Beta Diversity Across the Complementary Zones of the Kogelberg Biosphere Reserve

Total Page:16

File Type:pdf, Size:1020Kb

Beta Diversity Across the Complementary Zones of the Kogelberg Biosphere Reserve Beta Diversity across the Complementary Zones of the Kogelberg Biosphere Reserve by Julia van Schalkwyk Dissertation presented for the degree of Doctor of Philosophy (Science) at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr. James S. Pryke Co-supervisor: Prof. Michael J. Samways Co-supervisor: Dr. René Gaigher April 2019 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: April 2019 Copyright © 2019 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za General summary Biodiversity loss is occurring at an alarming rate. Protected areas alone are not sufficient for long-term biodiversity conservation. To address this, conservation efforts need to incorporate the landscape surrounding protected areas. Biosphere reserves (BR) consist of three zones with different (but complementary) functions: a core area (dedicated specifically to long-term biodiversity conservation), an adjoining buffer zone (where activities should be compatible with the objectives of the core), and a flexible transition zone (where sustainable resource use and management is promoted). Zonation will generally match existing land-use patterns, and the buffer forms part of a continuous but increasing gradient of land-use intensity (LUI) as one moves away from the core. The aim of this study is to assess the success of biodiversity conservation of the different zones of the Kogelberg Biosphere Reserve (KBR) in response to increasing LUI away from the core. I focused on commercial fruit farming, since it is an important economic activity in the study area. I chose objectives that are related to the ecological function of each zone using arthropods as study organisms, and employed principles based on systematic conservation planning (SCP) and landscape ecology. The specific objectives were: 1) to determine whether arthropod diversity tracks plant diversity, 2) assess how well arthropod diversity is represented in the core zone, 3) to determine whether the buffer zone is effective in protecting the core from activities in the transition, 4) to assess whether the buffer zone complements arthropod diversity in the core zone, 5) to assess how orchards influence arthropod diversity in adjacent non-crop habitats, and 6) to determine how LUI at different spatial scales affects arthropod diversity within orchards. The results showed that arthropod diversity is relatively well-represented within the core zone, but that the buffer has important complementary value by adding ecological environments not present in the core. The buffer also improves the comprehensiveness of the reserve by establishing strong environmental gradients (which are important for congruence in plant and arthropod diversity). The KBR does not have a continuous buffer surrounding its core area, and this was reflected by the influence of anthropogenic activities (i.e. proximity to deciduous fruit orchards) on diversity in the core zone. This influence reached up to 1 km away from orchards, decreasing the effective conservation area of the core zone where the buffer is absent or not wide enough. Closer investigation showed that the observed edge responses were the result of ii Stellenbosch University https://scholar.sun.ac.za differential responses of different arthropod groups, and that they could be predicted by traits related to species habitat specialization (species which prefer natural habitats, species which prefer orchards, and species which occur in either). The results highlighted the variegated nature of the transformed landscapes that is not captured by patch-orientated views of fragmentation. This study also emphasises the importance of management actions within orchards on diversity in adjacent habitats and the associated non-visible heterogeneity. Arthropod diversity in orchards showed contrasting responses to increasing LUI at different spatial scales. Local LUI (management intensity) had a negative influence on some groups. Landscape scale LUI (in the form of more orchards in the landscape) increased species richness of a subset of species, and contributed to the homogenization of orchard arthropod diversity across the landscape. This highlights the need to consider the influence of LUI on diversity at different spatial scales. Principles from SCP and landscape ecology are valuable for prioritizing conservation efforts, and for guiding planning and management towards promoting biodiversity across the entire landscape. To enhance arthropod diversity across the KBR, the most important recommendations from this study are to include a range of abiotic variables (especially variables related to climate and geology) in conservation areas. This implies conservation efforts should not be restricted to only the core zone. While LUI was important in determining diversity at the local scale, non-crop habitats are essential for enhancing farmland diversity across the entire BR. iii Stellenbosch University https://scholar.sun.ac.za Algemene opsomming Biodiversiteitsverlies vind plaas teen 'n onrusbarende tempo. Beskermde gebiede alleenlik is nie voldoende vir langtermyn biodiversiteitsbewaring nie. Om dit teen te werk moet bewaringspogings die landskap rondom beskermde gebiede insluit. Biosfeerreservate bestaan uit drie sones met verskillende (maar komplementêre) funksies: ‘n kerngebied (spesifiek toegewy aan langtermyn biodiversiteitsbewaring), 'n aangrensende buffersone (waar aktiwiteite verenigbaar moet wees met die doelwitte van kerngebied) en 'n buigsame oorgangsone (waar volhoubare hulpbrongebruik en bestuur bevorder word). Sonering sal oor die algemeen met bestaande grondgebruikspatrone ooreenstem, en die buffersone vorm deel van ‘n deurlopende en toenemende gradiënt van grondgebruik intensiteit (GI) met toenemde afstand vanaf die kerngebied. Die doel van hierdie studie was om die biodiversiteitsbewaringssukses van die verskillende sones van die Kogelberg-biosfeerreservaat te beoordeel in reaksie op toenemende GI weg van kerngebied. Ek het gefokus op kommersiële vrugteboerdery, aangesien dit 'n belangrike ekonomiese aktiwiteit in die studiegebied is. Ek het subvrae ondersoek wat verband hou met die ekologiese funksie van elke sone met behulp van geleedpotiges as studie-organismes en beginsels gebaseer op sistematiese bewaringsbeplanning (SB) en landskapekologie. Die spesifieke doelwitte was: 1) bepaal of plantdiversiteit die diversiteit van geleedpotiges reflekteer, 2) beoordeel hoe goed geleedpotige diversiteit in kerngebiede verteenwoordig word, 3) bepaal of die buffersone effektief is om die kerngebied van aktiwiteite in die oorgangsone te beskerm, 4) assesseer of buffergebiede die geleedpotige diversiteit in die kerngebiede aanvul, 5) beoordeel hoe boorde geleedpotige diversiteit in aangrensende nie-gewas habitatte beïnvloed, en 6) bepaal hoe GI oor verskillende ruimtelike skale die diversiteit van geleedpotiges binne boorde affekteer. Die resultate het gewys dat geleedpotige diversiteit relatief goed verteenwoordig word in kerngebiede, maar dat die buffersones ‘n belangrike aanvullende rol speel deur ekologiese omgewings wat nie in die kerngebiede voorkom nie by te voeg, en ook die volledigheid van die reservaat verbeter deur sterk omgewingsgradiënte te vestig (wat belangrik is vir kongruensie in plant- en geleedpotige diversiteit). Die Kogelberg-biosfeerreservaat het nie 'n deurlopende buffersone rondom sy kerngebied nie, en dit was weerspieël deur die invloed van menslike aktiwiteite (d.w.s. nabyheid aan vrugteboorde) op diversiteit in kerngebiede. Hierdie invloed het tot 1 km weg van boorde iv Stellenbosch University https://scholar.sun.ac.za gestrek, en waar die buffersone afwesig was of nie wyd genoeg was nie het dit gelei tot ‘n kleiner effektiewe bewaringsgebied in kerngebiede. Nadere ondersoek het getoon dat die waargenome randreaksies die gevolg was van differensiële reaksies van geleedpotige groepe wat voorspel kon word deur eienskappe wat verband hou met habitat-spesialisasie (spesies wat natuurlike habitatte verkies, spesies wat boorde verkies en spesies wat voorkom in óf natuurlike habitatte of boorde). Die resultate het die gesofistikeerde aard van getransformeerde landskappe beklemtoon wat nie deur lappiesland-georiënteerde sienings van fragmentering vasgevang word nie. Hierdie studie beklemtoon ook die belangrikheid van bestuursaksies binne boorde vir diversiteit in aangrensende natuurlike habitatte en die gepaardgaande verborge heterogeniteit. Geleedpotige diversiteit in boorde het kontrasterende reaksies op toenemende GI op verskillende ruimtelike skale getoon. Die resultate dui daarop dat plaaslike GI (bestuursintensiteit) 'n negatiewe invloed op sommige groepe het. Landskapskaal GI (in die vorm van meer boorde in die landskap) het die spesiesrykheid van 'n deelversameling spesies verhoog en bygedra tot die homogenisering van geleedpotige diversiteit in boorde oor die landskap. Die resultate beklemtoon dat die invloed van GI op diversiteit op verskillende ruimtelike skale oorweeg moet word. Beginsels van SB en landskapsekologie
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Archiv Für Naturgeschichte
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Archiv für Naturgeschichte Jahr/Year: 1905 Band/Volume: 71-2_2 Autor(en)/Author(s): Lucas Robert Artikel/Article: Arachnida für 1904. 925-993 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Arachnida fiir 1904. Bearbeitet von Dr. Robert Lucas. A. Publikationen (Autoren alphabetisch). d'Agostino, A. P. Prima nota dei Ragni deU'Avelliiiese. Avellino 1/8 4 pp. Banks, Nathan (1). Some spiders and mites from Bermuda Islands. Trans. Connect. Acad. vol. XI, 1903 p. 267—275. — {%), The Arachnida of Florida. Proc. Acad. Philad. Jan. 1904 p. 120—147, 2 pls. (VII u. VIII). — (3). Some Arachnida from CaUfornia. Proc. Californ. Acad. III No. 13. p. 331—374, pls. 38—41. — (4). Arachnida (in) Alaska; from the Harriman Alaska Ex- pedition vol. VIII p. 37—45, 11 pls. — Abdruck der Publikation von 1900 aus d. Proc. Washington Acad. vol. II p. 477—486. Berthoumieu, L' Abbe. Revision de l'entomologie dans 1' Antiquite. Arachnides p. 197—200 (Chelifer, Scorpiones, Galeodes, Aranea, Ixodes, Tyroglyphus et Cheyletus). Eev. Sei. Bourbonnais 1904, p. 167. Bolton, H. The Palaeontology of the Lancashire Goal Measures. Manchester. Mus. Owens Coli. Publ. 50. Mus. Handb. p. 378—415. — Abdruck aus Trans. Manchester geol. min. Soc. vol. 28. Brown, Rob. (I). Rectifications tardives mais necessaires. Proc- verb. Soc. Linn. Bordeaux, vol. 59 p. LXVIII—LXX. — Auch über Arachniden. Calman, W. T. Arachnida in Zool. Record for 1903 vol. XL. XI 47 pp. Cambridge, F. 0. Pickard. 1901. Further Contributions towards the Knowledge of the Arachnida of Epping Forest.
    [Show full text]
  • New Species and Combinations in the African Restionaceae
    Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 415–424 www.elsevier.com/locate/sajb New species and combinations in the African Restionaceae H.P. Linder Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland Received 13 January 2010; received in revised form 28 June 2010; accepted 19 October 2010 Abstract Eight new species of the African Restionaceae (Restionoideae) are described, viz.: Cannomois anfracta, Cannomois arenicola, Cannomois grandis, Nevillea vlokii, Thamnochortus kammanassiae, Willdenowia pilleata, Restio uniflorus and Restio mkambatiae. A key to the species of Cannomois is provided, as well as a table comparing the characters of the three species in Nevillea. For all new species, notes on the affinities of the species and their habitats are provided. Two new combinations, Cannomois primosii (Pillans) H.P. Linder and Cannomois robusta (Kunth) H. P. Linder, are made. © 2010 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Cape Floristic Region; Restionaceae; Restionoideae; South Africa; Taxonomy 1. Introduction variable species can be sensibly divided or from the discovery in the field of species not collected before. Restionaceae are widespread in the Southern Hemisphere, The taxonomy of the African Restionaceae is regularly with a main concentration of species in southern Africa (358 updated and available in the Intkey format, either on a CD avail- species) and Australia (ca. 170 species), and with only one able from the Bolus Herbarium, or as a free download from my species in Southeast Asia and in South America (Briggs, 2001; website at http://www.systbot.uzh.ch/Bestimmungsschluessel/ Linder et al., 1998; Meney and Pate, 1999).
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Final Project Completion Report
    CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT Organization Legal Name: - Tarantula (Araneae: Theraphosidae) spider diversity, distribution and habitat-use: A study on Protected Area adequacy and Project Title: conservation planning at a landscape level in the Western Ghats of Uttara Kannada district, Karnataka Date of Report: 18 August 2011 Dr. Manju Siliwal Wildlife Information Liaison Development Society Report Author and Contact 9-A, Lal Bahadur Colony, Near Bharathi Colony Information Peelamedu Coimbatore 641004 Tamil Nadu, India CEPF Region: The Western Ghats Region (Sahyadri-Konkan and Malnad-Kodugu Corridors). 2. Strategic Direction: To improve the conservation of globally threatened species of the Western Ghats through systematic conservation planning and action. The present project aimed to improve the conservation status of two globally threatened (Molur et al. 2008b, Siliwal et al., 2008b) ground dwelling theraphosid species, Thrigmopoeus insignis and T. truculentus endemic to the Western Ghats through systematic conservation planning and action. Investment Priority 2.1 Monitor and assess the conservation status of globally threatened species with an emphasis on lesser-known organisms such as reptiles and fish. The present project was focused on an ignored or lesser-known group of spiders called Tarantulas/ Theraphosid spiders and provided valuable information on population status and potential conservation sites in Uttara Kannada district, which will help in future monitoring and assessment of conservation status of the two globally threatened theraphosid species T. insignis and Near Threatened T. truculentus. Investment Priority 2.3. Evaluate the existing protected area network for adequate globally threatened species representation and assess effectiveness of protected area types in biodiversity conservation.
    [Show full text]
  • SANSA News 16 Final.PUB
    Newsletter • Newsletter • Newsletter • Newsletter • Newsletter JAN-MAY 2012 SANSA - Newsletter South African National No 16 Survey of Arachnida This publication is available from: Ansie Dippenaar-Schoeman [email protected] or at www.arc.agric.za/home.asp?pid=3732 This is the newsletter of the South African National Survey Editors: of Arachnida (SANSA). SANSA is an umbrella project Ansie Dippenaar-Schoeman & Charles Haddad dedicated to unifying and strengthening biodiversity re- search on Arachnida in South Africa, and to make an in- Editorial committee: ventory of our arachnofauna. It runs on a national basis in Petro Marais collaboration with other researchers and institutions with Elsa van Niekerk an interest in the fauna of South Africa. Robin Lyle CONGRATULATIONS To Charles Haddad for obtaining his PhD from the Univer- sity of the Free State. The title of his study was “Advances in the systematics and ecology of the African Corinnidae spiders (Arachnida: Araneae), with emphasis on the Casti- aneirinae”. This is a very comprehensive study and deals with two aspects of the Castianeirinae, namely their ecol- ogy as well as their systematics, and it is a very important contribution towards our knowledge of this family of spi- ders, especially in the Afrotropical Region. An illustrated key to all the genera is provided as well as a phylogenetic analysis of the relationships of the Afrotropical Castianeiri- nae. Charles revised the eight genera of the subfamily Castianeirinae known from the Afrotropical Region and described two genera as new to science. He studied 62 species, of which 37 are new species and 20 redescribed for the first time.
    [Show full text]
  • The Case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arachnologische Mitteilungen Jahr/Year: 2020 Band/Volume: 59 Autor(en)/Author(s): Nentwig Wolfgang, Blick Theo, Gloor Daniel, Jäger Peter, Kropf Christian Artikel/Article: How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) 22-29 Arachnologische Mitteilungen / Arachnology Letters 59: 22-29 Karlsruhe, April 2020 How to deal with destroyed type material? The case of Embrik Strand (Arachnida: Araneae) Wolfgang Nentwig, Theo Blick, Daniel Gloor, Peter Jäger & Christian Kropf doi: 10.30963/aramit5904 Abstract. When the museums of Lübeck, Stuttgart, Tübingen and partly of Wiesbaden were destroyed during World War II between 1942 and 1945, also all or parts of their type material were destroyed, among them types from spider species described by Embrik Strand bet- ween 1906 and 1917. He did not illustrate type material from 181 species and one subspecies and described them only in an insufficient manner. These species were never recollected during more than 110 years and no additional taxonomically relevant information was published in the arachnological literature. It is impossible to recognize them, so we declare these 181 species here as nomina dubia. Four of these species belong to monotypic genera, two of them to a ditypic genus described by Strand in the context of the mentioned species descriptions. Consequently, without including valid species, the five genera Carteroniella Strand, 1907, Eurypelmella Strand, 1907, Theumella Strand, 1906, Thianella Strand, 1907 and Tmeticides Strand, 1907 are here also declared as nomina dubia. Palystes modificus minor Strand, 1906 is a junior synonym of P.
    [Show full text]
  • How Many of Cassini Anagrams Should There Be? Molecular
    TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group.
    [Show full text]
  • Thesis Sci 2009 Bergh N G.Pdf
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation.
    [Show full text]
  • Vicariance, Climate Change, Anatomy and Phylogeny of Restionaceae
    Botanical Journal of the Linnean Society (2000), 134: 159–177. With 12 figures doi:10.1006/bojl.2000.0368, available online at http://www.idealibrary.com on Under the microscope: plant anatomy and systematics. Edited by P. J. Rudall and P. Gasson Vicariance, climate change, anatomy and phylogeny of Restionaceae H. P. LINDER FLS Bolus Herbarium, University of Cape Town, Rondebosch 7701, South Africa Cutler suggested almost 30 years ago that there was convergent evolution between African and Australian Restionaceae in the distinctive culm anatomical features of Restionaceae. This was based on his interpretation of the homologies of the anatomical features, and these are here tested against a ‘supertree’ phylogeny, based on three separate phylogenies. The first is based on morphology and includes all genera; the other two are based on molecular sequences from the chloroplast genome; one covers the African genera, and the other the Australian genera. This analysis corroborates Cutler’s interpretation of convergent evolution between African and Australian Restionaceae. However, it indicates that for the Australian genera, the evolutionary pathway of the culm anatomy is much more complex than originally thought. In the most likely scenario, the ancestral Restionaceae have protective cells derived from the chlorenchyma. These persist in African Restionaceae, but are soon lost in Australian Restionaceae. Pillar cells and sclerenchyma ribs evolve early in the diversification of Australian Restionaceae, but are secondarily lost numerous times. In some of the reduction cases, the result is a very simple culm anatomy, which Cutler had interpreted as a primitively simple culm type, while in other cases it appears as if the functions of the ribs and pillars may have been taken over by a new structure, protective cells developed from epidermal, rather than chlorenchyma, cells.
    [Show full text]
  • A New Species of the Endemic South African Spider Genus Austrachelas (Araneae: Gallieniellidae) and First Description of the Male of A
    Zootaxa 4323 (1): 119–124 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4323.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:74311FB2-3669-4525-A743-7DBBAAA29DDC A new species of the endemic South African spider genus Austrachelas (Araneae: Gallieniellidae) and first description of the male of A. bergi CHARLES R. HADDAD1,2 & ZINGISILE MBO1 1Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa 2Corresponding author. Tel.: +27 51 401-2568, Fax: +27 51 401-9950. E-mail: [email protected] The Gallieniellidae is a small family of ground-dwelling gnaphosoid spiders with a Gondwanan distribution, currently including 10 genera and 55 species (World Spider Catalog 2017). The composition of the group remains unresolved, as different phylogenies have either supported (Platnick 2002; Haddad et al. 2009) or disputed (Ramírez 2014; Wheeler et al. in press) its monophyly. Presently, Austrachelas Lawrence, 1938 is one of four genera recorded from the Afrotropical Region. Austrachelas and Drassodella Hewitt, 1916 are both endemic to South Africa (Tucker 1923; Haddad et al. 2009; Mbo 2017), while Gallieniella Millot, 1947 and Legendrena Platnick, 1984 are endemic to Madagascar (Platnick 1984, 1990, 1995). Amongst the Afrotropical genera, only Austrachelas has been revised to date (Haddad et al. 2009). In the current study, the unknown male of A. bergi Haddad, Lyle, Bosselaers & Ramírez, 2009 is described for the first time, new distribution records are presented for this species, and a new species, A.
    [Show full text]
  • New Records and Taxonomic Updates for Adventive Sap Beetles (Coleoptera: Nitidulidae) in Hawai`I
    42 BISHOP MUSEUM OCCASIONAL PAPERS: No. 79, 2004 Expedition, 1895-’97, Nos. 501-705. Made by Perkins in 1936. Box 1, Bishop Museum Archives. (Photocopy of original in British Museum of Natural History). Sharp, D. 1878. On some Nitidulidae from the Hawaiian Islands. Trans. R. Entomol. Soc. Lond. 26: 127–140. ———. & H. Scott. 1908. Coleoptera III, p. 435–508. In: Sharp D., ed. Fauna Hawaii- ensis, Volume 3, Part 5. The University Press, Cambridge, England. Figs. 1–3. Prosopeus male genitalia. 1, Prosopeus subaeneus Murray; tegmen of male, ventral; 2, same, apex of inverted male internal sac; 3, Prosopeus scottianus (Sharp); apex of inverted male internal sac. sd, sperm duct; v, ventral surface. Scale bars 0.1mm. New records and taxonomic updates for adventive sap beetles (Coleoptera: Nitidulidae) in Hawai`i CURTIS P. EWING (Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853-0901, USA; email: [email protected]) and ANDREW S. CLINE (Louisiana State Arthropod Museum, Department of Entomology, Louisiana State University, Baton Rouge, Louisiana 10803, USA; email: [email protected]) The adventive sap beetles present in Hawai`i are all saprophagous, except for Cybocephalus nipponicus Endrödy-Younga, which is predatory. Species in the genus Carpophilus are the most commonly encountered and are considered nuisance pests around pineapple fields and canneries (Illingworth, 1929; Schmidt, 1935; Hinton, 1945). The remaining species are less frequently encountered and are not considered to be impor- tant pests. We report 2 new state records, 5 new island records, and 4 taxonomic changes for the adventive sap beetles in Hawai`i. With the exception of Stelidota chontalensis Sharp, all of the species reported are widely distributed outside Hawai`i.
    [Show full text]