Changes in Ocean Temperature and Chemistry (V

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Ocean Temperature and Chemistry (V Changes in Ocean 6 Temperature and Chemistry by L Jeremy Richardson arth’s ocean is vast—both in will deteriorate to the point at which they come into balance with each surface area (covering more than conditions are detrimental to shell- other (equilibrium). Importantly, E70 percent of Earth’s surface) and forming organisms and the marine food that the ocean and atmosphere reach in volume (approximately 1.3 billion chain. Thus, it will threaten fisheries equilibrium does not mean that they cubic kilometers, or 310 million cubic and marine ecosystems generally—with are not interacting—quite the contrary. miles). These are enormous figures. potentially large implications for human In fact, the atmosphere is constantly Given the size of the ocean, it is not systems and the world’s food supply. interacting with the surface layers of surprising that it plays a critical role in The ocean and atmosphere are the ocean. What this means is, in a the climate system. coupled, meaning that they interact state of dynamic equilibrium, the ocean This chapter examines how human with each other, and an action in and atmosphere are always exchanging activity—namely the ongoing release one leads to a reaction in the other. items, but the net balance of items lost of greenhouse gases (GHGs), most The ocean and atmosphere, like any and gained remains the same. Think importantly carbon dioxide (CO₂)—is physical system, strive for dynamic about a bathtub that is filling: If the changing the ocean in a measurable way, equilibrium. The word dynamic water is still running and you pull out and how these changes will ultimately means they are constantly changing the drain plug, water is running out affect marine life and human society. If and that they exchange heat and of the tub while it’s still being added, emissions continue to grow, the ocean molecules, like water vapor, until but the overall water level remains the 104 Changes in Ocean Temperature and Chemistry (v. 3) GRADE STANDARD EEI UNIT in the drink is released into the air. This process works in reverse just as well. Grade 3 3 3 c-e Living Things in Changing Environments As more and more CO₂ is pumped into the atmosphere, about a third Grade 4 4 3 b of it is absorbed by the world’s ocean, Grade 5 which helps to bring the system back into balance and reestablish that Grade 6 6 4 a; 6 4 d equilibrium state. 6 5 e Grade 7 7 3 e Responding to Environmental Change Climate Change and Ocean Temperature Grade 8 8 5 e The excess GHGs in the atmosphere 8 6 a are enhancing the well-known Greenhouse Effect; as these gases same. The tub, in this case, is in a state having on the ocean—temperature and effectively trap heat near Earth’s surface, of dynamic equilibrium. chemistry—and how they affect marine the atmosphere and Earth’s surface Human activities are throwing life and, ultimately, humans. absorb some of the extra heat, and this system out of balance, and the The dynamic exchange between the the ocean absorbs the rest. Actually, climate system has yet to reach a atmosphere and the ocean includes the heat capacity of the ocean is about new equilibrium state. Humans not only gaseous water vapor but also 1,000 times greater than that of the release GHGs primarily through the carbon dioxide. In fact, the ocean has air. Since 1960, the ocean has taken burning of fossil fuels such as coal, absorbed about 30 percent of the CO₂ up about 20 times more heat than the oil, and natural gas and also through emitted by human activity since the atmosphere (Bindoff et al. 2007). Heat deforestation. GHGs are being released beginning of the Industrial Revolution capacity is a measure of how much heat in such large numbers that they are (around 1750) (Sabine et al. 2004). If energy is needed to change an object’s changing the physical makeup of this process seems difficult for your temperature by a certain amount. both the atmosphere and the ocean. students to comprehend, have them Materials with high heat capacities— This is causing observed changes in consider their favorite carbonated such as water—require large amounts Earth’s climate. Here we will focus beverage. If left to the open air, it of heat to produce a small increase in on two particular impacts GHGs are eventually goes flat—the CO₂ dissolved temperature. CHAPTER OVERVIEW Human activities are affecting the ocean in unprecedented ways. Every Pictures of Practice: time we burn fossil fuels, we emit gases into the air that amplify our natural Melting Ice 108 Greenhouse Effect. Since the 1800’s, our sea surface temperatures, as well Student Thinking: as land temperatures, have warmed on average. This warming of ocean Ideas About Acids water contributes to rising sea levels, in addition to changing existing and Bases 112 marine ecosystems. Case Study: The ocean is also a major carbon sink. This means that the ocean uptakes Coral Reefs 113 carbon dioxide from the atmosphere. In fact, the ocean has absorbed up Student Thinking to 30 percent of the carbon dioxide emitted into our air since we started Climate and the Ocean 114 the wide-scale burning of fossil fuels during the Industrial Revolution. The uptake of carbon, however, is having potentially serious impacts on ocean life. Our ocean is becoming more acidic, and some organisms are struggling in the new environment—especially those that build shells of calcium carbonate. Changes in Ocean Temperature and Chemistry 105 ENHANCED GREENHOUSE EFFECT Observations confirm that this added heat is increasing average sea surface temperatures (SSTs). From 1850 to 2005, the average increase in SSTs per decade was about 0.04°C (Bindoff et al. 2007). Because the ocean is vast and has such a high heat capacity, it takes time for it to absorb the excess heat, meaning that there is a lag time between GHG emissions and observed change. This means that even if emissions stopped completely today, it would be several decades before the ocean reached equilibrium and the climate began to stabilize. Scientists have observed widespread changes in snow-and-ice cover around The increased amounts of GHGs, such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) from increased fossil fuel use, are trapping more and the globe, and these changes have also more of the sun’s heat in our atmosphere. been attributed to human activities RISING OCEAN AND LAND TEMPERATURES TEMPERATURE ANOMALIES JANUARY–DECEMBER 2009 -5C -4C -3C -2C -1C 0C 1C 2C 3C 4C 5C Degrees Celsius NOAA map of worldwide land and sea temperature anomalies (difference from the average temperature from 1971–2000). Areas in red were observed warmer than average; blue areas indicate that observed temperatures were cooler than average. 106 Changes in Ocean Temperature and Chemistry (as have temperature increases). A Teaching combination of increased temperatures Tip and increased melting has led to an observed rise in global average sea level (Bindoff et al. 2007). Most of this Students commonly think that the melting icebergs, ice shelves, and other increase, possibly as much as 75 percent, oceanic ice will be the largest contributors to sea-level rise, but scientists is due to the thermal expansion of know differently. There is a simple activity to demonstrate why scientists the ocean. Your students may think are more concerned with melting glacial ice or ice that is on land than that sea-level rise from climate change with oceanic ice. Have students first think about a glass of ice water. Ask is only caused by melting icebergs. students, “If the ice melts, will the glass overflow?” Students will often say Physical objects expand as they warm yes, even though they have regularly seen evidence to the contrary. Then and contract as they cool, and water have them create a simple experiment to show otherwise: behaves the same way. (This is why Take two identical bowls or beakers—clear glass works best. Into each bowl, wooden doors sometimes swell and place something to represent land; another smaller bowl placed upside- stick in the middle of a hot summer and down works well. To each bowl add an identical amount of ice. In one bowl, why bridges have a metal connector at the ice goes onto the “land” to represent glacial ice. In the other bowl, the ice either end—so the bridge can expand goes around the land to represent oceanic ice. Then have students add water and contract without breaking.) to each bowl to an identical level. Have students draw a line on the outside of An important distinction must be the bowl at the water line—dry or wet erase markers work best. Next, let the made here between land ice and sea ice melt. Once all the ice has melted, have students measure which scenario ice. Land ice is ice that is on the land, showed greater water-level increase. The bowl with the land, representing a supported entirely by landmass. The glacial-ice situation, should have risen substantially higher than that with the most important land-based ice sheets oceanic ice. Have students think about and discuss what this might mean for are in Greenland and Antarctica. Sea global climate change and our ocean. ice, on the other hand, is floating in ocean water—the Arctic sea ice that covers the North Pole in the Arctic Ocean Basin is a good example. As sea RISING SEA LEVELS ice melts, it has important consequences for warming because the ocean absorbs most of the incoming light energy from the sun, while the bright snow and ice reflect most of the light.
Recommended publications
  • Lasting Coastal Hazards from Past Greenhouse Gas Emissions COMMENTARY Tony E
    COMMENTARY Lasting coastal hazards from past greenhouse gas emissions COMMENTARY Tony E. Wonga,1 The emission of greenhouse gases into Earth’satmo- 100% sphereisaby-productofmodernmarvelssuchasthe Extremely likely by 2073−2138 production of vast amounts of energy, heating and 80% cooling inhospitable environments to be amenable to human existence, and traveling great distances 60% Likely by 2064−2105 faster than our saddle-sore ancestors ever dreamed possible. However, these luxuries come at a price: 40% climate changes in the form of severe droughts, ex- Probability treme precipitation and temperatures, increased fre- 20% quency of flooding in coastal cities, global warming, RCP2.6 and sea-level rise (1, 2). Rising seas pose a severe risk RCP8.5 0% to coastal areas across the globe, with billions of 2020 2040 2060 2080 2100 2120 2140 US dollars in assets at risk and about 10% of the ’ Year when 50-cm sea-level rise world s population living within 10 m of sea level threshold is exceeded (3–5). The price of our emissions is not felt immedi- ately throughout the entire climate system, however, Fig. 1. Cumulative probability of exceeding 50 cm of sea-level rise by year (relative to the global mean sea because processes such as ice sheet melt and the level from 1986 to 2005). The yellow box denotes the expansion of warming ocean water act over the range of years after which exceedance is likely [≥66% course of centuries. Thus, even if all greenhouse probability (12)], where the left boundary follows a gas emissions immediately ceased, our past emis- business-as-usual emissions scenario (RCP8.5, red line) sions have already “locked in” some amount of con- and the right boundary follows a low-emissions scenario (RCP2.6, blue line).
    [Show full text]
  • Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework Due Thursday Nov
    Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we’ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and erosional features of glaciers! 3. 3. Earth-Sun orbital parameters, relevance to interglacial periods ! A glacier is a river of ice. Glaciers can range in size from: 100s of m (mountain glaciers) to 100s of km (continental ice sheets) Most glaciers are 1000s to 100,000s of years old! The Snowline is the lowest elevation of a perennial (2 yrs) snow field. Glaciers can only form above the snowline, where snow does not completely melt in the summer. Requirements: Cold temperatures Polar latitudes or high elevations Sufficient snow Flat area for snow to accumulate Permafrost is permanently frozen soil beneath a seasonal active layer that supports plant life Glaciers are made of compressed, recrystallized snow. Snow buildup in the zone of accumulation flows downhill into the zone of wastage. Glacier-Covered Areas Glacier Coverage (km2) No glaciers in Australia! 160,000 glaciers total 47 countries have glaciers 94% of Earth’s ice is in Greenland and Antarctica Mountain Glaciers are Retreating Worldwide The Antarctic Ice Sheet The Greenland Ice Sheet Glaciers flow downhill through ductile (plastic) deformation & by basal sliding. Brittle deformation near the surface makes cracks, or crevasses. Antarctic ice sheet: ductile flow extends into the ocean to form an ice shelf. Wilkins Ice shelf Breakup http://www.youtube.com/watch?v=XUltAHerfpk The Greenland Ice Sheet has fewer and smaller ice shelves. Erosional Features Unique erosional landforms remain after glaciers melt.
    [Show full text]
  • Purification and Characterization of Bromocresol Purple for Spectrophotometric Seawater Alkalinity Titrations
    University of Montana ScholarWorks at University of Montana Undergraduate Theses and Professional Papers 2016 PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS Taymee A. Brandon The University Of Montana, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/utpp Part of the Analytical Chemistry Commons, and the Environmental Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Brandon, Taymee A., "PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS" (2016). Undergraduate Theses and Professional Papers. 97. https://scholarworks.umt.edu/utpp/97 This Thesis is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in Undergraduate Theses and Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. PURIFICATION AND CHARACTERIZATION OF BROMOCRESOL PURPLE FOR SPECTROPHOTOMETRIC SEAWATER ALKALINITY TITRATIONS By TAYMEE ANN MARIE BRANDON Undergraduate Thesis presented in partial fulfillment of the requirements for the University Scholar distinction Davidson Honors College University of Montana Missoula, MT May 2016 Approved by: Dr. Michael DeGrandpre Department of Chemistry and Biochemistry ABSTRACT Brandon, Taymee, B.S., May 2016 Chemistry Purification and Characterization of Bromocresol Purple for Spectrophotometric Seawater Alkalinity Titrations Faculty Mentor: Dr. Michael DeGrandpre The topic of my research is the purification of the sulfonephthalein indicator bromocresol purple (BCP). BCP is used as an acid-base indicator in seawater alkalinity determinations. Impurities in sulfonephthalein indicator salts often result in significant errors in pH values3.
    [Show full text]
  • Influences of the Choice of Climatology on Ocean Heat
    388 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 32 Influences of the Choice of Climatology on Ocean Heat Content Estimation LIJING CHENG AND JIANG ZHU International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (Manuscript received 30 August 2014, in final form 9 October 2014) ABSTRACT The choice of climatology is an essential step in calculating the key climate indicators, such as historical ocean heat content (OHC) change. The anomaly field is required during the calculation and is obtained by subtracting the climatology from the absolute field. The climatology represents the ocean spatial variability and seasonal circle. This study found a considerable weaker long-term trend when historical climatologies (constructed by using historical observations within a long time period, i.e., 45 yr) were used rather than Argo- period climatologies (i.e., constructed by using observations during the Argo period, i.e., since 2004). The change of the locations of the observations (horizontal sampling) during the past 50 yr is responsible for this divergence, because the ship-based system pre-2000 has insufficient sampling of the global ocean, for instance, in the Southern Hemisphere, whereas this area began to achieve full sampling in this century by the Argo system. The horizontal sampling change leads to the change of the reference time (and reference OHC) when the historical-period climatology is used, which weakens the long-term OHC trend. Therefore, Argo-period climatologies should be used to accurately assess the long-term trend of the climate indicators, such as OHC. 1. Introduction methodology.
    [Show full text]
  • World Ocean Thermocline Weakening and Isothermal Layer Warming
    applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer.
    [Show full text]
  • Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future
    Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future As more and more states are incorporating projections of sea-level rise into coastal planning efforts, the states of California, Oregon, and Washington asked the National Research Council to project sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account the many factors that affect sea-level rise on a local scale. The projections show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections; north of that point, sea-level rise is projected to be less than global projections because seismic strain is pushing the land upward. ny significant sea-level In compliance with a rise will pose enor- 2008 executive order, mous risks to the California state agencies have A been incorporating projec- valuable infrastructure, devel- opment, and wetlands that line tions of sea-level rise into much of the 1,600 mile shore- their coastal planning. This line of California, Oregon, and study provides the first Washington. For example, in comprehensive regional San Francisco Bay, two inter- projections of the changes in national airports, the ports of sea level expected in San Francisco and Oakland, a California, Oregon, and naval air station, freeways, Washington. housing developments, and sports stadiums have been Global Sea-Level Rise built on fill that raised the land Following a few thousand level only a few feet above the years of relative stability, highest tides. The San Francisco International Airport (center) global sea level has been Sea-level change is linked and surrounding areas will begin to flood with as rising since the late 19th or to changes in the Earth’s little as 40 cm (16 inches) of sea-level rise, a early 20th century, when climate.
    [Show full text]
  • Geochemistry of Corals: Proxies of Past Ocean Chemistry, Ocean Circulation, and Climate
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8354–8361, August 1997 Colloquium Paper This paper was presented at a colloquium entitled ‘‘Carbon Dioxide and Climate Change,’’ organized by Charles D. Keeling, held November 13–15, 1995, at the National Academy of Sciences, Irvine, CA. Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate ELLEN R. M. DRUFFEL Department of Earth System Science, University of California, Irvine, CA 92697 ABSTRACT This paper presents a discussion of the status Second, a synthesis is presented of the available proxy of the field of coral geochemistry as it relates to the recovery of records from corals as they relate to past climate, ocean past records of ocean chemistry, ocean circulation, and climate. circulation changes, and anthropogenic input of excess CO2. The first part is a brief review of coral biology, density banding, For some databases, the anthropogenic CO2 appears clear and and other important factors involved in understanding corals as globally distributed. For other databases it appears that vari- proxies of environmental variables. The second part is a syn- ability on interannual to decadal time scales complicates a thesis of the information available to date on extracting records straightforward attempt to separate natural perturbations of the carbon cycle and climate change. It is clear from these from the anthropogenic CO2 signal on the Earth’s environ- proxy records that decade time-scale variability of mixing pro- ment. Shen (4) presents a review of the types of coral archives cesses in the oceans is a dominant signal. That Western and available from the perspective of historical El Nin˜o-Southern Eastern tropical Pacific El Nin˜o-Southern Oscillation (ENSO) Oscillation (ENSO) influences on the tropical Pacific Ocean.
    [Show full text]
  • GSA TODAY • Southeastern Section Meeting, P
    Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.
    [Show full text]
  • Glacier (And Ice Sheet) Mass Balance
    Glacier (and ice sheet) Mass Balance The long-term average position of the highest (late summer) firn line ! is termed the Equilibrium Line Altitude (ELA) Firn is old snow How an ice sheet works (roughly): Accumulation zone ablation zone ice land ocean • Net accumulation creates surface slope Why is the NH insolation important for global ice• sheetSurface advance slope causes (Milankovitch ice to flow towards theory)? edges • Accumulation (and mass flow) is balanced by ablation and/or calving Why focus on summertime? Ice sheets are very sensitive to Normal summertime temperatures! • Ice sheet has parabolic shape. • line represents melt zone • small warming increases melt zone (horizontal area) a lot because of shape! Slightly warmer Influence of shape Warmer climate freezing line Normal freezing line ground Furthermore temperature has a powerful influence on melting rate Temperature and Ice Mass Balance Summer Temperature main factor determining ice growth e.g., a warming will Expand ablation area, lengthen melt season, increase the melt rate, and increase proportion of precip falling as rain It may also bring more precip to the region Since ablation rate increases rapidly with increasing temperature – Summer melting controls ice sheet fate* – Orbital timescales - Summer insolation must control ice sheet growth *Not true for Antarctica in near term though, where it ʼs too cold to melt much at surface Temperature and Ice Mass Balance Rule of thumb is that 1C warming causes an additional 1m of melt (see slope of ablation curve at right)
    [Show full text]
  • Causes of Sea Level Rise
    FACT SHEET Causes of Sea OUR COASTAL COMMUNITIES AT RISK Level Rise What the Science Tells Us HIGHLIGHTS From the rocky shoreline of Maine to the busy trading port of New Orleans, from Roughly a third of the nation’s population historic Golden Gate Park in San Francisco to the golden sands of Miami Beach, lives in coastal counties. Several million our coasts are an integral part of American life. Where the sea meets land sit some of our most densely populated cities, most popular tourist destinations, bountiful of those live at elevations that could be fisheries, unique natural landscapes, strategic military bases, financial centers, and flooded by rising seas this century, scientific beaches and boardwalks where memories are created. Yet many of these iconic projections show. These cities and towns— places face a growing risk from sea level rise. home to tourist destinations, fisheries, Global sea level is rising—and at an accelerating rate—largely in response to natural landscapes, military bases, financial global warming. The global average rise has been about eight inches since the centers, and beaches and boardwalks— Industrial Revolution. However, many U.S. cities have seen much higher increases in sea level (NOAA 2012a; NOAA 2012b). Portions of the East and Gulf coasts face a growing risk from sea level rise. have faced some of the world’s fastest rates of sea level rise (NOAA 2012b). These trends have contributed to loss of life, billions of dollars in damage to coastal The choices we make today are critical property and infrastructure, massive taxpayer funding for recovery and rebuild- to protecting coastal communities.
    [Show full text]
  • Slow-Onset Processes and Resulting Loss and Damage
    Publication Series ADDRESSING LOSS AND DAMAGE FROM SLOW-ONSET PROCESSES Slow-onset Processes and Resulting Loss and Damage – An introduction Table of contents L 4 22 ist of a bbre Summary of Loss and damage via tio key facts and due to slow-onset ns definitions processes AR4 IPCC Fourth Assessment Report 6 22 What is loss and damage? Introduction AR5 IPCC Fifth Assessment Report COP Conference of the Parties to the 23 United Nations Framework Convention on 9 What losses and damages IMPRINT Climate Change can result from slow-onset Slow-onset ENDA Environment Development Action Energy, processes? Authors Environment and Development Programme processes and their Laura Schäfer, Pia Jorks, Emmanuel Seck, Energy key characteristics 26 Oumou Koulibaly, Aliou Diouf ESL Extreme Sea Level What losses and damages Contributors GDP Gross Domestic Product 9 can result from sea level rise? Idy Niang, Bounama Dieye, Omar Sow, Vera GMSL Global mean sea level What is a slow-onset process? Künzel, Rixa Schwarz, Erin Roberts, Roxana 31 Baldrich, Nathalie Koffi Nguessan GMSLR Global mean sea level rise 10 IOM International Organization on Migration What are key characteristics Loss and damage Editing Adam Goulston – Scize Group LLC of slow-onset processes? in Senegal due to IPCC Intergovernmental Panel on Climate Change sea level rise Layout and graphics LECZ Low-elevation coastal zone 14 Karin Roth – Wissen in Worten OCHA Office for the Coordination of Humanitarian Affairs What are other relevant January 2021 terms for the terminology on 35 RCP Representative
    [Show full text]
  • Climate Change and Southern Ocean Resilience
    No.No. 52 5 l l JuneMay 20202021 POLARKENNAN PERSPECTIVES CABLE Adélie penguins on top of an ice flow near the Antarctic Peninsula. © Jo Crebbin/Shutterstock Climate Change and Southern Ocean Resilience REPORT FROM AN INTERDISCIPLINARY SCIENTIFIC WORKSHOP, MARCH 30, 2021 Andrea Capurroi, Florence Colleoniii, Rachel Downeyiii, Evgeny Pakhomoviv, Ricardo Rourav, Anne Christiansonvi i. Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future ii. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Antarctic and Southern Ocean Coalition iii. Australian National University iv. University of British Columbia v. Antarctic and Southern Ocean Coalition vi. The Pew Charitable Trusts CONTENTS I. INTRODUCTION BY EVAN T. BLOOM 3 II. EXECUTIVE SUMMARY 5 III. CLIMATE CHANGE AND SOUTHERN OCEAN RESILIENCE 7 A. CLIMATE CHANGE AND THE SOUTHERN OCEAN 7 B. CONNECTION OF REGIONAL SOUTHERN OCEAN PROCESS TO GLOBAL SYSTEMS 9 C. UNDERSTANDING PROCESS CHANGES IN THE SOUTHERN OCEAN 10 D. ANTARCTIC GOVERNANCE AND DECISION MAKING 15 E. CONCLUSION 18 F. REFERENCES 19 POLAR PERSPECTIVES 2 No. 5 l June 2021 I. INTRODUCTION BY EVAN T. BLOOM vii Fig 1: Southern Ocean regions proposed for protection A network of MPAs could allow for conservation of distinct areas, each representing unique ecosystems As the world prepares for the Glasgow Climate Change Conference in November 2021, there is considerable focus on the Southern Ocean. The international community has come to realize that the polar regions hold many of the keys to unlocking our understanding of climate-related phenomena - and thus polar science will influence policy decisions on which our collective futures depend.
    [Show full text]