Degree in Physics Jury final classification: Pass With Merit Jury Chairperson: Chairman of the IST Scientific Board Members of the Committee: Doctor Francisco José Botella Olcina, Full Professor, Instituto de Física Corpuscular, Universitat de València, Spain Doctor Gustavo da Fonseca Castelo Branco, Full Professor, Instituto Superior Técnico, Universidade de Lisboa Doctor Jorge Manuel Rodrigues Crispim Romão, Full Professor, Instituto Superior Técnico, Universidade de Lisboa Doctor Maria Margarida Nesbitt Rebelo da Silva, Principal Researcher, Instituto Superior Técnico, Universidade de Lisboa Doctor Paulo André de Paiva Parada, Assistant Professor, Faculdade de Ciências, Universidade da Beira Interior Doctor David Emanuel da Costa, Assistant Researcher, Instituto Superior Técnico, Universidade de Lisboa Funding Institutions Fundação para a Ciência e a Tecnologia 2015 | Campos escalares em Física de Partículas Leonardo Antunes Pedro Doutoramento em Física Orientador Doutor Gustavo da Fonseca Castelo Branco Resumo Alargar o sector escalar ajuda a estudar o mecanismo de Higgs e alguns problemas do Modelo Padrão.
    [Show full text]
  • General Relativity and Cosmology: Unsolved Questions and Future Directions
    Article General Relativity and Cosmology: Unsolved Questions and Future Directions Ivan Debono 1,∗,† and George F. Smoot 1,2,3,† 1 Paris Centre for Cosmological Physics, APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris CEDEX 13, France 2 Physics Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720 CA, USA; [email protected] 3 Helmut and Anna Pao Sohmen Professor-at-Large, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China * Correspondence: [email protected]; Tel.: +33-1-57276991 † These authors contributed equally to this work. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 21 August 2016; Accepted: 14 September 2016; Published: 28 September 2016 Abstract: For the last 100 years, General Relativity (GR) has taken over the gravitational theory mantle held by Newtonian Gravity for the previous 200 years. This article reviews the status of GR in terms of its self-consistency, completeness, and the evidence provided by observations, which have allowed GR to remain the champion of gravitational theories against several other classes of competing theories. We pay particular attention to the role of GR and gravity in cosmology, one of the areas in which one gravity dominates and new phenomena and effects challenge the orthodoxy. We also review other areas where there are likely conflicts pointing to the need to replace or revise GR to represent correctly observations and consistent theoretical framework. Observations have long been key both to the theoretical liveliness and viability of GR.
    [Show full text]
  • Weak Space-Time Curvature Effects for Lepton Electric Charge Swap at High Energy Scale Elias Koorambas
    Weak Space-Time Curvature Effects for Lepton Electric Charge Swap at High Energy Scale Elias Koorambas To cite this version: Elias Koorambas. Weak Space-Time Curvature Effects for Lepton Electric Charge Swap atHigh Energy Scale. Journal of Magnetohydrodynamics, Plasma, and Space Research , NOVA SCIENCE PUBLISHERS, INC., 2015, 20 (3), pp.333-354. hal-01205635 HAL Id: hal-01205635 https://hal.archives-ouvertes.fr/hal-01205635 Submitted on 25 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Chapter WEAK SPACE-TIME CURVATURE EFFECTS FOR LEPTON ELECTRIC CHARGE SWAP AT HIGH ENERGY SCALE E. Koorambas Ampelokipi, Athens, Greece ABSTRACT We investigate the nature of a new kind of space-time curvature effects, produced by electric charge swap (ECS) transformations between families of leptons in the six- dimensional space time, We find that lepton ECS-transformations form the proper + Lorentz group SO (1,3)(ECS). We show that Einstein-type theory of weak space-time ECS- curvature effects can be formulated from the SL(2,C)(ECS) gauge group by using ECS- tetrad formalism. The latter yields to massless electrically charged spin-2 (ECS-graviton), which mediates the ECS exchange interaction between families of leptons.
    [Show full text]
  • A Black Hole Solution of Higher-Dimensional Weyl-Yang
    A BLACK HOLE SOLUTION OF HIGHER-DIMENSIONAL WEYL YANG KALUZA KLEIN THEORY − − − Halil Kuyrukcu Physics Department, Zonguldak B¨ulent Ecevit University, Zonguldak, 67100, Turkey E-mail: [email protected] Abstract. We consider the Weyl Yang gauge theory of gravitation in a (4 + 3)- − dimensional curved space-time within the scenario of the non-Abelian Kaluza Klein − theory for the source and torsion-free limits. The explicit forms of the field equations containing a new spin current term and the energy-momentum tensors in the usual four dimensions are obtained through the well-known dimensional reduction procedure. In this limit, these field equations admit (anti-)dyon and magnetic (anti-)monopole solutions as well as non-Einsteinian solutions in the presence of a generalized Wu Yang − ansatz and some specific warping functions when the extra dimensions associated with the round and squashed three-sphere S3 are, respectively, included. The (anti- )dyonic solution has similar properties to those of the Reissner Nordstr¨om de Sitter − − black holes of the Einstein Yang Mills system. However, the cosmological constant − − naturally appears in this approach, and it associates with the constant warping function as well as the three-sphere radius. It is demonstrated that not only the squashing parameter ℓ behaves as the constant charge but also its sign can determine whether the solution is a dyon/monopole or an antidyon/antimonopole. It is also shown by using the power series method that the existence of nonconstant warping function is essential for finding new exact Schwarzschild-like solutions in the considered model. arXiv:1602.02418v2 [gr-qc] 23 Sep 2021 PACS numbers: 04.50.Cd, 04.50.Kd, 04.20.Jb, 04.70.Bw Keywords: Modified theories of gravity, kaluza-klein theories, exact solutions, classical black holes 1.
    [Show full text]
  • Gauge Gravitation Theory from the Geometric Viewpoint
    GAUGE GRAVITATION THEORY FROM THE GEOMETRIC VIEWPOINT G.SARDANASHVILY Department of Theoretical Physics, Moscow State University This is the Preface to the special issue of International Journal of Geometric Methods in Modern Physics 3, N.1 (2006) dedicated to the 50th anniversary of gauge gravitation theory. It addresses the geometry underlying gauge gravitation theories, their higher-dimensional, super- gauge, and non-commutative extensions. At present, Yang–Mills gauge theory provides a universal description of the fundamental electroweak and strong interactions. Gauge gravitation theory from the very beginning [1] aims to extend this description to gravity. It started with gauge models of the Lorentz, Poincar´egroups and general covariant transformations [2–4]. At present, gauge gravity is mainly supergravity, higher-dimensional, non-commutative and quantum gravity [5–8]. This Preface can not pretend for any comprehensive analysis of gauge gravitation theories, but addresses only the geometry underlying them. We apologize in advance for that the list of references is far from to be complete. The first gauge model of gravity was suggested by Utiyama [1] in 1956 just two years after birth of the gauge theory itself. Utiyama was first who generalized the original gauge model of Yang and Mills for SU(2) to an arbitrary symmetry Lie group and, in particular, to the Lorentz group in order to describe gravity. However, he met the problem of treating arXiv:gr-qc/0512115v2 9 Feb 2006 general covariant transformations and a pseudo-Riemannian metric (a tetrad field) which had no partner in Yang–Mills gauge theory. In a general setting, fiber bundles provide the adequate geometric formulation of classical field theory where classical fields on a smooth manifold X are represented by sections of fiber bundles over X.
    [Show full text]