1 Physical controls of variability in North Atlantic phytoplankton communities 2 3 4 Andrew D. Barton,a,b* M. Susan Lozier,a and Richard G. Williamsb 5 6 aEarth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 7 8 bDepartment of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, 9 University of Liverpool, Liverpool, United Kingdom 10 11 12 *Corresponding author:
[email protected] 13 14 15 16 17 18 19 20 Running head: North Atlantic phytoplankton community variability 21 22 23 24 25 1 26 Acknowledgements 27 28 We thank: David Johns and the Sir Alister Hardy Foundation for Ocean Science for 29 maintaining and providing the Continuous Plankton Recorder data used in this study; Doug 30 Smith of the UK MetOffice for providing the gridded temperature and salinity data; the National 31 Centers for Environmental Prediction and National Center for Atmospheric Research 32 (NCEP/NCAR) for providing the heat flux and wind data. ADB was supported by the NSF 33 International Research Fellowship Program; MSL was supported by the Ocean Biology and 34 Biogeochemistry Program at the National Aeronautics and Space Administration; RGW was 35 supported by the UK Natural Environment Research Council (NE/H02087X/1). 36 2 37 Abstract 38 The structure of marine phytoplankton communities in the North Atlantic Ocean varies 39 considerably on seasonal, interannual, and longer timescales in response to environmental 40 change. However, the causes of ecological variability on interannual and longer timescales 41 remain uncertain. Here, using a half-century of observations, we compare changes in 42 atmospheric forcing (surface wind speed and heat fluxes) and ocean surface properties (sea 43 surface temperature, mixed layer depth, thermal stratification, and turbulent kinetic energy) with 44 variability in total phytoplankton biomass and the abundances of diatoms and dinoflagellates, as 45 measured by the Continuous Plankton Recorder survey.