Specific Identification of Bacillus Species Neamah, Zahr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suppression of Macrophomina Phaseolina and Rhizoctonia Solani and Yield Enhancement in Peanut
International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.06 pp 142-152, 2016 Soil application of Bacillus pumilus and Bacillus subtilis for suppression of Macrophomina phaseolina and Rhizoctonia solani and yield enhancement in peanut 1 2 1 Hassan Abd-El-Khair *, Karima H. E. Haggag and Ibrahim E. Elshahawy 1Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, Giza, Egypt . 2Pest Rearing Department , Central Agricultural Pesticides Laboratory, Agricultural Research Centre, Dokki, Giza, Egypt . Abstract : Macrophomina phaseolina and Rhizoctonia solani were isolated from the root of peanut plants collected from field with typical symptoms of root rot in Beheira governorate, Egypt. The two isolated fungi were able to attack peanut plants (cv. Giza 4) causing damping- off and root rot diseases in the pathogenicity test. Thirty rhizobacteria isolates (Rb) were isolated from the rhizosphere of healthy peanut plants. The inhibition effect of these isolates to the growth of M. phaseolina and R. solani was in the range of 11.1- 88.9%. The effective isolates of Rb 14 , Rb 18 and Rb 28 , which showed a strong antagonistic effect (reached to 88.9) in dual culture against the growth of M. phaseolina and R. solani , were selected and have been identified according the morphological, cultural and biochemical characters as Bacillus pumilus (Rb 14 ), Bacillus subtilis (Rb 18 ) and Bacillus subtilis (Rb 28 ). Control of peanut damping-off and root rot by soil application with these rhizobacteria isolates in addition to two isolates of B. pumilus (Bp) and B. subtilis (Bs) obtained from Plant Pathology Dept., National Research Centre, was attempted in pots and in field trials. -
Characterisation of Bacteria Isolated from the Stingless Bee, Heterotrigona Itama, Honey, Bee Bread and Propolis
Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis Mohamad Syazwan Ngalimat1,2,*, Raja Noor Zaliha Raja Abd. Rahman1,2, Mohd Termizi Yusof2, Amir Syahir1,3 and Suriana Sabri1,2,* 1 Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 2 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 3 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia * These authors contributed equally to this work. ABSTRACT Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by -
Common Commensals
Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes -
Production of Antimicrobial Agents by Bacillus Spp. Isolated from Al-Khor Coast Soils, Qatar
Vol. 11(41), pp. 1510-1519, 7 November, 2017 DOI: 10.5897/AJMR2017.8705 Article Number: EA9F76966550 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Production of antimicrobial agents by Bacillus spp. isolated from Al-Khor coast soils, Qatar Asmaa Missoum* and Roda Al-Thani Microbiology Laboratory, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar. Received 12 September, 2017; Accepted 6 October, 2017 Bacilli are Gram-positive, sporulating bacteria that can be found in diverse habitats, but mostly in soil. Many recent studies showed the importance of their antimicrobial agents that mainly target other Gram- positive bacteria. This study was conducted to assess the antibacterial activity of Al-Khor coastal soil Bacillus strains against four bacterial strains (Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa) by agar diffusion method as well as investigating best strain antibiotic production in liquid medium. The 25 isolated strains were identified using physical and biochemical tests. Results show that most strains possess significant antibacterial potential against S. aureus and S. epidermis, but however less toward E. coli. Strain 2B-1B optimum activity was achieved using Luria Bertani broth and at 35°C, with pH 9. Therefore, antimicrobial compounds from these strains can be good candidates for future antibiotics production. Further screening for antimicrobial agents should be carried out in search of novel therapeutic compounds. Key words: Al-Khor, zone of inhibition, Bacillus, coastal soil, antimicrobial agent. INTRODUCTION Bacillus bacteria belong to the Firmicutes phylum, the facultative aerobes, some can be anaerobic (Prieto et al., Bacillaceae family, and are Gram-positive bacteria that 2014). -
Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina Pavonica
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 12 July 2016 doi: 10.3389/fmicb.2016.01072 Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica Amel Ismail 1, Leila Ktari 1, Mehboob Ahmed 2, 3, Henk Bolhuis 2, Abdellatif Boudabbous 4, Lucas J. Stal 2, 5, Mariana Silvia Cretoiu 2 and Monia El Bour 1* 1 National Institute of Marine Sciences and Technologies, Salammbô, Tunisia, 2 Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, Netherlands, 3 Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 4 Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia, 5 Department of Aquatic Microbiology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands Macroalgae belonging to the genus Padina are known to produce antibacterial compounds that may inhibit growth of human- and animal pathogens. Hitherto, it was unclear whether this antibacterial activity is produced by the macroalga itself or by secondary metabolite producing epiphytic bacteria. Here we report antibacterial Edited by: activities of epiphytic bacteria isolated from Padina pavonica (Peacocks tail) located on Olga Lage, northern coast of Tunisia. Eighteen isolates were obtained in pure culture and tested University of Porto, Portugal for antimicrobial activities. Based on the 16S rRNA gene sequences the isolates were Reviewed by: closely related to Proteobacteria (12 isolates; 2 Alpha- and 10 Gammaproteobacteria), Franz Goecke, Norwegian University of Life Sciences, Firmicutes (4 isolates) and Actinobacteria (2 isolates). -
Biocontrol of Fusarium Wilt by Bacillus Pumilus, Pseudomonas Alcaligenes, and Rhizobium Sp
Turk J Biol 34 (2010) 1-7 © TÜBİTAK doi:10.3906/biy-0809-12 Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium sp. on lentil Mohd Sayeed AKHTAR*, Uzma SHAKEEL, Zaki Anwar SIDDIQUI Department of Botany, Aligarh Muslim University, Aligarh - INDIA Received: 12.09.2008 Abstract: The present study examined the effects of Bacillus pumilus, Pseudomonas alcaligenes,and Rhizobium sp. on wilt disease caused by Fusarium oxysporum f. sp. lentis and on the growth of lentil. Inoculation with F. oxysporum caused significant wilting, and reduced plant growth, the number of pods, and nodulation. Inoculation with B. pumilus together with P. alcaligenes caused a greater increase in plant growth, number of pods, nodulation, and root colonization by rhizobacteria, and also reduced Fusarium wilting to a greater degree than did individual inoculation. Use of Rhizobium sp. resulted in a greater increase in plant growth, number of pods, and nodulation, and reduced wilting more than B. pumilus did. Combined application of B. pumilus and P. alcaligenes with Rhizobium sp. resulted in the greatest increase in plant growth, number of pods, nodulation, and root colonization by rhizobacteria, and also reduced wilting in Fusarium-inoculated plants. Key words: Bacillus, biocontrol, Fusarium, Pseudomonas, Rhizobium, wilting Mercimeklerdeki Fusarium solma hastalığının Bacillus pumilus, Pseudomonas alcaligenes ve Rhizobium sp. ile biyokontrolü Özet: Mercimek büyümesinde Fusarium oxysporum f. sp. Lentis’ in neden olduğu solma (wilt) hastalığı üzerine Bacillus pumilus, Pseudomonas alcaligenes ve Rhizobium sp. türlerinin etkisi çalışılmıştır. F. oxysporum inokulasyonu önemli ölçüde solmaya neden olur, bitki büyümesini, pod sayısını azaltır ve nodülasyona neden olur. B. pumilus ile birlikte P. -
Ep 2434019 A1
(19) & (11) EP 2 434 019 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.03.2012 Bulletin 2012/13 C12N 15/82 (2006.01) C07K 14/395 (2006.01) C12N 5/10 (2006.01) G01N 33/50 (2006.01) (2006.01) (2006.01) (21) Application number: 11160902.0 C07K 16/14 A01H 5/00 C07K 14/39 (2006.01) (22) Date of filing: 21.07.2004 (84) Designated Contracting States: • Kamlage, Beate AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 12161, Berlin (DE) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Taman-Chardonnens, Agnes A. 1611, DS Bovenkarspel (NL) (30) Priority: 01.08.2003 EP 03016672 • Shirley, Amber 15.04.2004 PCT/US2004/011887 Durham, NC 27703 (US) • Wang, Xi-Qing (62) Document number(s) of the earlier application(s) in Chapel Hill, NC 27516 (US) accordance with Art. 76 EPC: • Sarria-Millan, Rodrigo 04741185.5 / 1 654 368 West Lafayette, IN 47906 (US) • McKersie, Bryan D (27) Previously filed application: Cary, NC 27519 (US) 21.07.2004 PCT/EP2004/008136 • Chen, Ruoying Duluth, GA 30096 (US) (71) Applicant: BASF Plant Science GmbH 67056 Ludwigshafen (DE) (74) Representative: Heistracher, Elisabeth BASF SE (72) Inventors: Global Intellectual Property • Plesch, Gunnar GVX - C 6 14482, Potsdam (DE) Carl-Bosch-Strasse 38 • Puzio, Piotr 67056 Ludwigshafen (DE) 9030, Mariakerke (Gent) (BE) • Blau, Astrid Remarks: 14532, Stahnsdorf (DE) This application was filed on 01-04-2011 as a • Looser, Ralf divisional application to the application mentioned 13158, Berlin (DE) under INID code 62. -
Enzyme Profiles and Antimicrobial Activities of Bacteria Isolated from the Kadiini Cave, Alanya, Turkey
Nihal Doğruöz-Güngör, Begüm Çandıroğlu, and Gülşen Altuğ. Enzyme profiles and antimicrobial activities of bacteria isolated from the Kadiini Cave, Alanya, Turkey. Journal of Cave and Karst Studies, v. 82, no. 2, p. 106-115. DOI:10.4311/2019MB0107 ENZYME PROFILES AND ANTIMICROBIAL ACTIVITIES OF BACTERIA ISOLATED FROM THE KADIINI CAVE, ALANYA, TURKEY Nihal Doğruöz-Güngör1,C, Begüm Çandıroğlu2, and Gülşen Altuğ3 Abstract Cave ecosystems are exposed to specific environmental conditions and offer unique opportunities for bacteriological studies. In this study, the Kadıini Cave located in the southeastern district of Antalya, Turkey, was investigated to doc- ument the levels of heterotrophic bacteria, bacterial metabolic avtivity, and cultivable bacterial diversity to determine bacterial enzyme profiles and antimicrobial activities. Aerobic heterotrophic bacteria were quantified using spread plates. Bacterial metabolic activity was investigated using DAPI staining, and the metabolical responses of the isolates against substrates were tested using VITEK 2 Compact 30 automated micro identification system. The phylogenic di- versity of fourty-five bacterial isolates was examined by 16S rRNA gene sequencing analyses. Bacterial communities were dominated by members of Firmicutes (86 %), Proteobacteria (12 %) and Actinobacteria (2 %). The most abundant genera were Bacillus, Staphylococcus and Pseudomonas. The majority of the cave isolates displayed positive proteo- lytic enzyme activities. Frequency of the antibacterial activity of the isolates was 15.5 % against standard strains of Bacillus subtilis, Staphylococcus epidermidis, S.aureus, and methicillin-resistant S.aureus. The findings obtained from this study contributed data on bacteriological composition, frequency of antibacterial activity, and enzymatic abilities regarding possible biotechnological uses of the bacteria isolated from cave ecosytems. -
Report on “Thiol Levels in Bacillus Species
Report on “Thiol levels in Bacillus species exposed to ultraviolet radiation” (NASA Astrobiology Program - Minority Institution Support Faculty Research Awards: August 22, 2011- May 21, 2012) Submitted November 25, 2012 As mandated by the Committee of Space Research, space-faring nations must take precautions in preventing contamination of extraterrestrial bodies by limiting the amount of microbes present to the greatest possible extent. Surveys of spacecraft assembly clean rooms for microbes have revealed the existence of strains of bacteria resistant to high levels of ultraviolet (UV) radiation and vaporous hydrogen peroxide, which are used to sterilize clean rooms. In order to develop effective ways to eradicate these bacteria prior to the spacecraft leaving Earth, we must understand how these bacteria are able to survive these extremophilic conditions. We are particularly concerned about spore forming bacteria, such as Bacillus pumilus SAFR-032 and Bacillus horneckaie, which are highly resistant to UV and oxidative stress. First, we have demonstrated that these species like other Bacilli contains a novel low molecular weight thiol (LMW), bacillithiol. LMW thiols like bacillithiol play a critical role in maintaining a reducing environment and are involved in protection of organisms against a variety of stresses. Bacillithiol has been shown to protect against hypochlorite stress by S-bacillithiolation of cysteines in critical proteins such as glyceraldehyde- 3-phosphate dehydrogenase. We have examined samples of B. pumilus SAFR-032 spores exposed to four different extreme conditions at the International Space Center: (1) deep space, (2) Martian atmosphere, (3) deep space with UV radiation, and (4) Martian atmosphere with UV radiation. Thiol analysis of the surviving spores indicates that levels of bacillithiol are ten times higher in UV radiation treated samples exposed to both deep space and Martian atmosphere conditions. -
International Journal of Food Microbiology Occurrence Of
International Journal of Food Microbiology 305 (2019) 108251 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Occurrence of bacteria and endotoxins in fermented foods and beverages T from Nigeria and South Africa ⁎ Ifeoluwa Adekoyaa, , Adewale Obadinab, Momodu Olorunfemic, Olamide Akanded, Sofie Landschoote, Sarah De Saegerf, Patrick Njobeha a Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa b Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria. c Department of Botany, University of Ibadan, Ibadan, Nigeria d Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria e Department of Applied Bioscience Engineering, Ghent University, B-9000, Belgium f Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000, Belgium ARTICLE INFO ABSTRACT Keywords: In Africa, fermented foods and beverages play significant roles in contributing to food security. Endotoxins are Fermented foods ubiquitous heat stable lipopolysaccharide (LPS) complexes situated in the outer cell membranes of Gram-ne- Gram-negative bacteria gative bacteria. This study evaluated the microbiological quality of fermented foods (ogiri, ugba, iru, ogi and ogi Endotoxins baba) and beverages (mahewu and umqombothi) from selected Nigerian and South African markets. The bacterial Safety diversity of the fermented foods was also investigated and the identity of the isolates confirmed by biochemical Nigeria and molecular methods. Isolate grouping was established through hierarchal clustering and the samples were South Africa further investigated for endotoxin production with the chromogenic Limulus Amoebocyte Lysate assay. The total aerobic count of the samples ranged from 5.7 to 10.8 Log CFU/g. -
Corynebacterium Kroppenstedtii Subsp. Demodicis Is the Endobacterium of Demodex Folliculorum
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Access LMU DOI: 10.1111/jdv.16069 JEADV ORIGINAL ARTICLE Corynebacterium kroppenstedtii subsp. demodicis is the endobacterium of Demodex folliculorum B.M. Clanner-Engelshofen, L.E. French , M. Reinholz* Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany *Correspondence: M. Reinholz. E-mail: [email protected] Abstract Background Demodex spp. mites are the most complex member of the human skin microbiome. Mostly they are com- mensals, although their pathophysiological role in inflammatory dermatoses is recognized. Demodex mites cannot be cultivated in vitro, so only little is known about their life cycle, biology and physiology. Different bacterial species have been suggested to be the endobacterium of Demodex mites, including Bacillus oleronius, B. simplex, B. cereus and B. pumilus. Objectives Our aim was to find the true endobacterium of human Demodex mites. Methods The distinct genetic and phenotypic differences and similarities between the type strain and native isolates are described by DNA sequencing, PCR, MALDI-TOF, DNA-DNA hybridization, fatty and mycolic acid analyses, and antibiotic resistance testing. Results We report the true endobacterium of Demodex folliculorum, independent of the sampling source of mites or life stage: Corynebacterium kroppenstedtii subsp. demodicis. Conclusions We anticipate our finding to be a starting point for more in-depth understanding of the tripartite microbe– host interaction between Demodex mites, its bacterial endosymbiont and the human host. Received: 10 August 2019; Accepted: 17 October 2019 Conflict of interest The authors declare no conflicts of interest. -
Concurrence of Ocular Infection with Demodex Folliculorum
Concurrence of ocular infection with Demodex folliculorum Danuta Izabela Kosik-Bogacka ( [email protected] ) Pomorski Uniwersytet Medyczny w Szczecinie https://orcid.org/0000-0002-3796-5493 Joanna Pyzia Pomorski Uniwersytet Medyczny w Szczecinie Katarzyna Galant Pomorski Uniwersytet Medyczny w Szczecinie Maciej Czepita Pomorski Uniwersytet Medyczny w Szczecinie Karolina Kot Pomorski Uniwersytet Medyczny w Szczecinie Natalia Lanocha-Arendarczyk Pomorski Uniwersytet Medyczny w Szczecinie Damian Czepita Pomorski Uniwersytet Medyczny w Szczecinie Research article Keywords: Acinetobacter baumannii, Bacillus spp., Corynebacteriaceae, Demodex folliculorum, Staphylococcus aureus, Streptococcus pneumoniae Posted Date: February 10th, 2020 DOI: https://doi.org/10.21203/rs.2.14745/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background: The ectoparasite Demodex spp. is the most common human parasite detected in skin lesions such as rosacea, lichen, and keratosis. It is also an etiological factor in blepharitis. As Demodex spp. is involved in the transmission of pathogens that can play a key role in the pathogenesis of demodecosis, the aim was to assess the concurrence of Demodex folliculorum and bacterial infections. Methods: The study involved 232 patients, including 128 patients infected with Demodex folliculorum and 104 non-infected patients. The ophthalmological examination consisted of examining the vision of the patient with and without ocular correction, tonus in both eyes) and a careful examination of the anterior segment of both eyes with special emphasis on the appearance of the eyelid edges and the structure and appearance of eyelashes from both eyelids of both eyes. The samples for microbiological examination were obtained from the conjunctival sac.