Recent Developments in String Theory

Total Page:16

File Type:pdf, Size:1020Kb

Recent Developments in String Theory Recent Developments in String Theory From Perturbative Dualities to MTheory Lectures given by D L ust at the Saalburg Summer School in September y y Michael Haack Boris Kors Dieter L ust MartinLutherUniversitatHalleWittenberg Institut f urPhysik Friedemann Bach Platz HalleSaale Germany y Humboldt Universitatzu Berlin Institut f urPhysik Invalidenstr Berlin Germany Abstract These lectures intend to give a p edagogical introduction into some of the developments in string theory during the last years They include p erturbative Tduality and non p ertur bative S and Udualities their unavoidable demand for Dbranes an example of enhanced gauge symmetry at xed p oints of the Tduality group a review of classical solitonic so lutions in general relativity gauge theories and tendimensional sup ergravity a discussion of their BPS nature Polchinskis observations that allow to view Dbranes as RR charged states in the non p erturbative string sp ectrum the application of all this to the computation of the black hole entropy and Hawking radiation and nally a brief survey of how everything ts together in Mtheory hep-th/9904033 6 Apr 1999 1 Email MichaelHeraPhysikUniHalleDe 2 Email Ko ersPhysikHUBerlinDe 3 Email LuestPhysikHUBerlinDe Contents Introduction Perturbative string theory TDuality Nonp erturbative dualities Sduality Uduality Stringstringduality Duality to elevendimensional sup ergravity and Mtheory Tduality Closed b osonic string theory Compactication on a circle D Compactication on a torus T Heterotic string theory Type I IA and I IB sup erstring theory Op en strings Non p erturbative phenomena Solitons in eld theory Black holes Magnetic monop oles BPS states Solitons in string theory Extended charges as sources of tensor elds Solutions of the sup ergravity eld equations pbranes Dbranes as pbranes Black holes in string theory Mtheory A Compactication on T and Tduality Introduction These notes are a summary and a substantial extension of the material that D L ustpresented in his lectures at the summer school at Saalburg in They are intended to give a basic overview over non p erturbative eects and duality symmetries in string theory including recent developments After a short review of the status of p erturbative string theory as it presented itself b efore the second string revolution in and a brief summary of the recent progress esp ecially concerning non p erturbative asp ects the main text falls into two pieces In chapter we will go into some details of Tduality Afterwards chapter and chapter will fo cus on some non p erturbative phenomena The text is however not meant as an introduction to string theory but rather relies on some basic knowledge see eg the lectures given at this school by O Lechtenfeld or The references we give are never intended to b e exhaustive but only to display the material that is essentially needed to justify our arguments and calculations Perturbative string theory Before string theory was only dened via its p erturbative expansion As the string moves in time it sweeps out a two dimensional worldsheet which is embedded via its co ordinates in a Minkowski target space M X M This worldsheet describ es after a Wick rotation in the time variable a Riemann surface p ossibly with b oundary Propagators or general Greens functions of scattering pro cesses can b e expanded in the dierent top ologies of Riemannian surfaces which corresp onds to an expansion in the string coupling constant g see g The reason for this is that all string diagrams can S + + + ... Figure String p erturbation expansion b e built out of the fundamental splitting resp ectively joining vertex g This vertex comes along with a factor g which is given by the vacuum exp ectation value VEV of a scalar eld S the so called dilaton hi g e S As there is no p otential for the dilaton in string p erturbation theory its VEV is an arbitrary g s Figure Fundamental string interaction vertex parameter which can b e freely chosen Only if it is small the ab ove expansion in Riemann surfaces makes sense Statements ab out the strong coupling regime on the other hand require some knowledge ab out non p erturbative characteristics of string theory such as duality relations combining weakly coupled string theories with strongly coupled ones First quantizing the string amounts to quantizing the embedding co ordinates regarded as elds of a two dimensional con formal eld theory living on the world sheet This is a two dimensional analog of p oint particle quantum mechanics A sensible second quantized string eld theory is very dicult to achieve and will not b e discussed here any further In the p erturbative regime there exist ve consistent Type Gauge group of sup ercharges N Heterotic E E Heterotic SO I includes op en strings SO I IA nonchiral I IB chiral Table The ve consistent sup erstring theories in d ten dimensional sup erstring theories see table Type I IA and I IB at rst sight do not contain any op en strings In fact they do however app ear if one introduces the non p erturbative ob jects called Dbranes which are hyperplanes on which op en strings can end Thus from the world sheet viewp oint a Dbrane manifests itself by cutting a hole into the surface and imp osing Dirichlet b oundary conditions These ob jects will b e studied in more detail b elow To get a string theory in lower dimensional spacetime such as in the phenomenologically most interesting case d one has to compactify the additional space dimensions There are several metho ds to construct fourdimensional string theories and in fact there are many dierent ways to get rid of the extra dimensions A priori each compactication gives rise to a dierent string vacuum with dierent particle content gauge group and couplings This huge vacuum degeneracy in four dimensions is known as the vacuum problem But despite of the large number of dierent known vacua it has not yet b een p ossible to nd a compactication yielding in its low energy approximation precisely the standard mo del of particle physics TDuality Tduality or target space duality denotes the equivalence of two string theories compactied on dierent background spaces Both theories can in fact b e considered as one and the same string theory as they contain exactly the same physics The equivalence transformation can thus b e considered as some kind of transformation of variables in which the theory is describ ed Nev ertheless we will always use the usual terminology sp eaking of dierent theories when we actually mean dierent equivalent formulations of the same physical theory Tduality is a p erturbative symmetry in the sense that the Tduality transformation maps the weak coupling region of one theory to the weak coupling regime of another theory Thus it can b e tested in p erturbation theory eg by comparing the p erturbative string sp ectra Examples of Tdualities are p 0 Tdual R p Het on S with radius R Het on S with radius D 0 R p 0 Tdual R p I IA on S with radius I IB on S with radius R D 0 R These are sp ecial cases of the so called mirror symmetry As we will see in chapter Tduality transformations for closed strings exchange the winding number around some circle with the corresp onding discrete momentum quantum number Thus it is clear that this symmetry relation has no counterpart in ordinary p oint particle eld theory as the ability of closed strings to wind around the compactied dimension is essential Nonp erturbative dualities At strong coupling the higher top ologies of the expansion g b ecome large and the series expansion do es not make sense anymore Non p erturbative eects dominantly contribute to the scattering pro cesses Their contributions b ehave like g g S S A e or A e The second exp onential with g g is the typical non p erturbative suppression factor in S YM gauge eld theoretic amplitudes involving solitons like magnetic monop oles or instanton eects Solitons also play a role in general relativity in the form of black holes In general solitons are non trivial solutions of the eld equations which have a nite action integral Their energy is lo calized in space and they have prop erties similar to p oint particles Clearly it is of some interest to ask what kind of solitonic ob jects app ear in string theory giving rise to the b ehavior of eq The answer is that the string solitons are extended pspatialdimensional at ob jects called pbranes ie p dimensional hypersurfaces in spacetime The sp ecial values p therefore give p oint particles strings and membranes resp ectively Such ob jects can indeed b e found as classical solutions of the eective low energy eld theories derived from the various sup erstring theories see section It was however Polchinskis achievement to realize that some of them namely those which do not arise in the
Recommended publications
  • Classical Strings and Membranes in the Ads/CFT Correspondence
    Classical Strings and Membranes in the AdS/CFT Correspondence GEORGIOS LINARDOPOULOS Faculty of Physics, Department of Nuclear and Particle Physics National and Kapodistrian University of Athens and Institute of Nuclear and Particle Physics National Center for Scientific Research "Demokritos" Dissertation submitted for the Degree of Doctor of Philosophy at the National and Kapodistrian University of Athens June 2015 Doctoral Committee Supervisor Emmanuel Floratos Professor Emer., N.K.U.A. Co-Supervisor Minos Axenides Res. Director, N.C.S.R., "Demokritos" Supervising Committee Member Nikolaos Tetradis Professor, N.K.U.A. Thesis Defense Committee Ioannis Bakas Professor, N.T.U.A. Georgios Diamandis Assoc. Professor, N.K.U.A. Athanasios Lahanas Professor Emer., N.K.U.A. Konstantinos Sfetsos Professor, N.K.U.A. i This thesis is dedicated to my parents iii Acknowledgements This doctoral dissertation is based on the research that took place during the years 2012–2015 at the Institute of Nuclear & Particle Physics of the National Center for Sci- entific Research "Demokritos" and the Department of Nuclear & Particle Physics at the Physics Faculty of the National and Kapodistrian University of Athens. I had the privilege to have professors Emmanuel Floratos (principal supervisor), Mi- nos Axenides (co-supervisor) and Nikolaos Tetradis as the 3-member doctoral committee that supervised my PhD. I would like to thank them for the fruitful cooperation we had, their help and their guidance. I feel deeply grateful to my teacher Emmanuel Floratos for everything that he has taught me. It is extremely difficult for me to imagine a better and kinder supervisor. I thank him for his advices, his generosity and his love.
    [Show full text]
  • String Theory in Magnetic Monopole Backgrounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server EFI-98-58, ILL-(TH)-98-06 hep-th/9812027 String Theory in Magnetic Monopole Backgrounds David Kutasov1,FinnLarsen1, and Robert G. Leigh2 1Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Av., Chicago, IL 60637 2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 We discuss string propagation in the near-horizon geometry generated by Neveu-Schwarz fivebranes, Kaluza-Klein monopoles and fundamental strings. When the fivebranes and KK monopoles are wrapped around a compact four-manifold , the geometry is AdS S3/ZZ and the M 3 × N ×M spacetime dynamics is expected to correspond to a local two dimensional conformal field theory. We determine the moduli space of spacetime CFT’s, study the spectrum of the theory and compare the chiral primary operators obtained in string theory to supergravity expectations. 12/98 1. Introduction It is currently believed that many (perhaps all) vacua of string theory have the prop- erty that their spacetime dynamics can be alternatively described by a theory without gravity [1,2,3,4]. This theory is in general non-local, but in certain special cases it is ex- pected to become a local quantum field theory (QFT). It is surprising that string dynamics can be equivalent to a local QFT. A better understanding of this equivalence would have numerous applications to strongly coupled gauge theory, black hole physics and a non- perturbative formulation of string theory. An important class of examples for which string dynamics is described by local QFT is string propagation on manifolds that include an anti-de-Sitter spacetime AdSp+1[3,5,6].
    [Show full text]
  • TASI Lectures on String Compactification, Model Building
    CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de F´ısica Te´orica, C-XVI Universidad Aut´onoma de Madrid Cantoblanco, 28049 Madrid, Spain angel.uranga@cern,ch We review the construction of chiral four-dimensional compactifications of string the- ory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Stan- dard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms. Lecture 1. Model building in IIA: Intersecting brane worlds 1 Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to `gauge interactions' in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics.
    [Show full text]
  • Non-Holomorphic Cycles and Non-BPS Black Branes Arxiv
    Non-Holomorphic Cycles and Non-BPS Black Branes Cody Long,1;2 Artan Sheshmani,2;3;4 Cumrun Vafa,1 and Shing-Tung Yau2;5 1Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA 2Center for Mathematical Sciences and Applications, Harvard University Cambridge, MA 02139, USA 3Institut for Matematik, Aarhus Universitet 8000 Aarhus C, Denmark 4 National Research University Higher School of Economics, Russian Federation, Laboratory of Mirror Symmetry, Moscow, Russia, 119048 5Department of Mathematics, Harvard University Cambridge, MA 02138, USA We study extremal non-BPS black holes and strings arising in M-theory compactifica- tions on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we compute the black hole mass and black string tension, leading to a conjectural for- mula for the asymptotic volumes of connected, locally volume-minimizing representa- tives of non-holomorphic, even-dimensional homology classes in the threefold, without arXiv:2104.06420v1 [hep-th] 13 Apr 2021 knowledge of an explicit metric. In the case of divisors we find examples where the vol- ume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and leading to stable, non-BPS strings. We also compute the central charges of non-BPS strings in F-theory via a near-horizon AdS3 limit in 6d which, upon compactification on a circle, account for the asymptotic entropy of extremal non- supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal 2-cycles).
    [Show full text]
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • Black Brane Evaporation Through D-Brane Bubble Nucleation
    HIP-2021-20/TH Black brane evaporation through D-brane bubble nucleation Oscar Henriksson∗ Department of Physics and Helsinki Institute of Physics P.O. Box 64, FI-00014 University of Helsinki, Finland Abstract We study the process of black brane evaporation through the emission of D-branes. Gravi- tational solutions describing black branes in asymptotically anti-de Sitter spacetimes, which are holographically dual to field theory states at finite temperature and density, have previously been found to exhibit an instability due to brane nucleation. Working in the setting of D3-branes on the conifold, we construct static Euclidean solutions describing this nucleation to leading order | D3-branes bubbling off the horizon. Furthermore, we analyze the late-time dynamics of such a D3-brane bubble as it expands and find a steady-state solution including the wall profile and its speed. CONTENTS I. Introduction 2 II. Gravity solutions and field theory dual 3 III. The D3-brane effective action 4 IV. Bubble nucleation 6 arXiv:2106.13254v1 [hep-th] 24 Jun 2021 V. Late time expansion 8 VI. Discussion 11 Acknowledgments 12 References 12 ∗ oscar.henriksson@helsinki.fi 1 I. INTRODUCTION Black holes are unstable to evaporation due to Hawking radiation. Though this fact is on firm theoretical footing, there are still many open questions regarding the precise details of this evaporation, some of which may require a complete theory of quantum gravity to settle. String theory is a strong candidate for such a theory. Besides strings, this framework also introduces other extended objects known as branes. These dynamical objects also gravitate, and a large number of them can be described in the supergravity limit of string theory as a black brane.
    [Show full text]
  • 6D Fractional Quantum Hall Effect
    Published for SISSA by Springer Received: March 21, 2018 Accepted: May 7, 2018 Published: May 18, 2018 6D fractional quantum Hall effect JHEP05(2018)120 Jonathan J. Heckmana and Luigi Tizzanob aDepartment of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. bDepartment of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden E-mail: [email protected], [email protected] Abstract: We present a 6D generalization of the fractional quantum Hall effect involv- ing membranes coupled to a three-form potential in the presence of a large background four-form flux. The low energy physics is governed by a bulk 7D topological field theory of abelian three-form potentials with a single derivative Chern-Simons-like action coupled to a 6D anti-chiral theory of Euclidean effective strings. We derive the fractional conductivity, and explain how continued fractions which figure prominently in the classification of 6D su- perconformal field theories correspond to a hierarchy of excited states. Using methods from conformal field theory we also compute the analog of the Laughlin wavefunction. Com- pactification of the 7D theory provides a uniform perspective on various lower-dimensional gapped systems coupled to boundary degrees of freedom. We also show that a supersym- metric version of the 7D theory embeds in M-theory, and can be decoupled from gravity. Encouraged by this, we present a conjecture in which IIB string theory is an edge mode of a 10+2-dimensional bulk topological theory, thus placing all twelve dimensions of F-theory on a physical footing.
    [Show full text]
  • Flux Backgrounds, Ads/CFT and Generalized Geometry Praxitelis Ntokos
    Flux backgrounds, AdS/CFT and Generalized Geometry Praxitelis Ntokos To cite this version: Praxitelis Ntokos. Flux backgrounds, AdS/CFT and Generalized Geometry. Physics [physics]. Uni- versité Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066206. tel-01620214 HAL Id: tel-01620214 https://tel.archives-ouvertes.fr/tel-01620214 Submitted on 20 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : « Physique en Île-de-France » réalisée à l’Institut de Physique Thèorique CEA/Saclay présentée par Praxitelis NTOKOS pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Flux backgrounds, AdS/CFT and Generalized Geometry soutenue le 23 septembre 2016 devant le jury composé de : M. Ignatios ANTONIADIS Examinateur M. Stephano GIUSTO Rapporteur Mme Mariana GRAÑA Directeur de thèse M. Alessandro TOMASIELLO Rapporteur Abstract: The search for string theory vacuum solutions with non-trivial fluxes is of particular importance for the construction of models relevant for particle physics phenomenology. In the framework of the AdS/CFT correspondence, four-dimensional gauge theories which can be considered to descend from N = 4 SYM are dual to ten- dimensional field configurations with geometries having an asymptotically AdS5 factor.
    [Show full text]
  • Chaos in Matrix Models and Black Hole Evaporation
    LLNL-JRNL-681857 UCB-PTH-16/01 SU-ITP-16/02 YITP-16-5 Chaos in Matrix Models and Black Hole Evaporation Evan Berkowitz,a1 Masanori Hanadabcd2 and Jonathan Maltzeb3 a Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore CA 94550, USA bStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA cYukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan dThe Hakubi Center for Advanced Research, Kyoto University, Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan e Berkeley Center for Theoretical Physics, University of California at Berkeley, Berkeley, CA 94720, USA Abstract Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question |especially aspects of this question such as a black hole's negative specific heat|we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large N limit. Simple arguments show that the black zero-brane, like the Schwarzschild black hole, arXiv:1602.01473v3 [hep-th] 15 Jan 2019 has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory.
    [Show full text]
  • What Lattice Theorists Can Do for Superstring/M-Theory
    July 26, 2016 0:28 WSPC/INSTRUCTION FILE review˙2016July23 International Journal of Modern Physics A c World Scientific Publishing Company What lattice theorists can do for superstring/M-theory MASANORI HANADA Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-8502, JAPAN The Hakubi Center for Advanced Research Kyoto University, Kyoto 606-8501, JAPAN Stanford Institute for Theoretical Physics Stanford University, Stanford, CA 94305, USA [email protected] The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M- theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations. Keywords: Lattice Gauge Theory; Gauge/Gravity Duality; Quantum Gravity. PACS numbers:11.15.Ha,11.25.Tq,11.25.Yb,11.30.Pb Preprint number:YITP-16-28 1. Introduction During the second superstring revolution, string theorists built a beautiful arXiv:1604.05421v2 [hep-lat] 23 Jul 2016 framework for quantum gravity: the gauge/gravity duality.1, 2 It claims that superstring/M-theory is equivalent to certain gauge theories, at least about certain background spacetimes (e.g. black brane background, asymptotically anti de-Sitter (AdS) spacetime). Here the word ‘equivalence’ would be a little bit misleading, be- cause it is not clear how to define string/M-theory nonperturbatively; superstring theory has been formulated based on perturbative expansions, and M-theory3 is defined as the strong coupling limit of type IIA superstring theory, where the non- perturbative effects should play important roles.
    [Show full text]
  • VISCOSITY and BLACK HOLES 1 Introduction the Discovery Of
    VISCOSITY AND BLACK HOLES D.T. SON Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA We review recent applications of the AdS/CFT correspondence in strongly coupled systems, in particular the quark gluon plasma. 1 Introduction The discovery of Hawking radiation1 confirmed that black holes are endowed with thermody- namic properties such as entropy and temperature, as first suggested by Bekenstein2 based on the analogy between black hole physics and equilibrium thermodynamics. For black branes, i.e., black holes with translationally invariant horizons, thermodynamics can be extended to hydrodynamics|the theory that describes long-wavelength deviations from thermal equilibrium. Thus, black branes possess hydrodynamic properties of continuous fluids and can be character- ized by kinetic coefficients such as viscosity, diffusion constants, etc. From the perspective of the holographic principle3;4, the hydrodynamic behavior of a black-brane horizon is identified with the hydrodynamic behavior of the dual theory. In this talk, we argue that in theories with gravity duals, the ratio of the shear viscosity to the volume density of entropy is equal to a universal value of ~=4π. A lot of attention has been given to this fact due to the discovery of a perfect liquid behavior at RHIC. We will also review recent attempts to extend AdS/CFT correspondence to nonrelativistic systems. 2 Dimension of η=s The standard textbook definition of the shear viscosity is as follows. Take two large parallel plates separated by a distance d. The space between the two plates is filled with a fluid. Let one plate moves relative to the other with a velocity v.
    [Show full text]