A Photophone-Based Remote Nondestructive Testing Approach To

Total Page:16

File Type:pdf, Size:1020Kb

A Photophone-Based Remote Nondestructive Testing Approach To Original Article Structural Health Monitoring 2018, Vol. 17(2) 135–144 Ó The Author(s) 2017 A photophone-based remote Reprints and permissions: sagepub.co.uk/journalsPermissions.nav nondestructive testing approach to DOI: 10.1177/1475921716686772 interfacial defect detection in journals.sagepub.com/home/shm fiber-reinforced polymer-bonded systems Tin Kei Cheng1 and Denvid Lau1,2 Abstract Externally bonded fiber-reinforced polymer is an increasingly popular material to be used in strengthening and retrofitting aging structures. In such structures, debonding defects may occur at or near the interface between fiber-reinforced poly- mer and concrete. As such debonding in fiber-reinforced polymer-bonded systems is generally brittle in nature, there is a need of a reliable inspection technique that can provide early warning of interfacial defects such that premature failure of fiber-reinforced polymer-strengthened structures can be avoided. A remote nondestructive testing approach based on the working principle of a photophone is presented here as an economical alternative to laser Doppler vibrometry for detect- ing interfacial defects. Concrete specimens retrofitted with fiber-reinforced polymer are excited acoustically by white noise, while the surface of the structure is illuminated by a light source. If an interfacial defect exists beneath the surface, the surface will exhibit a frequency response different from an intact surface. The surface of the fiber-reinforced polymer portrays the role of flexible mirror in a photophone, which encodes information about surface vibration into amplitude- modulated light signal. A light detector then captures the irradiance of the reflected beam, and the amplitude modulation is converted into frequency domain in post-processing. With this technique, defect dimensions and thus damage extent can be inferred from the frequency spectrum obtained. The obtained results correspond well with the theoretical calcula- tion, demonstrating the robustness and the applicability of the proposed technique in civil infrastructure. Keywords Acoustic-laser, amplitude-modulated modal analysis, fiber-reinforced polymer, interfacial defect, nondestructive testing, photophone Introduction good environmental resistance, and excellent resistance against fatigue. Because externally bonded FRP becomes The maintenance of aging structures is a challenging issue 1 more popular in retrofitted structures, the failure modes faced by many nations. In most cases, strengthening and of FRP-bonded systems have thus been studied exten- retrofitting of these deteriorated structures may be more sively to better understand the mechanical behavior of economical than reconstruction, especially in situations such composite structures.2–6 Failures in FRP-bonded involving the preservation of historic sites. The use of reinforced concrete (RC) beams can be classified into fiber-reinforced polymer (FRP) composites as an exter- nally bonded element to retrofit structural elements such 1 as beams, columns, slabs, and bridge decks in order to Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong restore the design capacity and structural redundancy of 2Department of Civil and Environmental Engineering, Massachusetts deteriorated structures has emerged as a popular Institute of Technology, Cambridge, MA, USA strengthening and retrofitting technique. FRP, as a thin sheet of composite material, has a lot of desirable proper- Corresponding author: ties when compared with the conventional bulk construc- Denvid Lau, Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong. tion materials, such as high strength-to-weight ratio, Email: [email protected] 136 Structural Health Monitoring 17(2) two major mechanisms: (1) flexural failures of critical sec- tions, such as crushing of concrete and FRP rupture and (2) debonding of FRP from the RC beams.2–6 The near- surface debonding defects resulting from the latter case will be referred to as interfacial defects in this article, and they are the focus of this study. Interfacial defects often occur in regions with high stress concentration and/or shear stress discontinuity, which are positivelycorrelated with (1) regions of material discontinuity, (2) poor instal- lation including inadequate surface preparation of the substrate, and (3) the presence of cracks (e.g. propagation of flexural or flexural-shear cracks from the concrete sub- Figure 1. A representative arrangement of the photophone.26 strate to the FRP-concrete interface, resulting in delami- A beam of sunlight is concentrated upon a flexible mirror on the nation). The failures modes due to interfacial defects are transmitter side. After reflection, the beam is again made brittle in nature and will result in premature failures of parallel by means of another lens. The beam is then received at FRP-strengthened elements if not promptly resolved.2–6 a distant location upon a parabolic reflector, the focus of which is placed on a selenium photoresistor, connected in a local Current nondestructive testing (NDT) approaches circuit with a battery and telephone. developed for civil engineering application include the use of ultrasound, X-ray and neutron radiography, near-field and far-field radar, and infrared thermogra- required to assemble the NDT device put forward in phy.7–19 However, these techniques may not always be this article can readily be purchased from consumer optimal for the remote detection of interfacial defects.1 electronics retailers, and the total cost of a functioning Passive thermography typically has insufficient spatial setup is around a hundredth of the original work. 18 Originally conceived by Alexander Graham Bell who resolution to resolve small interfacial defects. 25 Radiography involves the use of hazardous ionizing invented the telephone in 1880, a typical photophone 10,11 concentrates sunlight onto a flexible mirror which radiation. The radar approach may have issues if 26,27 carbon fiber–reinforced polymer (CFRP) sheets being reflects the sunlight to a remote receiver (Figure 1). penetrated by radar are not arranged in a parallel Excited by the speaker’s voice, the flexible mirror mod- orientation as CFRP is a highly conductive material at ulates the reflected sunlight’s radiant intensity by flex- microwave frequencies.14 Finally, while near-field radar ing convex and concave according to the changing and ultrasound are promising approaches, they require sound pressure, dispersing, and converging the beam of a close proximity to the subject.14,17,19 Recently, high- sunlight. This amplitude-modulated radiant intensity is speed video in conjunction with motion magnification converted back to an audio signal when detected by the has been applied to remotely evaluate modal behavior. receiver. The photophone eventually achieved the first Despite being promising in detecting larger scale dam- wireless telephone communication, predating the first ages, as of the moment of writing, the maximum fre- spoken radio transmission by almost two decades and quency measurement demonstrated by the high-speed laying the groundwork for fiber-optic communication a video technique is 2500 Hz, which is below the typical century later. Although considered by Bell to be one of fundamental frequencies of interfacial defects as his greatest achievements, even more superior than the explored in this article.20 To complement existing NDT telephone, the photophone never went into mainstream 25,28,29 approaches, an acoustic-laser technique has been usage and it is found mostly in military use. devised specifically to detect interfacial defects from a Nowadays, the photophone is commonly known as the distance based on their vibrational behavior.21–24 It has ‘‘spy microphone’’ in hobbyist projects, with few real- been shown that interfacial defects in FRP-bonded sys- life applications. In this article, the interest in photo- tems can be modeled as a combination of a clamped phone is renewed by considering an NDT application plate (representing the FRP surface) and an acoustic in the detection of interfacial defects in FRP-bonded cavity (representing the air gap at the interface), resem- systems. The working principle of the modified photo- bling the physics of a drum. In such defects, the funda- phone will first be introduced with the relation to previ- mental mode of vibration lies typically at the order of ous acoustic-laser studies, followed by experiments with kHz.21 However, the dedicated setup used in previous artificially induced delamination-like interfacial defects acoustic-laser studies may cost a million US dollars on FRP-bonded concrete specimens. Finally, benefits and might prove an obstacle to the commercialization and limitations of this photophone-based technique will of the acoustic-laser technique. This study presents an be addressed based on experimental results, and future economical augmentation to the previous works based research direction including an extension of this tech- on the design of a photophone. Electronic parts nique to general modal analysis will be discussed. Cheng and Lau 137 Figure 2. An illustration of the photophone-based experiment setup. (a) An FRP-bonded concrete slab with artificially induced interfacial defects is excited acoustically by white noise, while a point on the surface of the structure is illuminated by a laser. As specular reflection is strong in our specimens, a lens system is not installed in the light detector, though a collimator
Recommended publications
  • Wireless Networks
    SUBJECT WIRELESS NETWORKS SESSION 2 WIRELESS Cellular Concepts and Designs" SESSION 2 Wireless A handheld marine radio. Part of a series on Antennas Common types[show] Components[show] Systems[hide] Antenna farm Amateur radio Cellular network Hotspot Municipal wireless network Radio Radio masts and towers Wi-Fi 1 Wireless Safety and regulation[show] Radiation sources / regions[show] Characteristics[show] Techniques[show] V T E Wireless communication is the transfer of information between two or more points that are not connected by an electrical conductor. The most common wireless technologies use radio. With radio waves distances can be short, such as a few meters for television or as far as thousands or even millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mice,keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications include the use of other electromagnetic wireless technologies, such as light, magnetic, or electric fields or the use of sound. Contents [hide] 1 Introduction 2 History o 2.1 Photophone o 2.2 Early wireless work o 2.3 Radio 3 Modes o 3.1 Radio o 3.2 Free-space optical o 3.3
    [Show full text]
  • Title: Communicating with Light: from Telephony to Cell Phones Revision
    Title: Communicating with Light: From Telephony to Cell Phones Revision: February 1, 2006 Authors: Jim Overhiser, Luat Vuong Appropriate Physics, Grades 9-12 Level: Abstract: This series of six station activities introduces the physics of transmitting "voice" information using electromagnetic signals or light. Students explore how light can be modulated to encode voice information using a simple version of Bell's original photophone. They observe the decrease of the intensity of open-air signals by increasing the distance between source and receiver, and learn the advantage of using materials with different indices of refraction to manipulate and guide light signals. Finally, students are introduced to the concept of bandwidth by using two different wavelengths of light to send two signals at the same time. Special Kit available on loan from CIPT lending library. Equipment: Time Required: Two 80-minute periods NY Standards 4.1b Energy may be converted among mechanical, electromagnetic, Met: nuclear, and thermal forms 4.1j Energy may be stored in electric or magnetic fields. This energy may be transferred through conductors or space and may be converted to other forms of energy. 4.3b Waves carry energy and information without transferring mass. This energy may be carried by pulses or periodic waves. 4.3i When a wave moves from one medium into another, the waves may refract due a change in speed. The angle of refraction depends on the angle of incidence and the property of the medium. 4.3h When a wave strikes a boundary between two media, reflection, transmission, and absorption occur. A transmitted wave may be refracted.
    [Show full text]
  • Letter from Alexander Graham Bell to Alexander Melville Bell, February 26, 1880, with Transcript
    Library of Congress Letter from Alexander Graham Bell to Alexander Melville Bell, February 26, 1880, with transcript ALEXANDER GRAHAM BELL TO HIS FATHER A. MELVILLE BELL 904 14th Street, N. W., Washington, D. C. Feb. 26th, 1880. Dear Papa: I have just written to Mamma about Mabel's baby and I now write to you about my own! Only think! — Two babies in one week! The first born at 904 14th Street — on the fifteenth inst., the other at my laboratory on the nineteenth. Both strong vigorous healthy young things and both destined I trust to grow into something great in the future. Mabel's baby was light enough at birth but mine was LIGHT ITSELF! Mabel's baby screamed inarticulately but mine spoke with distinct enunciation from the first. I have heard articulate speech produced by sunlight! I have heard a ray of the sun laugh and cough and sing! The dream of the past year has become a reality — the “ Photophone ” is an accomplished fact. I am not prepared at present to go into particulars and can only say that with Mr. Tainter's assistance I have succeeded in preparing crystalline selenium of so low a resistance and so sensitive to light that we have been enabled to perceive variations of light as sounds in the telephone. In this way I have been able to hear a shadow, and I have even perceived by ear the passage of a cloud across the sun's disk. Can Imagination picture what the future of this invention is to be! I dream of so many important and wonderful applications that I cannot bring myself to make known my discovery — until I have demonstrated the practicability of some of these schemes.
    [Show full text]
  • IP Telephony Fundamentals: What You Need to Know to “Go to Market”
    IP Telephony Fundamentals: What You Need to Know to “Go To Market” Ken Agress Senior Consultant PlanNet Consulting What Will Be Covered • What is Voice over IP? • VoIP Technology Basics • How Do I Know if We’re Ready? • What “Real” Cost Savings Should I Expect? • Putting it All Together • Conclusion, Q&A 2 What is Voice Over IP? • The Simple Answer – It’s your “traditional” voice services transported across a common IP infrastructure. • The Real Answer – It’s the convergence of numerous protocols, components, and requirements that must be balanced to provide a quality voice experience. 3 Recognize the Reality of IP Telephony • IP is the catalyst for convergence of technology and organizations • There are few plan templates for convergence projects • Everybody seems to have a strong opinion • Requires an educational investment in the technology (learning curve) – Requires an up-front investment in the technology that can be leveraged for subsequent deployments • Surveys indicate deployment is usually more difficult than anticipated • Most implementations are event driven (that means there is a broader plan) 4 IP Telephony vs. VoIP • Voice over IP – A broad technology that encompasses many, many facets. • IP Telephony – What you’re going to implement to actually deliver services across your network – Focuses more on features than possibilities – Narrows focus to specific implementations and requirements – Sets appropriate context for discussions 5 Why Does Convergence Matter? • Converged networks provide a means to simplify support structures and staffing. • Converged networks create new opportunities for a “richer” communications environment – Improved Unified Messaging – Unified Communications – The Promise of Video • Converged networks provide methods to reduce costs (if you do things right) 6 The Basics – TDM (vs.
    [Show full text]
  • Alexander Graham Bell
    WEEK 2 LEVEL 7 Alexander Graham Bell Alexander Graham Bell is the famous inventor of the telephone. Born in Scotland on March 3, 1847, he was the second son of Alexander and Eliza Bell. His father taught students the art of speaking clearly, or elocution, and his mother played the piano. Bell’s mother was almost deaf. His father’s career and his mother’s hearing impairment influenced the course of his career. He became a teacher of deaf people. As a child, Bell didn’t care for school, and he eventually dropped out. He did like to solve problems though. For example, when he was only 12, he invented a new farm implement. The tool removed the tiny husks from wheat grains. After the deaths of his two brothers from tuberculosis, Bell and his parents moved from Europe to Canada in 1870. They thought the climate there was healthier than in Scotland. A year later, Bell moved to the United States. He got a job teaching at the Boston School for Deaf Mutes. © 2019 Scholar Within, Inc. WEEK 2 LEVEL 7 One of his students was a 15-year-old named Mabel Hubbard. He was 10 years older than she was, but they fell in love and married in 1877. The Bells raised two daughters but lost two sons who both died as babies. Bell’s father-in-law, Gardiner Hubbard, knew Bell was interested in inventing things, so he asked him to improve the telegraph. Telegraph messages were tapped out with a machine using dots and dashes known as Morse code.
    [Show full text]
  • What Is the Impact of Mobile Telephony on Economic Growth?
    What is the impact of mobile telephony on economic growth? A Report for the GSM Association November 2012 Contents Foreword 1 The impact of mobile telephony on economic growth: key findings 2 What is the impact of mobile telephony on economic growth? 3 Appendix A 3G penetration and economic growth 11 Appendix B Mobile data usage and economic growth 16 Appendix C Mobile telephony and productivity in developing markets 20 Important Notice from Deloitte This report (the “Report”) has been prepared by Deloitte LLP (“Deloitte”) for the GSM Association (‘GSMA’) in accordance with the contract with them dated July 1st 2011 plus two change orders dated October 3rd 2011 and March 26th 2012 (“the Contract”) and on the basis of the scope and limitations set out below. The Report has been prepared solely for the purposes of assessing the impact of mobile services on GDP growth and productivity, as set out in the Contract. It should not be used for any other purpose or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Report is provided exclusively for the GSMA’s use under the terms of the Contract. No party other than the GSMA is entitled to rely on the Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than the GSMA in respect of the Report or any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us.
    [Show full text]
  • Alexander Graham Bell 1847-1922
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XXIII FIRST MEMOIR BIOGRAPHICAL MEMOIR OF ALEXANDER GRAHAM BELL 1847-1922 BY HAROLD S. OSBORNE PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1943 It was the intention that this Biographical Memoir would be written jointly by the present author and the late Dr. Bancroft Gherardi. The scope of the memoir and plan of work were laid out in cooperation with him, but Dr. Gherardi's untimely death prevented the proposed collaboration in writing the text. The author expresses his appreciation also of the help of members of the Bell family, particularly Dr. Gilbert Grosvenor, and of Mr. R. T. Barrett and Mr. A. M. Dowling of the American Telephone & Telegraph Company staff. The courtesy of these gentlemen has included, in addition to other help, making available to the author historic documents relating to the life of Alexander Graham Bell in the files of the National Geographic Society and in the Historical Museum of the American Telephone and Telegraph Company. ALEXANDER GRAHAM BELL 1847-1922 BY HAROLD S. OSBORNE Alexander Graham Bell—teacher, scientist, inventor, gentle- man—was one whose life was devoted to the benefit of mankind with unusual success. Known throughout the world as the inventor of the telephone, he made also other inventions and scientific discoveries of first importance, greatly advanced the methods and practices for teaching the deaf and came to be admired and loved throughout the world for his accuracy of thought and expression, his rigid code of honor, punctilious courtesy, and unfailing generosity in helping others.
    [Show full text]
  • Voice Over Internet Protocol (VOIP): Overview, Direction and Challenges 1 U
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.3, No.4, 2013 Voice over Internet Protocol (VOIP): Overview, Direction And Challenges 1 U. R. ALO and 2 NWEKE HENRY FIRDAY Department of Computer Science Ebonyi State University Abakaliki, Nigeria 1Email:- [email protected] 2Email: [email protected] ABSTRACT Voice will remain a fundamental communication media that cuts across people of all walks of life. It is therefore important to make it cheap and affordable. To be reliable and affordable over the common Public Switched Telephone Network, change is therefore inevitable to keep abreast with the global technological change. It is on this basis that this paper tends to critically review this new technology VoIP, x-raying the different types. It further more discusses in detail the VoIP system, VoIP protocols, and a comparison of different VoIP protocols. The compression algorithm used to save network bandwidth in VoIP, advantages of VoIP and problems associated with VoIP implementation were also critically examined. It equally discussed the trend in VoIP security and Quality of Service challenges. It concludes by reiterating the need for a cheap, reliable and affordable means of communication that would not only maximize cost but keep abreast with the global technological change. Keywords: Voice over Internet Protocol (VoIP), Public Switched Telephone Network (PSTN), Session Initiation Protocol (SIP), multipoint control unit 1. Introduction Voice over Internet Protocol (VoIP) is a technology that makes it possible for users to make telephone calls over the internet or intranet networks.
    [Show full text]
  • Telecommunications Electronics Technician Competency Listing
    Telecommunications Electronics Technician Competency Listing Telecommunications Electronics Technician - TCM Competency Requirements Telecommunications electronics technicians are expected to obtain knowledge of wired and wireless communications basic concepts which are then applicable to various types of voice, data and video systems. Once the CET has acquired these skills, abilities and knowledge, he or she will be able to enter employment in any part of the telecommunications field. With minimal training in areas unique to specific products, the CET should become a profitable and efficient part of the electronics-communications workforce. Telecommunications Electronics Technicians must be knowledgeable and have abilities in the following technical areas: 1.0 CABLES AND CABLING 1.1 Describe unshielded twisted pair (UTP) - List common usage locations and capabilities 1.2 Demonstrate installation and troubleshooting of RJ45/48 telephone connectors and fittings 1.3 CAT 5 wiring—Explain the differences vs.: single twisted pair and where it is most used 1.4 10 base T-explain where it is commonly used and its frequency capabilities 1.5 Describe the T568A / T568B standards 1.6 Explain how Cable TV wiring is used for data and voice services 1.7 Explain the differences between coax types RG 58, RG 59 and RG 6 1.8 Describe required grounding of electronics equipment 1.10 Describe the differences in Single and Multi-mode fiber optics 2.0 ANALOG TELEPHONY 2.1. Give a brief history of the telephone industry 2.2 Explain how basic phone systems work 2.3 Define POTS, DID, OPX, tie lines and WATS lines 2.4 Explain the benefits and usage of multiple phone lines 2.5 Define PBX and explain basic switching method 2.6 Sketch a local loop map 2.7 Define Key service units 2.8 Define Central Office and list it purposes 2.9 Explain the terms and usage of tones, loop start, ground start and wink start 2.10 Define CO, CPE.
    [Show full text]
  • A Novel Speech Enhancement Approach Based on Modified Dct and Improved Pitch Synchronous Analysis
    American Journal of Applied Sciences 11 (1): 24-37, 2014 ISSN: 1546-9239 ©2014 Science Publication doi:10.3844/ajassp.2014.24.37 Published Online 11 (1) 2014 (http://www.thescipub.com/ajas.toc) A NOVEL SPEECH ENHANCEMENT APPROACH BASED ON MODIFIED DCT AND IMPROVED PITCH SYNCHRONOUS ANALYSIS 1Balaji, V.R. and 2S. Subramanian 1Department of ECE, Sri Krishna College of Engineering and Technology, Coimbatore, India 2Department of CSE, Coimbatore Institute of Engineering and Technology, Coimbatore, India Received 2013-06-03, Revised 2013-07-17; Accepted 2013-11-21 ABSTRACT Speech enhancement has become an essential issue within the field of speech and signal processing, because of the necessity to enhance the performance of voice communication systems in noisy environment. There has been a number of research works being carried out in speech processing but still there is always room for improvement. The main aim is to enhance the apparent quality of the speech and to improve the intelligibility. Signal representation and enhancement in cosine transformation is observed to provide significant results. Discrete Cosine Transformation has been widely used for speech enhancement. In this research work, instead of DCT, Advanced DCT (ADCT) which simultaneous offers energy compaction along with critical sampling and flexible window switching. In order to deal with the issue of frame to frame deviations of the Cosine Transformations, ADCT is integrated with Pitch Synchronous Analysis (PSA). Moreover, in order to improve the noise minimization performance of the system, Improved Iterative Wiener Filtering approach called Constrained Iterative Wiener Filtering (CIWF) is used in this approach. Thus, a novel ADCT based speech enhancement using improved iterative filtering algorithm integrated with PSA is used in this approach.
    [Show full text]
  • IP Telephony Glossary of Terms
    Cisco IP Telephony Glossary of Terms A helpful guide to the terminology you need to know as you investigate the advantages of a converged network. Cisco Systems All contents are Copyright © 1992–2001 Cisco Systems, Inc. All rights reserved. Important Notices and Privacy Statement. Page 1 of 30 IP Telephony Glossary of Terms A helpful guide to the terminology you need to know as you investigate the advantages of a converged network. To find a specific term by letter of the alphabet, please click on the letter to the left. A abandoned A call in which the caller hangs up before the call is call answered. access On a PBX, a dialing number, such as 9, used to access an digit outside line. Also called access code. access A gateway that allows the IP PBX to communicate with the gateway PSTN or traditional PBX systems. See also IP, PBX, and PSTN. access Part of ISO-OSI layered protocol model. layer access line A transmission line that provides access to a larger system or network. access link The local access connection between a customer's premises and a carrier's point of presence (POP), which is the carrier's central switching office or closest point of local termination. access The technique for moving data, voice, or video between method storage and input/output devices. access port Connects a network device to an IP device. For example, a computer can be connected to an IP phone through an access port. access A set of specific procedures that enable a user to obtain protocol services from a telephone company or network.
    [Show full text]
  • History of Mobile Telephony MAS 490: Theory and Practice of Mobile Applications
    History of Mobile Telephony MAS 490: Theory and Practice of Mobile Applications Professor John F. Clark Everything I know about mobile telephony, I learned from: Evolution is not a theory when it concerns cell phones Early History of Radiophones Nicola Tesla and Guglielmo Marconi were the founders of wireless technology Ship to shore radiotelegraphy employed wireless use of Morse Code Later, radiophones and radiotelephony transmitted speech In 1900 Reginald Fessenden invented early broadcasting, transatlantic two-way voice communication, and later television Tesla, Marconi, and Fessenden The Great Wireless Fiasco Early History of Radiophones In 1926 radiophones connected people traveling on trains in Europe A little later, they were introduced in planes, but this was too late for World War I Radiophones made a huge difference in WWII – planes, tanks, and field communication via backpack radios and walkie-talkies. Later, in the 1950s, radiophones made civil and commercial services possible Military Field Communications Civil Field Communications Civil Field Communications, pt. 2 Early History of Mobile Telephony The 60s and 70s saw a variety of commercial car services – the earliest weighed 90-100 pounds These services operated using high power transmissions The concept of low power transmission in hexagonal cells was introduced in 1947 The electronics were advanced enough by the 60s to pull it off, but there was no method for handoffs from one cell to the next High Power Mobile Phone Low Power Mobile Phone System Early History of Mobile Telephony That problem was solved with the first functioning cell system and first real cell phone call in 1973. The phone, which weighed about six pounds, was developed by Martin Cooper of Motorola Bell Labs and Motorola were the main competitors in the US.
    [Show full text]