Downloaded 10/02/21 07:24 PM UTC 2718 MONTHLY WEATHER REVIEW VOLUME 146 of a Few Days

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/02/21 07:24 PM UTC 2718 MONTHLY WEATHER REVIEW VOLUME 146 of a Few Days SEPTEMBER 2018 Y U E T A L . 2717 On the Linkage among Strong Stratospheric Mass Circulation, Stratospheric Sudden Warming, and Cold Weather Events YUEYUE YU Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China MING CAI Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida CHUNHUA SHI Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China RONGCAI REN Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (Manuscript received 25 March 2018, in final form 21 June 2018) ABSTRACT It is well established that sudden stratospheric warming (SSW) events tend to be accompanied by continental- scale, surface cold-air outbreaks (CAOs) in midlatitudes in boreal winter. However, SSW events occur at most onetotwotimesperwinter,whereasCAOsoccurthreeto seven times over each of the North American and Eurasian continents. Using the ERA-Interim dataset for 37 winters (November–March) from 1979 to 2016, we reveal that SSW events correspond to a large-amplitude or long-lasting subset of pulse-like, anomalously strong, stratospheric mass circulation events. The anomalously strong, stratospheric mass circulation events (referred to as PULSE events) occur more than nine times in an average winter. The ‘‘displacement’’ versus ‘‘split’’ types of SSWs tend to correspond to the ‘‘wavenumber 1’’ versus ‘‘wavenumber 2’’ types of PULSEs, though the re- lationship between split-type SSWs and wavenumber-2-type PULSEs is weaker. Like SSW events, PULSEs also have a close relationship with CAOs. The robust relationship with CAOs still holds for the PULSE events not accompanied by SSW events. Using PULSE events, we determine that more than 70% of CAOs in the 37 winters occur in the week before and after a PULSE event, with a false alarm rate of CAO occurrence of about 25.7%. SSW events, however, are associated with only about 5.7% of CAOs, with a false alarm rate of 21.7%. Therefore, the linkage between individual continental-scale CAOs and PULSE events represents a more generalized re- lationship between the stratospheric circulation anomalies and surface weather. PULSE signals should also be considered as a potentially useful stratospheric indicator of the occurrence of individual CAO events. 1. Introduction Supplemental information related to this paper is available at Sudden stratospheric warming (SSW) is the most the Journals Online website: https://doi.org/10.1175/MWR-D-18- drastic dynamic process in the stratosphere, character- 0110.s1. ized by a decelerated or reversed westerly jet sur- rounding the polar vortex and a reversed temperature Corresponding author: Yueyue Yu, [email protected] gradient between high and midlatitudes over the course DOI: 10.1175/MWR-D-18-0110.1 Ó 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). Unauthenticated | Downloaded 10/02/21 07:24 PM UTC 2718 MONTHLY WEATHER REVIEW VOLUME 146 of a few days. During major warming events, a remark- the extreme vortex events category. Some studies able two-way coupling between the stratosphere and have investigated the stratosphere–troposphere cou- troposphere has been well documented (Eliassen and pling processes during extreme planetary wave heat flux Palm 1961; Matsuno 1970; Butchart et al. 1982; Kodera events (Shaw and Perlwitz 2013, 2014; Tripathi et al. et al. 1990; Holton et al. 1995; Baldwin and Dunkerton 2015). Cai et al. (2016) pointed out that a robust rela- 1999, 2001; Shepherd 2002; Kushner and Polvani 2004; tionship with CAOs exists for PULSE events, not lim- Polvani and Waugh 2004; Limpasuvan et al. 2004, 2005; ited to extremely large-amplitude events. There is a McDaniel and Black 2005; Haynes 2005; Garfinkel et al. higher probability of CAO occurrence over the mid- 2010). Large regions in the midlatitudes tend to be latitude regions of Eurasia and North America within anomalously cold during the 1–2 months after the cen- the 1–2 weeks before and after the peak dates of PULSE tral dates of SSW events (Thompson et al. 2002; Kenyon events, consistent with the relationship between CAOs and Hegerl 2008; Tomassini et al. 2012). Kolstad et al. and SSW events reported by Kolstad et al. (2010). (2010) and Woo et al. (2015) found that cold anomalies Follow-up work by Yu et al. (2018b) classified PULSE tend to occur over the southeastern United States within events into different types, according to whether 1–2 weeks after the central dates of SSW events but over wavenumber-1 or wavenumber-2 waves were dominant, Eurasia during the 2 weeks before. Mitchell et al. (2013), and pointed out that the specific spatiotemporal evolu- Kidston et al. (2015), and Lehtonen and Karpechko tion of surface CAOs is dependent on the type of (2016) pointed out that the evolution of surface air PULSE event. Cai et al. (2016) also emphasized that temperature reported by Kolstad et al. (2010) often not only the slowly varying signals in the stratosphere, occurs in vortex displacement events. In splitting events, but also the PULSE signal, have a longer predictability cold anomalies tend to occur over the midlatitudes of limit than surface continental CAOs in operational both North America and Eurasia in the 1–2 months numerical models; thus, the linkage between PULSE around the central dates. Displacement events are events and CAOs may open up a new opportunity for mainly due to stronger wavenumber-1 waves, whereas subseasonal forecasts of CAOs in a hybrid (dynamical splitting events are the result of stronger wave activi- plus statistical) framework. ties of wavenumber-2 preceded by strengthened The global meridional mass circulation was system- wavenumber-1 waves (Liberato et al. 2007; Martius et al. atically documented by the pioneering work of Johnson 2009; Castanheira and Barriopedro 2010; Kuttippurath (1989) and his collaborators and followed by many and Nikulin 2012). subsequent studies [e.g., Cai and Shin (2014), and ref- As operational models have overall useful prediction erences therein]. The meridional mass circulation can be skill for the timing and structure of vortex breakup regarded as a modified version of general Lagrangian processes beyond 1–2 weeks (Christiansen 2005; meridional circulation (Andrews et al. 1987) using a Charlton and Polvani 2007; Yoden et al. 2014; Tripathi quasi-conservative variable, potential temperature, as et al. 2015), although this is still dependent on the the vertical coordinate. The meridional mass circulation methods and initial conditions, the relationship between connects the tropics to the poles and the troposphere to the surface air temperature anomaly pattern and the the stratosphere via the poleward warm air branch in the major SSW of the two types has great importance in upper troposphere and stratosphere and the equator- practical applications for subseasonal forecasts of cold ward cold branch in the lower troposphere. The net mass air outbreaks (CAOs) in the midlatitudes of the transport across the polar circle in the midlatitudes Northern Hemisphere in winter. However, major SSW is driven by anomalously westward-tilting and large- events occur, at most, once in most winters, whereas amplitude waves with a deep structure (Johnson 1989). CAOs occur several times per winter; thus, using SSW On the one hand, the meridional mass transport into the as an indicator of CAOs would result in ‘‘missing fore- polar stratosphere, which was used to define PULSE casts’’ of CAOs. events by Cai et al. (2016), tends to be coupled with the Recent studies have begun to notice another short- equatorward transport of polar air mass at lower levels lived signal in the stratosphere, which has a life cycle of (i.e., the lower branch of meridional mass circulation) in 10–20 days. This signal is the stratospheric ‘‘PULSE’’ the midlatitudes, which is one of the physical causes of events, defined as pulse-like rapid increases in the me- CAOs (Yu et al. 2015a,b). An investigation of the me- ridional mass transport across the polar circle in the ridional mass transport into the polar stratosphere and stratosphere above 400 K (Cai et al. 2016) or extreme its associated surface temperature anomalies could help planetary wave heat flux events (Shaw and Perlwitz us obtain a better understanding of the relationship 2013, 2014). Tripathi et al. (2015) included such events, between PULSE events and CAOs, which has not been together with SSW and stratospheric final warming, in satisfactorily revealed in previous studies. On the other Unauthenticated | Downloaded 10/02/21 07:24 PM UTC SEPTEMBER
Recommended publications
  • Year 4- All Around the World What It Looked Like Last Year... • Using
    Year 4- All around the world What it looked like last year... What it looks like next year… Using contents and indexes to locate countries around the Identify some map symbols on an Ordnance Survey map. world Give co-ordinates by going across first and then up. Understanding what a key is and what it is used for Find a location from four-figure coordinates. Drawing a simple map Find similarities and differences between photographs of Following a simple map to locate things the same location. Distinguish between maps, atlases and globes Vocabulary (definitions) Sequence of Learning Equator- invisible line that goes around the middle of the world 1. North or South? Explain the position and significance of the Hemisphere- half of the sphere Equator, the Northern Hemisphere, and the Southern Hemisphere. Latitude- invisible lines going around the world 2. Over and around. Identify lines of longitude and latitude and Longitude- invisible lines going over the world use them to find places on maps, atlases and globes Arctic circle- polar circle at the north of the globe 3. Top and bottom. Identify the position and significance of the Antarctic circle- polar circle at the south of the globe Arctic and the Antarctic Circle Prime meridian- line dividing east and west hemisphere 4. Tropics. Identify the position and significance of the Tropics of Time zone Cancer and Capricorn by comparing the climate of the tropics GMT- Greenwich Mean Time with that of the UK Climate- weather conditions over a period of time 5. On the line. Explain the position and significance of the Prime Tropics- regions of the Earth that lie roughly in the middle of the Meridian.
    [Show full text]
  • Northern Hemisphere Tropospheric Mid-Latitude Circulation After Violent Volcanic Eruptions
    Beitr. Phys. Atmosph., February 1994, p. 3-13 Article 0005-8173/94/01 0003-11 $ 3.00/0 Vol.67,No.1 3 Northern Hemisphere Tropospheric Mid-Latitude Circulation after Violent Volcanic Eruptions by H.-F. GRAF, J. PERLWITZ and I. KIRCHNER Max-Planck-Institut für Meteorologie, Bundesstraße 55, 20146 Hamburg, Germany (Manuscript received September 3, 1993; accepted January 26, 1994) Abstract The strengths of the polar stratospheric vortex and geopotential height anomalies of the 500 hPa layer are studied that are observed after recent violent volcanic eruptions. After all tropical eruptions the polar stratospheric vortex was intensified. The tropospheric anomaly patterns after tropical eruptions are very similar to those of winter months with a very strong stratospheric vortex, irrespective whether volcanically forced or not. Hence, if they have any effect on the wintertime tropospheric circulation, tropical eruptions seem to force a natural mode of the stratospheric winter circulation which is associated with a specific response of the tropospheric circulation with maximum amplitude over the North Atlantic and adjacent continental regions. Therefore, it remains difficult to give statistical evidence of volcanic impact on climate on the basis of the few observations after these rare events. A combination of observational studies and model experiments may help to overcome these difficulties in the future. Zusammenfassung Die troposphärische Zirkulation in mittleren Breiten der Nordhemisphäre nach starken Vulkanausbrüchen Die nach den jüngsten starken Vulkaneruptionen beobachteten Stärken des polaren Strat- osphärenwirbels und der Anomalien der geopotentiellen Höhe der $00 Pa Fläche werden untersucht. Nach allen tropischen Eruptionen war der polare stratosphärische Wirbel verstärkt. Die troposphärischen Anomalieverteilungen nach tropischen Eruptionen sind sehr ähnlich zu jenen in Wintermonaten mit einem sehr starken stratosphärischen Wirbel, unabhängig ob dieser vulkanisch angetrieben ist oder nicht.
    [Show full text]
  • The Explorer Academy
    THE EXPLORER ACADEMY 2019 On this four-day adventure, White Desert offers you the opportunity to learn from one of the most experienced and accomplished polar explorers of our time - Ben Saunders. PRICE PER PERSON : US$38,500 BEN SAUNDERS Ben Saunders is a polar explorer, endurance athlete and motivational speaker who has covered more than 7,000km of Arctic and Antarctic terrain in the past two decades. As the leader of the longest human-powered polar journey in history, Ben will impart his incredible knowledge of what it takes to survive in Antarctica and teach you the skills of a true Polar Explorer Atlantic Ocean CAPE TOWN SOUTH AFRICA Atlantic Ocean Indian Ocean WHICHAWAY CAMP WOLF’S FANG runway Weddell Sea Bellingshausen Sea GEOGRAPHIC SOUTH POLE Pacific Ocean FLIGHTS Flight to Antarctica: 5 hours Flight from Wolf’s Fang Runway to Whichaway Camp: 25 minutes TRAVEL SOUTH AFRICA TO ANTARCTICA We travel in uncompromised comfort across the mighty Southern Ocean in a Gulfstream private jet. During the 5hr flight, the African night turns to day as we soar over thousands of icebergs and pass into 24hrs of continuous sunshine. CLICK TO VIEW Destination: Wolf’s Fang runway. LANDING ON WOLF’s faNG RUNwaY Stepping onto the ice for the first time can literally take your breath away. Ben will guide you off the jet and you will have a few hours to take in the incredible vistas of the Drygalski range. You will spend the day amongst these giants, learning the basics of cross-country skiing and summitting a small peak.
    [Show full text]
  • PEOPLE in the POLAR Regions
    TEACHING DOSSIER 2 ENGLISH, GEOGRAPHY, SCIENCE, HISTORY PEOPLE IN THE POLAR REGIONS ANTARCTIC, ARCTIC, PEOPLES OF THE ARCTIC, EXPLORATION, ADVENTURERS, POLAR BASES, INTERNATIONAL POLAR YEAR, SCIENTIFIC RESEARCH, FISHING, INDUSTRY, TOURISM 2 dossier CZE N° 2 THEORY SECTION Living conditions in the Polar Regions are harsh: very low temperatures, violently strong winds, ground often frozen solid, alternation between long nights in winter and long days in summer and difficult access by any means of transportation. Yet despite everything, people manage to live either permanently or temporarily in these regions, which are unlike any other. Who are these people? PEOPLE IN THE ANTARCTIC Antarctica is a frozen continent surrounded by an immense ocean. The climate is so extreme that there is virtually no life at all on land; any life there is concentrated on the coast (seals, penguins, whales, etc.)1. No human beings live in Antarctica on a permanent basis; however people have managed to endure short and extended stays on the continent during the past 200 years. THE EXplorers: A BALANCE BETWEEN PHYSICAL ACHIEVEMENT AND science Because it was so difficult to reach, the Antarctic was the last region of the world to be explored. Until the 18th century, the frozen continent remained very much a figment of people’s imaginations. Then in 1773, the English navigator and explorer James Cook became the first man to reach the southernpolar circle (Antarctic Circle). Yet it was not until 1820 that the Russian navigator F.F. Bellingshausen and his men discovered that Antarctica was not just made entirely of sea ice, but a continent in its own right, because they saw a mountain there.
    [Show full text]
  • Impacts of Global Warming on Polar Ecosystems 00 DUARTE INGLES - Q7:Maquetación 1 1/10/08 10:00 Página 4 00 DUARTE INGLES - Q7:Maquetación 1 1/10/08 10:00 Página 5
    SOBRECUBIERTA 1/10/08 17:22 Página 1 CARLOS M. DUARTE Ecosystems on Polar of Global Warming Impacts The confirmation that our planet is The challenges posed by polar research are crucial for the whole future of is a research professor for the Spanish undergoing a process of global warming— humanity.A deeper understanding of the phenomena occurring in the polar Council for Scientific Research (CSIC) at in which greenhouse gas emissions due to the Mediterranean Institute for Advanced regions, and the forces that drive them, not only enlightens us to the importance human activity are an important causal Studies (IMEDEA). He holds a degree in of research, it also, and more importantly, alerts us to the social and behavioural factor—has focused growing attention on animal biology from the Autonomous changes we must undertake in order to manage global change and all that it the impacts of this change on society and University of Madrid and completed his entails in the environmental and social spheres. the natural environment. And while the scale and repercussions of the problem doctoral thesis on the ecology of lake These areas of the planet offer us an exceptional scientific heritage which must have yet to be sufficiently investigated, it macrophytes at McGill University, be investigated, of course, but also brought to the attention of the broader public. is acknowledged that polar ecosystems Montreal, Canada. His research work has For this reason, scientific information and education are seen as a vital part of ranged over a wide variety of aquatic may be among the most vulnerable.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • STARLAB® Inuit Star Lore Cylinder
    A Collection of Curricula for the STARLAB® Inuit Star Lore Cylinder Including: Inuit Star Lore by Ole Knudsen v. 616 - ©2008 by Science First®/STARLAB®, 86475 Gene Lasserre Blvd., Yulee, FL. 32097 - www.starlab.com. All rights reserved. Curriculum Guide Contents Index: Constellations and star groups on the Inuit Star Lore cylinder. Aagjuuk Akuttujuuk Sivulliik and Kingulliq The little orphan boy, the old man and the grandmother Ullaktut, Kingulliq, Nanurjuk and Qimmiit. The Runners and the great polar bear hunt. Sakiattiaq, The Pleiades Nuuttuittuq The one that never moves Pituaq The Lamp Stand Uqsuutaattiaq Cassiopeia Quturjuuk The Collarbones Sikuliaqsiujuittuq Procyon Singuuriq Sirius Tukturjuit The Big Dipper Aviguti The Milky Way Ulloriaqjuat The planets On Inuit star lore The skies of the far North Some mythological stories Some Inuit words Credits etc. Suggested activities. Constellations and Star Groups on the Inuit Star Lore Cylinder Note In the following text, the letters 'AS' followed by a page number refer to a reference in John MacDonald’s book The Arctic Sky, 2nd printing 2000, on which this material is based. Among the Inuit, there is a huge difference in spelling and pronunciation. In the old days before a written language existed this can a.o. be credited to or blamed on the travelers who wrote the legends and stories down. Today there are several dictionaries, each cover- ing its own area. Words and spelling in this text are mainly taken directly from ”The Arctic Sky”, and only occasionally supplemented with modern spellings, mainly from Greenland. Aagjuuk [AS44] For the Inuit of old, the new year started when the two stars called Aagjuuk rose above the horizon in the North East shortly before dawn.
    [Show full text]
  • 11 · the Culmination of Greek Cartography in Ptolemy
    11 · The Culmination of Greek Cartography in Ptolemy o. A. w. DILKE WITH ADDITIONAL MATERIAL SUPPLIED BY THE EDITORS By the time of Marinus of Tyre (fl. A.D. 100) and Clau­ about his work remain unanswered. Little is known dius Ptolemy (ca. A.D. 90-168), Greek and Roman in­ about Ptolemy the man, and neither his birthplace nor fluences in cartography had been fused to a considerable his dates have been positively established.4 Moreover, extent into one tradition. There is a case, accordingly, in relation to the cartographic component in his writings, for treating them as a history of one already unified we must remember that no manuscript earlier than the stream of thought and practice. Here, however, though twelfth century A.D. has come down to us, and there is we accept that such a unity exists, the discussion is fo­ no adequate modern translation and critical edition of cused on the cartographic contributions of Marinus and the Geography.5 Perhaps most serious of all for the stu­ Ptolemy, both writing in Greek within the institutions dent of mapping, however, is the whole debate about of Roman society. Both men owed much to Roman the true authorship and provenance of the general and sources of information and to the extension ofgeograph­ regional maps that accompany the several versions of ical knowledge under the growing empire: yet equally, the Byzantine manuscripts (pp. 268-74 below). AI- in the case of Ptolemy especially, they represent a cul­ mination as well as a final synthesis of the scientific tradition in Greek cartography that has been traced through a succession of writers in the previous three 1.
    [Show full text]
  • Guide to Planning an Antarctic Cruise Welcome and Contents | 2 Dear Traveller…
    Guide to planning an Antarctic cruise Welcome and contents www.swoop-antarctica.com | 2 Dear Traveller… Antarctica is a once-in-a-lifetime opportunity, Welcome and contents 2 Do I want to sail or fly? 16 something many people have dreamt about for years. Meet the team 3 Sail or fly? 17 We understand how important it is, and the valuable How do I get to Antarctica? 18 role we can play in ensuring that it’s the very best it Antarctic overview 4 can be. What can I expect? 5 What size and style of ship? 19 Where to go in Antarctica 6 Choosing an Antarctic cruise ship 20 As Antarctic specialists we live and breathe this What is expedition cruising? 7 A selection of our favourite ships 21 extraordinary region, which gives us a unique What will I do in Antarctica? 8 perspective. We’ve come to realise that there are How important are the optional five key decisions to planning an Antarctic journey: Where should I go in Antarctica? 9 adventure activities? 22 Antarctic Peninsula & Polar Circle 10 Adventure activities 23 1. Where should I go in Antarctica? 2. Which month should I travel? South Georgia & Falkland Islands 11 3. Do I want to sail or fly? About us 24 4. What size and style of ship? Which month should I travel? 12 Five reasons to choose Swoop 25 5. How important are the What’s the best time to visit Antarctica? 13 Our sustainability manifesto 26 optional adventure activities? Antarctic weather guide 15 FAQs 27 If this guide helps you to answer these questions and provides the confidence to get in touch and start the all important planning process, then its done its job.
    [Show full text]
  • A New Global Paleocene–Eocene Apparent Polar Wandering Path Loop
    Earth and Planetary Science Letters 260 (2007) 152–165 www.elsevier.com/locate/epsl A new global Paleocene–Eocene apparent polar wandering path loop by “stacking” magnetostratigraphies: Correlations with high latitude climatic data ⁎ Marie-Gabrielle Moreau , Jean Besse, Frédéric Fluteau, Marianne Greff-Lefftz Institut de Physique du Globe de Paris, France Received 22 December 2006; received in revised form 10 May 2007; accepted 10 May 2007 Available online 23 May 2007 Editor: T. Spohn Abstract A new apparent polar wander path (APWP) from the beginning of the Paleocene (65 Ma) to the middle of the mid-Eocene (42 Ma) is shown to be correlated with polar climatic data of the same time period. Rather than applying the classical method based on analysis of site-based poles, we “stacked” the APWPs obtained from magnetostratigraphies. Magnetostratigraphies have the advantage of displaying an unbroken record of local APWPs through time and, for a magnetozone (defined as the a combination of normal and reversed polarity intervals), the instantaneous poles are synchronous. Seven magnetostratigraphies located on 4 different plates covered sufficient time to be used in the analysis. An average APWP was then determined with respect to age at the magnetozone level for the African plate, which was arbitrarily chosen as a reference frame; virtual geomagnetic poles were transferred onto the African plate using ocean kinematic Euler rotations. The calculated APWP is characterized by a loop with two main changes of direction at magnetozones 26–25 (61.5–56.5 Ma) and 24–22 (56.5–48.6 Ma) distinct at a 95% level of probability, and indistinct poles related to magnetozones 29–27 (65.5–61.5 Ma) and 21–19 (48.6–40.6 Ma).
    [Show full text]
  • Safety of Navigation in the Arctic
    ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ SCIENTIFIC JOURNAL OF POLISH NAVAL ACADEMY 2017 (LVIII) 4 (211) DOI: 10.5604/01.3001.0010.6742 Czesław Dyrcz SAFETY OF NAVIGATION IN THE ARCTIC ABSTRACT This article presents the results of research based on analysis of ice conditions on the Arctic Sea in recent years and consequences of these changes. The Arctic ice extent are changed due to global warming. Reducing the ice surface leads to intensification of the navigation of the waters of the Arctic Sea, resulting in a significant reduction of the distance between the ports of Europe and East Asia and the North and South Americas. This phenomenon is conducive to the opening of new shipping routes leading through the Arctic Sea. After the entry into force of 1st January, 2017 The Interna- tional Code for Ships Operating in Polar Waters (Polar Code) is expected to improve the safety of conducting the navigation of the waters. Analysis of maritime accidents in the Arctic waters shows that the number of accidents has a growing trend, however, last year brings them a signifi- cant decreasing. Key words: Arctic, Arctic Sea, sea ice, ice condition, safety of navigation. INTRODUCTION The issue of global warming, decreasing of the Arctic ice in summer and the safety of navigation in the Arctic waters are of increasing interest in the area. Technical and organizational preparation are taken to reduce the effort of financial outlays on shipping between Europe and the Far East using shortening routs in the Arctic Ocean, covered with a thinner and a reduced extent of ice.
    [Show full text]
  • Safety of Navigation in the Arctic
    ZESZYTY NAUKOWE AKAD EMII MARYNARKI WOJEN NE J SCIENTIFIC JOURNAL OF POLISH NAVAL ACADEMY 2017 (LVIII) 4 (211) DOI: 10.5604/01.3001.0010.6742 Czesław Dyrcz SAFETY OF NAVIGATION IN THE ARCTIC ABSTRACT This article presents the results of research based on analysis of ice conditions on the Arctic Sea in recent years and consequences of these changes. The Arctic ice extent are changed due to global warming. Reducing the ice surface leads to intensification of the navigation of the waters of the Arctic Sea, resulting in a significant reduction of the distance between the ports of Europe and East Asia and the North and South Americas. This phenomenon is conducive to the opening of new shipping routes leading through the Arctic Sea. After the entry into force of 1st January, 2017 The Interna- tional Code for Ships Operating in Polar Waters (Polar Code) is expected to improve the safety of conducting the navigation of the waters. Analysis of maritime accidents in the Arctic waters shows that the number of accidents has a growing trend, however, last year brings them a signifi- cant decreasing. Key words: Arctic, Arctic Sea, sea ice, ice condition, safety of navigation. INTRODUCTION The issue of global warming, decreasing of the Arctic ice in summer and the safety of navigation in the Arctic waters are of increasing interest in the area. Technical and organizational preparation are taken to reduce the effort of financial outlays on shipping between Europe and the Far East using shortening routs in the Arctic Ocean, covered with a thinner and a reduced extent of ice.
    [Show full text]