Antarctic Conservation Biogeographic Regions

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Resolution 6 (2012) Annex Antarctic Conservation Biogeographic Regions The use of quantitative analyses to combine spatially explicit Antarctic terrestrial biodiversity data with other relevant spatial frameworks (a grid of 200 km x 200 km squares, the nine ice-free domains identified in the Environmental Domains Analysis for the Antarctic continent, and 22 bioregions identified by the SCAR SCAR Regional Sensitivity to Climate Change (RiSCC) Program) has identified 15 biologically distinct ice- free regions encompassing the Antarctic continent and close-lying islands within the Antarctic Treaty area (see Table 1). A full description of the methods employed is presented in Terauds et al. (2012). The Antarctic Conservation Biogeographic Regions illustrated in Figure 1 represent the best classification of Antarctic terrestrial biodiversity based on data currently available from the SCAR Biodiversity Database. The spatial data layer representing the regions is publicly available for download from the Australian Antarctic Data Centre: http://data.aad.gov.au/aadc/portal/download_file.cfm?file_id=3420. Reference Terauds, A., Chown, S., Morgan, F., Peat, H., Watts, D., Keys, H., Convey, P. & Bergstrom, D. (2012) Conservation biogeography of the Antarctic. Diversity and Distributions, 22 May 2012, DOI: 10.1111/j.1472-4642.2012.00925.x. Table 1 – Descriptions of Antarctic Conservation Biogeographic Regions Region Name Area (km2) 1 North-east Antarctic Peninsula 1142 2 South Orkney Islands 148 3 North-west Antarctic Peninsula 5081 4 Central south Antarctic Peninsula 4959 5 Enderby Land 2152 6 Dronning Maud Land 5502 7 East Antarctica 1360 8 North Victoria Land 9522 9 South Victoria Land 10368 10 Transantarctic Mountains 19347 11 Ellsworth Mountains 2965 12 Marie Byrd Land 1158 13 Adelie Land 178 14 Ellsworth Land 220 15 South Antarctic Peninsula 2990 ATCM XXXV Final Report Figure 1 – Map of Antarctica showing the 15 Antarctic Conservation Biogeographic Regions Source: Terauds et al. (2012) .
Recommended publications
  • Air and Shipborne Magnetic Surveys of the Antarctic Into the 21St Century

    Air and Shipborne Magnetic Surveys of the Antarctic Into the 21St Century

    TECTO-125389; No of Pages 10 Tectonophysics xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Air and shipborne magnetic surveys of the Antarctic into the 21st century A. Golynsky a,⁎,R.Bellb,1, D. Blankenship c,2,D.Damasked,3,F.Ferracciolie,4,C.Finnf,5,D.Golynskya,6, S. Ivanov g,7,W.Jokath,8,V.Masolovg,6,S.Riedelh,7,R.vonFresei,9,D.Youngc,2 and ADMAP Working Group a VNIIOkeangeologia, 1, Angliysky Avenue, St.-Petersburg, 190121, Russia b LDEO of Columbia University, 61, Route 9W, PO Box 1000, Palisades, NY 10964-8000, USA c University of Texas, Institute for Geophysics, 4412 Spicewood Springs Rd., Bldg. 600, Austin, Texas 78759-4445, USA d BGR, Stilleweg 2 D-30655, Hannover, Germany e BAS, High Cross, Madingley Road, Cambridge, CB3 OET, UK f USGS, Denver Federal Center, Box 25046 Denver, CO 80255, USA g PMGE, 24, Pobeda St., Lomonosov, 189510, Russia h AWI, Columbusstrasse, 27568, Bremerhaven, Germany i School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH, 43210, USA article info abstract Article history: The Antarctic geomagnetics' community remains very active in crustal anomaly mapping. More than 1.5 million Received 1 August 2011 line-km of new air- and shipborne data have been acquired over the past decade by the international community Received in revised form 27 January 2012 in Antarctica. These new data together with surveys that previously were not in the public domain significantly Accepted 13 February 2012 upgrade the ADMAP compilation.
  • Office of Polar Programs

    Office of Polar Programs

    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
  • Igneous Rocks of Peter I Island Hemisphere Tectonic Reconstructions

    Igneous Rocks of Peter I Island Hemisphere Tectonic Reconstructions

    LeMasurier, W. E., and F. A. Wade. In press. Volcanic history in Marie Byrd Land: implications with regard to southern Igneous rocks of Peter I Island hemisphere tectonic reconstructions. In: Proceedings of the International Symposium on Andean and Antarctic Vol- canology Problems, Santiago, Chile (0. Gonzalez-Ferran, edi- tor). Rome, International Association of Volcanology and Chemistry of Earths Interior. THOMAS W. BASTIEN Price, R. C., and S. R. Taylor. 1973. The geochemistry of Dune- Ernest E. Lehmann Associates din Volcano, East Otago, New Zealand: rare earth elements. Minneapolis, Minnesota 55403 Contributions to Mineralogy and Petrology, 40: 195-205. Sun, S. S., and G. N. Hanson. 1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle CAMPBELL CRADDOCK sources of alkali basalts and nephelinites. Contributions to Department of Geology and Geophysics Mineralogy and Petrology, 52: 77-106. The University of Wisconsin, Madison Sun, S. S., and G. N. Hanson. 1976. Rare earth element evi- Madison, Wisconsin 53706 dence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contributions to Mineralogy and Petrology, 54: 139-155. Peter I Island lies in the southeastern Pacific Ocean at 68°50S. 90°40W. about 240 nautical miles off the Eights Coast of West Antarctica. Ris- ing from the continental rise, it is one of the few truly oceanic islands in the region. Few people have been on the island, and little is known of its geology. Thaddeus von Bellingshausen discovered and named the island in 1821, and it was not seen again until sighted by Pierre Charcot in 1910. A Nor- wegian ship dredged some rocks off the west coast in 1927, and persons from the Norvegia achieved the first landing in 1929.
  • Antarctic Primer

    Antarctic Primer

    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
  • Poleward Propagating Weather Systems in Antarctica

    Poleward Propagating Weather Systems in Antarctica

    POLEWARD PROPAGATING WEATHER SYSTEMS IN ANTARCTICA by Jessica A. Staude A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2007 i Abstract Antarctica has some of the most hazardous weather on Earth. The continent is known for its extreme weather including bitterly cold temperatures and brutal winds. The introduction of satellite coverage over the continent and Southern Ocean for weather research and operational forecasting has provided new insight into the patterns and origins of these harsh conditions. However, forecasting for travel across the continent is still difficult, especially in West Antarctica. In this study satellite imagery is used to determine impact times of weather systems over West Antarctica. Prior gaps in satellite coverage have impeded forecasting abilities, and real time data from automated weather stations (AWS) is limited because of the small number of stations in this region. The creation of Antarctic satellite composite images in 1992 has allowed for a comprehensive compilation of weather data around the continent and surrounding areas from a hemispheric view. In this study, ten years of Antarctic composite satellite images from 1992-2002 are examined for poleward propagating weather systems in West Antarctica. These large scale synoptic events transport clouds onto the continent and affect local weather. These cloud mass systems are counted on a monthly basis, examined for long-term periodicity, and the temporal distribution of the systems is compared against climate indices. Over the 10-year period, Marie Byrd Land had a peak number (11 occurrences) in June, while Ellsworth Land had a peak of 11 occurrences in September.
  • Thurston Island

    Thurston Island

    RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological
  • Argentine and Chilean Claims to British Antarctica. - Bases Established in the South Shetlands

    Argentine and Chilean Claims to British Antarctica. - Bases Established in the South Shetlands

    Keesing's Record of World Events (formerly Keesing's Contemporary Archives), Volume VI-VII, February, 1948 Argentine, Chilean, British, Page 9133 © 1931-2006 Keesing's Worldwide, LLC - All Rights Reserved. Argentine and Chilean Claims to British Antarctica. - Bases established in the South Shetlands. - Chilean President inaugurates Chilean Army Bases on Greenwich Island. - Argentine Naval Demonstration in British Antarctic Waters. - H.M.S. "Nigeria" despatched to Falklands. - British Government Statements. - Argentine-Chilean Agreement on Joint Defence of "Antarctic Rights." - The Byrd and Ronne Antarctic Expeditions. - Australian Antarctic Expedition occupies Heard Islands. The Foreign-Office in London, in statements on Feb. 7 and Feb. 13, announced that Argentina and Chile had rejected British protests, earlier presented in Buenos Aires and Santiago, against the action of those countries in establishing bases in British Antarctic territories. The announcement of Feb. 7 stated that on Dec. 7, 1947, the British Ambassador in Buenos Aires, Sir Reginald Leeper, had presented a Note expressing British "anxiety" at the activities in the Antarctic of an Argentine naval expedition which had visited part of the Falkland Islands Dependencies, including Graham Land, the South Shetlands, and the South Orkneys, and had landed at various points in British territory; that a request had been made for Argentine nationals to evacuate bases established on Deception Island and Gamma Island, in the South Shetlands; that H.M. Government had proposed that the Argentine should submit her claim to Antarctic sovereignty to the International Court of Justice for adjudication; and that on Dec. 23, 1947, a second British Note had been presented expressing surprise at continued violations of British territory and territorial waters by Argentine vessels in the Antarctic.
  • Land, West Antarctica, Using Landsat Illlagery

    Land, West Antarctica, Using Landsat Illlagery

    Annals qfGlaciology 27 1998 © International Glaciological Society Analysis of coastal change in Marie Byrd Land and Ellsworth Land, West Antarctica, using Landsat illlagery JANE G. FERRIGNO,I RICHARD S. WILLIAMS, JR,2 CHRISTINE E. ROSANoVA,3 BAERBEL K. LUCCHITTA,3 CHARLES SWITHINBANK4 I US Geological Survey, 955 National Center, Reston, VA 20192, USA. 2 US Geological Survey, Woods Hole Field Center, 384 Woods Hole Road, Woods Hole, MA 02543, USA. 3 US Geological Survey, 2255 North Gemini Drive, Flagstaff, AZ 86001, USA. 4Scott Polar Research Institute, University qfCambridge, Cambridge CB21ER, England ABSTRACT. The U.S. Geological Survey is using Landsat imagery from the early 1970s and mid- to late 1980sjearl y 1990s to analyze glaciological features, compile a glacier inventory, measure surface velocities of outlet glaciers, ice streams and ice shelves, deter­ mine coastline change and calculate the area and volume of iceberg calving in Antarctica. Ice-surface velocities in Marie Byrd and Ellsworth Land s, West Antarctica, range from the fast-movingThwaites, Pine Island, Land and DeVicq Glaciers to the slower-moving ice shelves. The average ice-front velocity during the time interval of Landsa t imagery, for the faster-moving outlet glaciers, was 2.9 km a- I forThwaites Glacier, 2.4 km a- I for Pine Island Glacier, 2.0 km a- I for Land Glacier and 1.4 km a- I for DeVicq Glacier. Evaluation of coastal change from the early 1970s to the early 1990s shows advance of the floating ice front in some coastal areas and recession in others, with an overall small average advance in the enti re coastal study area, but no major trend towards advance or retreat.
  • Geologic Survey of Marie Byrd Land and Western Ellsworth Land Biswas, N

    Geologic Survey of Marie Byrd Land and Western Ellsworth Land Biswas, N

    • Bellingauzen (USSR) Showa (lap.) Capitán Arturo Prat (Ch.) I SER Y—..._.iolodezhnaYa (USSR) 4 C RONDANEC DECEPTION ISLAND Q U c MOUNTAINS ARGENTINE ISLANDS N I . IVEDDELL SEA Halley Bay (UK) 2. (USA) General \) Palmer 0 Mawson (Ausl.)5 Plateau (USA; closed) •\ ., RONNE fl ICE SHELF / Amun en-Scott South Ic (USA) C z Siple (USA) 90E Mirnyy )USSR(C Vostok (USSR) N lCasey (Aunt.) ROSS ICE SHELF colt Base Ni.) tcMurdo (USA) Paths across Antarctica, over DRY VALLEYS which the two-station surface .r.1 ROSS ISLAND ROSS SEA wave method is to be ap- VICTORIA LAND plied. Hallett (USA and N.E.) 500 0 500 1000 L , ..4Dumont dUrville (Fr.) I I_i Leningradskaya (USSR) KILOMETERS 11(0 References Geologic survey of Marie Byrd Land and western Ellsworth Land Biswas, N. N. 1971. The upper mantle structure of the United States from the dispersion of surface waves. Ph.D. dissertation, University of California, Los Angeles. F. ALTON WADE Biswas, N. N., and L. Knopoff. In press. The structure of the upper mantle under the United States from the dispersion The Museum of Rayleigh waves. Geophysical Journal of the Royal Astro- Texas Tech University nomical Society. Block, S., A. L. Hales, and M. Landisman. 1969. Velocities Progress continues on the reduction of data and analy- in the crust and upper mantle of Southern Africa from multi- mode surface wave dispersion. Seismological Society of Amer. ses of specimens collected during the 1934, 1940, 1966, lea. Bulletin, 59: 1599-1629. 1967, and 1968 field seasons in Marie Byrd Land and Bolt, B.
  • Subglacial Lake Ellsworth CEE V2.Indd

    Subglacial Lake Ellsworth CEE V2.Indd

    Proposed Exploration of Subglacial Lake Ellsworth Antarctica Draft Comprehensive Environmental Evaluation February 2011 1 The cover art was created by first, second, and third grade students at The Village School, a Montessori school located in Waldwick, New Jersey. Art instructor, Bob Fontaine asked his students to create an interpretation of the work being done on The Lake Ellsworth Project and to create over 200 of their own imaginary microbes. This art project was part of The Village School’s art curriculum that links art with ongoing cultural work. 2 Contents Non Technical Summary .................................................4 Personnel ............................................................................................ 26 Chapter 1: Introduction ...................................................6 Power generation and fuel calculations ....................................... 27 Chapter 2: Description of proposed activity..................7 Vehicles ................................................................................................ 28 Background and justification ..............................................................7 Water and waste ...............................................................................28 The site ...................................................................................................8 Communications ............................................................................... 28 Chapter 3: Baseline conditions of Lake Ellsworth .........9 Transport of equipment
  • Late Quaternary Volcanic Activity in Marie Byrd Land: Potential 40Ar/39Ar-Dated Time Horizons in West Antarctic Ice and Marine Cores

    Late Quaternary Volcanic Activity in Marie Byrd Land: Potential 40Ar/39Ar-Dated Time Horizons in West Antarctic Ice and Marine Cores

    Late Quaternary volcanic activity in Marie Byrd Land: Potential 40Ar/39Ar-dated time horizons in West Antarctic ice and marine cores T. I. Wilch* Department of Geological Sciences, Albion College, Albion, Michigan 49224 W. C. McIntosh Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, and New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 N. W. Dunbar New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 ABSTRACT More than 12 40Ar/39Ar-dated tephra lay- ies is to determine the basal age of the ice sheet. ers, exposed in bare ice on the summit ice cap The 1968 Byrd Station ice core in the West Late Quaternary volcanic activity at three of Mount Moulton, 30 km from their inferred Antarctic Ice Sheet has an inferred basal age of major alkaline composite volcanoes in Marie source at Mount Berlin, range in age from 492 only 74 ka (Hammer et al., 1994). The exten- Byrd Land, West Antarctica, is dominated by to 15 ka. These englacial tephra layers provide sive lateral flow of ice from the ice divide area explosive eruptions, many capable of deposit- a minimum age of 492 ka for the oldest iso- to Byrd Station may have removed or disturbed ing ash layers as regional time-stratigraphic topically dated ice in West Antarctica. This much of the basal ice record. Consequently, the horizons in the West Antarctic Ice Sheet and well-dated section of locally derived glacial ice 74 ka date of the Byrd core provides only a in Southern Ocean marine sediments.
  • Geologic Studies in the English Coast, Eastern Ellsworth Land, Antarctica

    Geologic Studies in the English Coast, Eastern Ellsworth Land, Antarctica

    tains only small amounts of phillipsite, smectite, and calcite. from progressive dissolution of basaltic glass. Hydrothermal The distinct upper contact of this unit cuts across bedding. The alteration associated with dike emplacement has also produced tuffs above have been extensively altered to palagonite, palagonitization at some localities. It is probable that the altera- zeolites, smectite, and calcite. This relationship suggests that tion history of many of these deposits is complicated by the during alteration of the upper part of Castle Rock, the lower part operation of both mechanisms. was protected by ice, and authigenic mineral formation was The presence of early formed phillipsite and the persistence restricted by frozen interstitial water. With lowering of the ice of relatively fresh glass in many of the antarctic hyaloclastite level, the unaltered base was exposed to percolating meteoric samples unrelated to age, suggest that following initial pal- water. The glass, unprotected by more stable secondary miner- agonitization and authigenic mineral formation, diagenesis pro- als and palagonite, has undergone extensive dissolution. Fluc- ceeds slowly due to reduction in porosity and available exposed tuations in ice level, therefore, may affect the intensity or style glass (Fumes 1974) and to the relative lack of free water in the of postdepositional alteration. antarctic environment. Thanks to the other geologists in the field: Anne Wright, Philip Kyle, and Harry Keys (1982— 1983), David Johnson (1983 _ie "" t4!f^ - 1984), and Nelia Dunbar (1984 - 1985). This research was supported by National Science Foundation grant DPP 80-20836 to W.E. LeMasurier. References Fumes, H. 1974. Volume relations between palagonite and authigenic minerals in hyaloclastites, and its beating on the rate of palagonitiza- tion.