PHYLOGENY of the FAMILY LIPARIDIDAE, with the TAXONOMY of the SPECIES FOUND AROUND Title JAPAN

Total Page:16

File Type:pdf, Size:1020Kb

PHYLOGENY of the FAMILY LIPARIDIDAE, with the TAXONOMY of the SPECIES FOUND AROUND Title JAPAN PHYLOGENY OF THE FAMILY LIPARIDIDAE, WITH THE TAXONOMY OF THE SPECIES FOUND AROUND Title JAPAN Author(s) KIDO, Kaoru Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 35(2), 125-256 Issue Date 1988-12 Doc URL http://hdl.handle.net/2115/21885 Type bulletin (article) File Information 35(2)_P125-256.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP PHYLOGENY OF THE FAMilY lIPARIDIDAE, WITH THE TAXONOMY OF THE SPECIES FOUND AROUND JAPAN By Kaoru Kmo Laboratory of Marine Zoology, Faculty of Fisheries, Hokkaido University, Hakodate, Hokkaido 041, Japan Contents Page I. Introduction ............................................................ 127 II. Materials................................................................ 127 III. Methods................................................................ 129 IV. Systematic procedures .................................................... 130 V. Comparative anatomy and discussion ...................................... 131 1. Cranium ....................................................... .-.... 131 2. Infraorbital bones .................................................. 138 3. Jaws .............................................................. 139 4. Suspensorium and opercular apparatus ................................ 140 5. Hyoid arch ........................................................ 144 6. Branchial apparatus ................................................ 145 7. Pectoral girdle ...................................................... 148 8. Pelvic girdle . .. 150 9. Vertebrae and their accessory bones. .. 152 10. Dorsal and anal fins ................................................ 153 11. Caudal complex .................................................... 154 12. Others.............................................................. 157 VI. Phylogeny of the Liparididae .... .. 158 1. Monophyly of the Lparididae ........................................ 158 2. Relationships within the Liparididae .................................. 158 3. Classification........................................................ 163 VII. Taxonomy of the liparidid fishes found around Japan ........................ 164 1. Key to subfamilies .................................................. 164 2. Subfamily Liparidinae .............................................. 164 3. Key to genera of Liparidinae ........................................ 164 4. Genus Liparis Scopoli. .. 165 5. Key to species of Liparis ............................................ 165 Liparis burkei (Jordan et Thompson) ................................ 166 Liparis punctulatus (Tanaka) ...................................... 168 The present work was submitted as a partial fulfillment of the requirements for Doctor's degree in Fisheries Science at Rokkaido University in 1988. Present address: Ishikawa Prefectural Fisheries High School, 106-7 Ushitsu, Noto-machi, Fugeshi-gun, Ishikawa Prefecture 927-04, Japan. -125- Mem. Fac. Fish. Hokkaido Univ. [XXXV, 2 Liparis bikunin Matsubara et I wai .................................. 171 Liparis miostomus Matsubara et Iwai ................................ 172 Liparis frenatus (Gilbert et Burke) .................................. 174 Liparis tessellatus (Gilbert et Burke) ................................ 176 Liparis oclwtensis Schmidt. .. 178 Liparis latifrons Schmidt .......................................... 182 Liparis agassizii Putnam .......................................... 185 Liparis tanakai (Gilbert et Burke) .................................. 187 Liparis owstoni (Jordan et Snyder) .................................. 189 6. Genus Crystallichthys Jordan et Gilbert ................................ 190 Crystallichthys matsushimae (Jordan et Snyder) ...................... 190 7. Genus Careproctus Kr¢yer ............................................ 192 8. Key to species of Careproctus ........................................ 193 Careproctus dentatus sp. nov. ..................................... 194 Careproctus jordani Burke. .. 197 Careproctus rlwdomelas Gilbert et Burke ............................. 198 Careproctus marginatus sp. nov. .................................... 200 Careproctus segaliensis Gilbert et Burke .. .. 202 Careproctus sinensis Gilbert et Burke ................................ 203 Careproctus lwmopterus Gilbert et Burke ............................ 205 Careproctus mederi Schmidt ........................................ 206 Careproctus macrodiscus Schmidt .................................... 208 Careproctus bathycoetus Gilbert et Burke ............................ 210 Careproctus furcellus Gilbert et Burke ................................ 211 Careproctus cypselurus (Jordan et Gilbert) ............................ 213 Careproctus cyclocephalus Kido ...................................... 215 Careproctus rastrinus Gilbert et Burke .............................. 217 Careproctus trachysoma Gilbert et Burke ............................ 220 Careproctus nigricans Schmidt ...................................... 222 Careproctus colletti Gilbert. .. 224 Careproctus roseofuscus Gilbert et Burke ............................. 227 9. Genus Paraliparis Collett ............................................ 229 10. Key to species of Paraliparis ......................................... 230 Paraliparis barbulifer (Gilbert) ...................................... 231 Paraliparis nanus (Gilbert) ........................................ 232 Paraliparis mandibularis Kido . .. 234 Paraliparis rosaceus Gilbert ........................................ 235 Paraliparis atramentatus Gilbert et Burke. .. 237 Paraliparis grandis Schmidt ........................................ 238 Paraliparis meridionalis Kido ...................................... 240 Paraliparis dipterus sp. nov. ........................................ 242 Paraliparis entochloris Gilbert et Burke .............................. 243 Paraliparis melanobranchus Gilbert et Burke ......................... 244 11. Subfamily Nectoliparidinae .......................................... 245 12. Genus Nectoliparis Gilbert et Burke .................................. 245 Nectoliparis pelagicus Gilbert et Burke .............................. 246 13. Doubtful species .................................................... 247 Liparis sarasa (Tanaka) . .. 247 Liparis furcatus (Mori) ............................................ 247 vm. Summary . .. 248 IX. Acknowledgments........................................................ 248 X. Literature cited. .. 249 -126- 1988J KIDO: Liparidid phylogeny and taxonomy I. Introduction The fishes of the family Liparididae constitute a large group within the order Scorpaeniformes, including about 200 species in 19 genera. They are abundant in the North Pacific, North Atlantic and Antarctic, and inhabit from tidal zone to hadal zone over 7000 m (Andriashev, 1955, 1975; Rass, 1958). Most species are benthic with exceptions of some benthopelagic or pelagic species (Schmidt, 1950; Stein, 1978a; Peden, 1981). The phylogeny of the liparidid fishes has never been studied except for Burke (1930) who discussed the relationships of the genera mainly on the basis of several external characters. The osteological studies have been made by several authors (e.g., Garman, 1982; Ueno, 1970; Andriashev et al., 1977; Andriashev, 1986), but those were very fragmentary. Though Able and McAllister (1980) and Andriashev (1986) discussed and suggested the polarities of external and meristic characters, they did not propose any phylogenetic relationships. As a result, Burke's view has been generally accepted in spite of vast addition of species since then. This family has been often treated as a subfamily included in the Cyclopter­ idae. Nelson (1976) established the subfamily Rhodichthyinae within the Cyclopteridae, but later he reduced it to tribal level within the subfamily Liparid­ inae in 1984. In recent years, Yabe (1985) suggested that the liparidid and cyclopterid fishes form a sister group of the superfamily Cottoidea. The Japanese liparidid fishes had been taxonomically studied by Jordan and Snyder (1902), Schmidt (1904a), Gilbert and Burke (1912b), Jordan and Thompson (1914) and Tanaka (1916). Burke (1930) made the most extensive revisional study of this family, including 114 species in 13 genera known up to that time from the world. On the basis of Burke's study, Okada and Matsubara (1938) gave a key to 38 species in 7 genera recorded from waters around Japan. Matsubara (1955) presented a key to 51 species in 8 genera of liparidid fishes from around Japan, Okhotsk and Bering Seas by adding new species described by Soldatov and Lindberg (1930), Abe (1950), Schmidt (1950) and Matsubara and Iwai (1954). More recently, based on Schmidt's manuscript, Krasyukova (1984) described 8 new species from the Japan and Okhotsk Seas. However, these studies were less than satisfactory, because many species were established on the basis of modest differences and limited speci­ mens of small areas and are inadequately described with including many errors. The purposes of this study are to demonstrate the monophyly of the family Liparididae, to clarify the outline of liparidid phylogeny by using internal and external characters on the basis of materials from the Northern Hemisphere, and to resolve the taxonomic problems of liparidids found from waters around Japan. II. Materials The specimens examined for this study are deposited in the following institu­ tions: Department of Zoology,
Recommended publications
  • Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA)
    Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA) Gerald R. Hoff and Bradley Stevens Reprinted from the Alaska Fishery Research Bulletin Vol. 11 No. 1, Summer 2005 The Alaska Fisheries Research Bulletin can be found on the World Wide Web at URL: http://www.adfg.state.ak.us/pubs/afrb/afrbhome.php Alaska Fishery Research Bulletin 11(1):27–36. 2005. Copyright © 2005 by the Alaska Department of Fish and Game Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA) Gerald R. Hoff and Bradley Stevens ABSTRACT: Epibenthic and demersal assemblages of fish and invertebrates on the Patton Seamount in the Gulf of Alaska, U.S.A., were studied in July 1999 using the Deep Sea Research Vehicle Alvin. Faunal associations with depth were described using video analysis of 8 dives from 151 to 3,375 m. A cluster analysis applied to the observations suggests three benthic faunal communities based on depth: 1) a shallow-water community (151–950 m) consisting mainly of rockfishes, flatfishes, sea stars, and attached suspension feeders, 2) a mid-depth community (400–1500 m) also consisting of numerous attached suspension-feeding organisms such as corals, sponges, crinoids, sea anemones, and sea cucumbers and fish such as the sablefishAnoplopoma fimbria and the giant grenadier Albatrossia pectoralis both of which were aggregated over a relatively narrow depth range, and 3) a deep-water community (500–3,375 m) consisting of fewer attached suspension feeders and more highly mobile species such as the Pacific grenadier Coryphaenoides acrolepis, popeye grenadier C. cinereus, Pacific flatnose Antimora microlepis, and large mobile crabs Macroregonia macrochira and Chionoecetes spp.
    [Show full text]
  • (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Title First Records of the Snailfish Careproctus Lycopersicus (Cottoidei
    First Records of the Snailfish Careproctus lycopersicus Title (Cottoidei: Liparidae) from the Western North Pacific Author(s) Kai, Yoshiaki; Matsuzaki, Koji; Mori, Toshiaki Citation Species Diversity (2019), 24(2): 115-118 Issue Date 2019-07-25 URL http://hdl.handle.net/2433/253532 © 2019 The Japanese Society of Systematic Zoology; 許諾条 Right 件に基づいて掲載しています。 Type Journal Article Textversion publisher Kyoto University Species Diversity 24: 115–118 Published online 25 July 2019 DOI: 10.12782/specdiv.24.115 First Records of the Snailfish Careproctus lycopersicus (Cottoidei: Liparidae) from the Western North Pacific Yoshiaki Kai1,3, Koji Matsuzaki2, and Toshiaki Mori2 1 Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto 625-0086, Japan E-mail: [email protected] 2 Marine Science Museum, Fukushima (Aquamarine Fukushima), Onahama, Iwaki, Fukushima 971-8101, Japan 3 Corresponding author (Received 8 March 2019; Accepted 14 May 2019) Four specimens (168.6–204.4 mm standard length) of Careproctus lycopersicus Orr, 2012, previously recorded from the Bering Sea and eastern Aleutian Islands, were collected from the southern Sea of Okhotsk (the Nemuro Strait, eastern Hokkaido, Japan). These specimens represent the first records of the species from the western North Pacific. A detailed description is provided for the specimens, including the intraspecific variations. The new standard Japanese name “Tomato- kon’nyaku-uo” is proposed for the species. Key Words: Teleostei, Actinopterygii, Sea of Okhotsk, Japan, distribution. Introduction Materials and Methods Snailfishes of the family Liparidae Scopoli, 1777 compose Counts, measurements, and descriptive terminology fol- a large and diverse group in the suborder Cottoidei, hav- low Orr and Maslenikov (2007).
    [Show full text]
  • Zootaxa, Snailfish Genus Allocareproctus (Teleostei
    Zootaxa 1173: 1–37 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1173 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Revision of the snailfish genus Allocareproctus Pitruk & Fedorov (Teleostei: Liparidae), with descriptions of four new species from the Aleutian Islands JAMES WILDER ORR1 & MORGAN SCOTT BUSBY2 National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Sci- ence Center, Resource Assessment and Conservation Engineering Division, 7600 Sand Point Way NE, Build- ing 4, Seattle, WA 98115, U.S.A; E-mail: [email protected]; [email protected] Table of contents Abstract ............................................................................................................................................. 1 Introduction ....................................................................................................................................... 2 Method and materials ........................................................................................................................ 3 Systematic accounts .......................................................................................................................... 4 Allocareproctus Pitruk & Fedorov 1993 .................................................................................... 4 Key to species of Allocareproctus ............................................................................................13 Allocareproctus jordani (Burke 1930) .....................................................................................14
    [Show full text]
  • Inventory of Tidepool and Estuarine Fishes in Acadia National Park
    INVENTORY OF TIDEPOOL AND ESTUARINE FISHES IN ACADIA NATIONAL PARK Edited by Linda J. Kling and Adrian Jordaan School of Marines Sciences University of Maine Orono, Maine 04469 Report to the National Park Service Acadia National Park February 2008 EXECUTIVE SUMMARY Acadia National Park (ANP) is part of the Northeast Temperate Network (NETN) of the National Park Service’s Inventory and Monitoring Program. Inventory and monitoring activities supported by the NETN are becoming increasingly important for setting and meeting long-term management goals. Detailed inventories of fishes of estuaries and intertidal areas of ANP are very limited, necessitating the collection of information within these habitats. The objectives of this project were to inventory fish species found in (1) tidepools and (2) estuaries at locations adjacent to park lands on Mount Desert Island and the Schoodic Peninsula over different seasons. The inventories were not intended to be part of a long-term monitoring effort. Rather, the objective was to sample as many diverse habitats as possible in the intertidal and estuarine zones to maximize the resultant species list. Beyond these original objectives, we evaluated the data for spatial and temporal patterns and trends as well as relationships with other biological and physical characteristics of the tidepools and estuaries. For the tidepool survey, eighteen intertidal sections with multiple pools were inventoried. The majority of the tidepool sampling took place in 2001 but a few tidepools were revisited during the spring/summer period of 2002 and 2003. Each tidepool was visited once during late spring (Period 1: June 6 – June 26), twice during the summer (Period 2: July 3 – August 2 and Period 3: August 3 – September 18) and once during early fall (Period 4: September 29 – October 21).
    [Show full text]
  • The Morphology and Sculpture of Ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea
    Estonian Journal of Earth Sciences, 2010, 59, 4, 263–276 doi: 10.3176/earth.2010.4.03 The morphology and sculpture of ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea Tiiu Märssa, Janek Leesb, Mark V. H. Wilsonc, Toomas Saatb and Heli Špilevb a Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] b Estonian Marine Institute, University of Tartu, Mäealuse Street 14, 12618 Tallinn, Estonia; [email protected], [email protected], [email protected] c Department of Biological Sciences and Laboratory for Vertebrate Paleontology, University of Alberta, Edmonton, Alberta T6G 2E9 Canada; [email protected] Received 31 August 2009, accepted 28 June 2010 Abstract. Small to very small bones (ossicles) in one species each of the families Cyclopteridae and Liparidae (Cottiformes) of the Baltic Sea are described and for the first time illustrated with SEM images. These ossicles, mostly of dermal origin, include dermal platelets, scutes, tubercles, prickles and sensory line segments. This work was undertaken to reveal characteristics of the morphology, sculpture and ultrasculpture of these small ossicles that could be useful as additional features in taxonomy and systematics, in a manner similar to their use in fossil material. The scutes and tubercles of the cyclopterid Cyclopterus lumpus Linnaeus are built of small denticles, each having its own cavity viscerally. The thumbtack prickles of the liparid Liparis liparis (Linnaeus) have a tiny spinule on a porous basal plate; the small size of the prickles seems to be related to their occurrence in the exceptionally thin skin, to an adaptation for minimizing weight and/or metabolic cost and possibly to their evolution from isolated ctenii no longer attached to the scale plates of ctenoid scales.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Biodiversity of Arctic Marine Fishes: Taxonomy and Zoogeography
    Mar Biodiv DOI 10.1007/s12526-010-0070-z ARCTIC OCEAN DIVERSITY SYNTHESIS Biodiversity of arctic marine fishes: taxonomy and zoogeography Catherine W. Mecklenburg & Peter Rask Møller & Dirk Steinke Received: 3 June 2010 /Revised: 23 September 2010 /Accepted: 1 November 2010 # Senckenberg, Gesellschaft für Naturforschung and Springer 2010 Abstract Taxonomic and distributional information on each Six families in Cottoidei with 72 species and five in fish species found in arctic marine waters is reviewed, and a Zoarcoidei with 55 species account for more than half list of families and species with commentary on distributional (52.5%) the species. This study produced CO1 sequences for records is presented. The list incorporates results from 106 of the 242 species. Sequence variability in the barcode examination of museum collections of arctic marine fishes region permits discrimination of all species. The average dating back to the 1830s. It also incorporates results from sequence variation within species was 0.3% (range 0–3.5%), DNA barcoding, used to complement morphological charac- while the average genetic distance between congeners was ters in evaluating problematic taxa and to assist in identifica- 4.7% (range 3.7–13.3%). The CO1 sequences support tion of specimens collected in recent expeditions. Barcoding taxonomic separation of some species, such as Osmerus results are depicted in a neighbor-joining tree of 880 CO1 dentex and O. mordax and Liparis bathyarcticus and L. (cytochrome c oxidase 1 gene) sequences distributed among gibbus; and synonymy of others, like Myoxocephalus 165 species from the arctic region and adjacent waters, and verrucosus in M. scorpius and Gymnelus knipowitschi in discussed in the family reviews.
    [Show full text]
  • Alaska Arctic Marine Fish Ecology Catalog
    Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Alaska Arctic Marine Fish Ecology Catalog Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey Cover: Photographs of various fish studied for this report. Background photograph shows Arctic icebergs and ice floes. Photograph from iStock™, dated March 23, 2011. Alaska Arctic Marine Fish Ecology Catalog By Lyman K. Thorsteinson and Milton S. Love, editors Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov. Disclaimer: This Scientific Investigations Report has been technically reviewed and approved for publication by the Bureau of Ocean Energy Management. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]