Deposits an Assessment of Lithostratigraphy for Anthropogenic

Total Page:16

File Type:pdf, Size:1020Kb

Deposits an Assessment of Lithostratigraphy for Anthropogenic Downloaded from http://sp.lyellcollection.org/ at British Geological Survey on June 19, 2014 Geological Society, London, Special Publications An assessment of lithostratigraphy for anthropogenic deposits J. R. Ford, S. J. Price, A. H. Cooper and C. N. Waters Geological Society, London, Special Publications 2014, v.395; p55-89. doi: 10.1144/SP395.12 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2014 Downloaded from http://sp.lyellcollection.org/ at British Geological Survey on June 19, 2014 An assessment of lithostratigraphy for anthropogenic deposits J. R. FORD*, S. J. PRICE, A. H. COOPER & C. N. WATERS British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK *Corresponding author (e-mail: [email protected]) Abstract: The deliberate anthropogenic movement of reworked natural and novel manufactured materials represents a novel sedimentary environment associated with mining, waste disposal, con- struction and urbanization. Anthropogenic deposits display distinctive engineering and environ- mental properties, and can be of archaeological importance. This paper shows that temporal changes in the scale and lithological character of anthropogenic deposits may be indicative of the Anthropocene. However, the stratigraphy of such deposits is not readily described by existing classification schemes, which do not differentiate separate phases or lithologically distinct deposits beyond a local scale. Lithostratigraphy is a scalable, hierarchical classification used to distinguish successive and lithologically distinct natural deposits. Many natural and anthropogenic deposits exhibit common characteristics; they typically conform to the Law (or Principle) of Superposition and exhibit lithological distinction. The lithostratigraphical classification of surficial anthro- pogenic deposits may be effective, although defined units may be significantly thinner and far less continuous than those defined for natural deposits. Further challenges include the designa- tion of stratotypes, accommodating the highly diachronous nature of anthropogenic deposits and the common presence of disconformities. International lithostratigraphical guidelines would require significant modification before being effective for the classification of anthropo- genic deposits. A practical alternative may be to establish an ‘anthrostratigraphical’ approach, or ‘anthrostratigraphy’. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Human activity has modified the geological struc- including land-use planning, development and ture of the Earth and continues to do so at an accel- archaeological study (Edgeworth 2013). erating rate. Humans are now the major driving Establishing the geometrical shape and spatial force behind geological change, responsible for relationships of artificially modified ground re- man-made unconformities and the modification of quires appropriate systems of characterization and sedimentary patterns. The anthropogenic modifi- classification. Existing stratigraphical classifica- cation of sedimentary patterns can be attributed tion schemes used for the geological mapping and to two overlapping processes (Price et al. 2011; modelling of artificially modified ground in Great Zalasiewicz et al. 2011): (1) the creation of novel Britain are largely based on morphogenetic attri- sedimentary environments and sediments (artifi- butes (British Geological Survey 1995; McMillan cially modified ground), and which is the focus of & Powell 1999; Price et al. 2004; Ford et al. this paper; (2) modifications to natural sedimentary 2010a; Price et al. 2011). Morphogenetic classifi- environments through processes such as damm- cation offers a practical and effective means of dif- ing, coastal reclamation or straightening of rivers ferentiating broadly defined classes of artificially (Syvitski & Kettner 2011). modified ground, including worked ground, made In many novel sedimentary environments, such ground and infilled ground. In contrast, a lithostrati- as urban areas, the landscape and shallow sub- graphical classification is used for bedrock and, surface is dominated by anthropogenic processes, increasingly, for natural superficial deposits based including erosion (i.e. excavation) and anthro- essentially on lithological characteristics and spa- pogenic sedimentation (i.e. deposits of ‘made tial relationships (Salvador 1994). Unlike litho- ground’). This presents a range of potential envi- stratigraphy, a morphogenetic approach does not ronmental and engineering challenges including generally allow different phases of artificial ground unpredictable ground conditions, geological haz- or lithologically distinct anthropogenic deposits to ards and contamination (Rosenbaum et al. 2003). be differentiated, nor allow the changing magnitude Anthropogenically modified ground can also offer of anthropogenic transformation of the landscape a record of landscape evolution and the impacts of to be determined. A lithostratigraphical approach humans on the natural environment. As such, a to classifying anthropogenic deposits could contrib- range of approaches exist to characterize and clas- ute to an improved understanding of the role of sify artificially modified ground to inform activities humans as major geological and geomorphological From:Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis,M.A.&Snelling, A. M. (eds) 2014. A Stratigraphical Basis for the Anthropocene. Geological Society, London, Special Publications, 395, 55–89. First published online January 23, 2014, updated April 8, 2014, http://dx.doi.org/10.1144/SP395.12 # The Authors 2014. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://sp.lyellcollection.org/ at British Geological Survey on June 19, 2014 56 J. R. FORD ET AL. agents in the Anthropocene (Price et al. 2011). The The aim of this paper is to determine whether Anthropocene, if defined, will be a chrono- anthropogenic deposits can be classified using the stratigraphical unit representing a specified time same lithostratigraphical procedures employed for interval. Throughout the geological column, from natural deposits. The purpose is not to define a the late twentieth century onwards, chronostra- lithostratigraphical classification for anthropogenic tigraphical and lithostratigraphical schemes have deposits, but to consider whether such an approach been developed separately. Chronostratigraphical could be used. It discusses where, or in what circum- units have typically been recognized as a response stances, it would work and where it would fail. It to a significant global event, particularly in the also looks at how elements of a pure lithostrati- context of changing biotic communities. Conse- graphical approach can be adapted or incorporated quently, the study of the lithostratigraphy of anthro- with other classification schemes to offer the func- pogenic deposits will not be used to define this new tionality necessary to characterize, quantify and age. However, changes in the nature and extent of investigate the recent geological record, and con- such deposits, discernible through lithostratigraphy, tribute to the study of the Anthropocene. could provide one line of evidence to consider This paper is largely based on the study of in deciding if, and how, such a time unit should anthropogenic deposits in Great Britain, including be defined. their lithostratigraphical classification to support Novel sedimentary environments and anthropo- systematic survey and three-dimensional (3D) geo- genic deposits share many similarities with ancient logical modelling. However, the value of lithostrati- depositional systems, including lithological char- graphical classification in recording and interpreting acteristics and successions that conform locally to anthropogenic successions in sections and boreholes the Law (or Principle) of Superposition. This sug- and other ‘non-geographical’ contexts is also con- gests that a lithostratigraphical approach may be sidered. Examples from diverse geographical set- applicable. However, several characteristics of tings highlight the global relevance of establishing anthropogenic deposits present a challenge to lithos- effective systems for their classification. tratigraphical classification, for example: † Terrestrial anthropogenic deposits vary greatly Novel sedimentary environments, in both lateral and vertical extent. Although artificially modified ground and sequences can attain thicknesses of 65 m or anthropogenic deposits more in Great Britain, component units are com- monly only a few metres thick. It has been recognized that anthropogenic processes † By their nature, many anthropogenic units are that result in the creation of sediments, erosive fea- strictly allostratigraphical; that is, defined and tures and associated landforms can be broadly clas- identified on the basis of bounding disconti- sified in two main types (Szabo´ 2010; Price et al. nuities. However, allostratigraphy has not been 2011; Zalasiewicz et al. 2011). The first type com- popularly applied in Great Britain (Rawson prises those anthropogenic activities that are delib- et al. 2002). The bounding discontinuities can erate, direct and intentional in their modification be defined as unconformities (e.g.
Recommended publications
  • Part II Specialized Studies Chapter Vi
    Part II Specialized Studies chapter vi New Sites and Lingering Questions at the Debert and Belmont Sites, Nova Scotia Leah Morine Rosenmeier, Scott Buchanan, Ralph Stea, and Gordon Brewster ore than forty years ago the Debert site exca- presents a model for the depositional history of the site vations signaled a new standard for interdisci- area, including two divergent scenarios for the origins of the Mplinary approaches to the investigation of late cultural materials at the sites. We believe the expanded areal Pleistocene archaeological sites. The resulting excavations extent of the complex, the nature of past excavations, and produced a record that continues to anchor northeastern the degree of site preservation place the Debert- Belmont Paleoindian sites (MacDonald 1968). The Confederacy of complex among the largest, best- documented, and most Mainland Mi’kmaq (the Confederacy) has been increasingly intact Paleoindian sites in North America. involved with the protection and management of the site The new fi nds and recent research have resolved some complex since the discovery of the Belmont I and II sites in long- standing issues, but they have also created new debates. the late 1980s (Bernard et al. 2011; Julien et al. 2008). The Understanding the relative chronologies of the numerous data reported here are the result of archaeological testing site areas and the consequent relationship among the sites associated with these protection eff orts, the development of requires not only understanding depositional contexts for the Mi’kmawey Debert Cultural Centre (MDCC), and the single occupations but tying together varied contexts (rede- passage of new provincial regulations solely dedicated to pro- posited, disturbed, glaciofl uvial, glaciolacustrine, Holocene tecting archaeological sites in the Debert and Belmont area.
    [Show full text]
  • Archaeological Tree-Ring Dating at the Millennium
    P1: IAS Journal of Archaeological Research [jar] pp469-jare-369967 June 17, 2002 12:45 Style file version June 4th, 2002 Journal of Archaeological Research, Vol. 10, No. 3, September 2002 (C 2002) Archaeological Tree-Ring Dating at the Millennium Stephen E. Nash1 Tree-ring analysis provides chronological, environmental, and behavioral data to a wide variety of disciplines related to archaeology including architectural analysis, climatology, ecology, history, hydrology, resource economics, volcanology, and others. The pace of worldwide archaeological tree-ring research has accelerated in the last two decades, and significant contributions have recently been made in archaeological chronology and chronometry, paleoenvironmental reconstruction, and the study of human behavior in both the Old and New Worlds. This paper reviews a sample of recent contributions to tree-ring method, theory, and data, and makes some suggestions for future lines of research. KEY WORDS: dendrochronology; dendroclimatology; crossdating; tree-ring dating. INTRODUCTION Archaeology is a multidisciplinary social science that routinely adopts an- alytical techniques from disparate fields of inquiry to answer questions about human behavior and material culture in the prehistoric, historic, and recent past. Dendrochronology, literally “the study of tree time,” is a multidisciplinary sci- ence that provides chronological and environmental data to an astonishing vari- ety of archaeologically relevant fields of inquiry, including architectural analysis, biology, climatology, economics,
    [Show full text]
  • ARTIFACTS and FEATURES DENDROCHRONOLOGY This
    4/28/2004 ARTIFACTS AND FEATURES DENDROCHRONOLOGY This article is one of an occasional series discussing matters archaeological, especially with reference to the Maturango Museum. In previous articles we have talked about why chronologies are important in archaeology, and about a few qualitative techniques for establishing dates or sequences. Today we move on to another topic, quantitative chronological techniques. The first quantitative technique to be developed and applied in archaeology was dendrochronology, or tree-ring dating. It was developed in 1928 by A. E. Douglass of the University of Arizona, an astronomer who was studying sun-spot cycles. He theorized that climatic moisture was affected by the 11-year sun-spot cycle, and concluded that the evidence should be observable in tree rings. In the course of the studies he verified that the climatic sequence of wet and dry years does in fact leave a detectable pattern in the tree ring record: in general, wet years lead to wide rings and dry years to narrow rings. The important byproduct of this for archaeology is that the sequence of wet and dry years in a given locality never repeats itself, so the tree rings contain a unique signature which allows correlating between an old log and a new one, as long as there is some overlap. Douglass, to his credit, realized that his data would be useful to archaeologists, who at that time had no methods for assigning quantitative dates. Qualitative methods such as pottery seriation, stratigraphic excavation, and marker artifacts allow construction of sequences, but not absolute dating. Dendrochronology, for the first time, would allow an archaeologist to assign a date to the event of cutting down a tree to build a structure or use as fuel.
    [Show full text]
  • Strategies and Activities: Preschool
    Arkansas Child Development and Early Learning Standards Strategies and Activities: Preschool November 2017 Published 2017 by Early Care and Education Projects Fayetteville, AR 72701 ©Early Care and Education Projects College of Education and Health Professions University of Arkansas All rights reserved December 2017 Strategies and Activities: Preschool page |ii Contents Introduction ........................................................................................................................................................... v Reading and Using Strategies and Activities: Preschool ...................................................................................... vii Books That Support Strategies and Activities: Preschool .................................................................................. 109 Bibliography ....................................................................................................................................................... 115 Resources ........................................................................................................................................................... 117 Social and Emotional Development ........................................................................................................................... 1 Cognitive Development ............................................................................................................................................. 9 Physical Development and Health ..........................................................................................................................
    [Show full text]
  • MJ O'brien, RL Lyman
    M.J. O'Brien, R.L. Lyman Seriation, Stratigraphy, and Index Fossils The Backbone of Archaeological Dating It is difficult for today's students of archaeology to imagine an era when chronometric dating methods were unavailable. However, even a casual perusal of the large body of literature that arose during the first half of the twentieth century reveals a battery of clever methods used to determine the relative ages of archaeological phenomena, often with considerable precision. Stratigraphic excavation is perhaps the best known of the various relative-dating methods used by prehistorians. Although there are several techniques of using artifacts from superposed strata to measure time, these are rarely if ever differentiated. Rather, common practice is to categorize them under the heading `stratigraphic excavation'. This text distinguishes among the several techniques and argues that stratigraphic excavation tends to result in discontinuous measures of time - a point little appreciated by modern archaeologists. 1999, XIII, 253 p. Although not as well known as stratigraphic excavation, two other methods of relative dating have figured important in Americanist archaeology: seriation and the use of index fossils. The latter (like stratigraphic excavation) measures time discontinuously, while Printed book the former - in various guises - measures time continuously. Perhaps no other method used in archaeology is as misunderstood as seriation, and the authors provide detailed Hardcover descriptions and examples of each of its three different techniques. ▶ 109,99 € | £99.99 | $139.99 ▶ *117,69 € (D) | 120,99 € (A) | CHF 130.00 Each method and technique of relative dating is placed in historical perspective, with particular focus on developments in North America, an approach that allows a more eBook complete understanding of the methods described, both in terms of analytical technique and disciplinary history.
    [Show full text]
  • Dating and Chronology Building - R
    ARCHAEOLOGY – Dating and Chronology Building - R. E. Taylor DATING AND CHRONOLOGY BUILDING R. E. Taylor University of California, USA Keywords: Dating methods, chronometric dating, seriation, stratigraphy, geochronology, radiocarbon dating, potassium-argon/argon-argon dating, Pleistocene, Quaternary. Contents 1. Chronological Frameworks 1.1 Relative and Chronometric Time 1.2 History and Prehistory 2. Chronology in Archaeology 2.1 Historical Development 2.2 Geochronological Units 3. Chronology Building 3.1 Development of Historic Chronologies 3.2 Development of Prehistoric Chronologies 3.3 Stratigraphy 3.4 Seriation 4. Chronometric Dating Methods 4.1 Radiocarbon 4.2 Potassium-argon and Argon-argon Dating 4.3 Dendrochronology 4.4 Archaeomagnetic Dating 4.5 Obsidian Hydration Acknowledgments Glossary Bibliography Biographical Sketch Summary One of the purposes of archaeological research is the examination of the evolution of human cultures.UNESCO Since a fundamental defini– tionEOLSS of evolution is “change over time,” chronology is a fundamental archaeological parameter. Archaeology shares with a number of otherSAMPLE sciences concerned with temporally CHAPTERS mediated phenomenon the need to view its data within an accurate chronological framework. For archaeology, such a requirement needs to be met if any meaningful understanding of evolutionary processes is to be inferred from the physical residue of past human behavior. 1. Chronological Frameworks Chronology orders the sequential relationship of physical events by associating these events with some type of time scale. Depending on the phenomenon for which temporal placement is required, it is helpful to distinguish different types of time scales. ©Encyclopedia of Life Support Systems (EOLSS) ARCHAEOLOGY – Dating and Chronology Building - R. E. Taylor Geochronological (geological) time scales temporally relates physical structures of the Earth’s solid surface and buried features, documenting the 4.5–5.0 billion year history of the planet.
    [Show full text]
  • Americanist Stratigraphic Excavation and the Measurement of Culture Change
    Journal of Archaeological Method and Theory, Vol. 6, No. 1, 1999 Americanist Stratigraphic Excavation and the Measurement of Culture Change R. Lee Lyman1 and Michael J. O'Brien1 Many versions of the history of Americanist archaeology suggest there was a "stratigraphic revolution" during the second decade of the twentieth century—the implication being that prior to about 1915 most archaeologists did not excavate stratigraphically. However, articles and reports published during the late nineteenth century and first decade of the twentieth century indicate clearly that many Americanists in fact did excavate stratigraphically. What they did not do was attempt to measure the passage of time and hence culture change. The real revolution in Americanist archaeology comprised an analytical shift from studying synchronic variation to tracking changes in frequencies of artifact types or styles—a shift pioneered by A. V. Kidder, A. L. Kroeber, Nels C. Nelson, and Leslie Spier. The temporal implications of the analytical techniques they developed—frequency seriation and percentage stratigraphy—were initially confirmed by stratigraphic excavation. Within a few decades, however, most archaeologists had begun using stratigraphic excavation as a creational strategy—that is, as a strategy aimed at recovering superposed sets of artifacts that were viewed as representing occupations and distinct cultures. The myth that there was a "stratigraphic revolution" was initiated in the writings of the innovators of frequency seriation and percentage stratigraphy. KEY WORDS: chronology; culture change; stratigraphic excavation; stratigraphic revolution. INTRODUCTION As far as we are aware, Willey (1968, p. 40) was the first historian of Americanist archaeology to use the term "stratigraphic revolution"—in quotation marks—to characterize the fieldwork of, particularly, Manuel 1Department of Anthropology, University of Missouri, Columbia, Missouri 65211.
    [Show full text]
  • Teaching Archaeology in the Classroom
    Beyond Artifacts: Teaching Archaeology in the Classroom Florida Unearthed, pg. 36 Peanut Butter & Jelly Archaeology, pg. 30 Summer 2008 This page left intentionally blank (ish). Table of Contents Introduction iv Activities General Archaeology (1 class period) Cookie Excavation 1 Cookie Grid 3 Excavación en la galleta 4 Archaeology Jeopardy 6 Archaeology and Pseudoscience 7 Ancient Graffiti 9 Archaeology & the Media 12 Archaeology Goes to the Movies 19 Indiana Jones Script 21 Lara Croft Script 22 Archaeologist Script 23 Prehistoric Archaeology (1 class period) Archaeology Crossword Relay Race 24 Crossword Puzzle 26 What’s Missing ? 27 Worksheet 28 PowerPoint slide 29 Peanut Butter and Jelly Archaeology 30 Arqueología con Crema de Maní y Mermelada 33 Florida Unearthed for Elementary Students 36 Florida Unearthed Board Construction 38 Atlatl Antics 40 Sheet for Throwing Dart by Hand 42 Sheet for Throwing Dart with Atlatl 43 How to make an Atlatl and a Dart 44 Historic Archaeology (1- 2 class periods) Arcadia Sample Lesson: Introduction to Archaeology 47 Arcadia Sample Lesson: Invisible People 49 Arcadia Sample Lesson: Predictive Modeling & 51 the Natural Environment i Underwater Archaeology (1 class period) Build A Boat 53 You Sunk My Battleship! 57 Integrated (multiple class periods/ multiple disciplines) Enriching Traditional Subjects through the Teaching 59 of Archaeology (grades 6-8) Table for Core Courses 61 Sample Math Worksheet 63 Sample Science Worksheet 64 Curriculum (framework) 9-week Archaeology Class for 6th Graders Introduction
    [Show full text]
  • How to Get a Date
    How to get a date: establishing chronologies (relative and absolute) change change change change change change Later than last week (relative) March 3, 2010 (absolute) Temporal, or chronological, order • Relative dating – lining things up (before, after) – ‘it is all relative’ • Absolute dating – chronometric dating – actual chronological date assigned – allows measurement of ‘how much’ time has passed between two points Expression of Absolute Dates (culturally specific!) • B.C./A.D. (Before Christ, Anno Domini) • Islamic calendar from A.D. 622 (the Hegira, Mecca to Medina) • B.C.E./C.E. (Before Common Era, Common Era) • B.P. (Before Present) Relative Dating Principle of stratigraphic succession Law of ‘superposition’ (the lower you go, the older you get) Important concepts in geology too Relative Dating Principle of stratigraphic succession Law of ‘superposition’ (the lower you go, the older you get) Typology • Artifact classification into types on the basis of certain similarities… Pots vs. baskets Fine ceramics vs. cooking wares (multiple typologies possible!) • Assumes products of a given place and time have a recognizable style • Styles tend to change through time, but gradually… Unchanging… Constantly changing… Unchanging… Constantly changing… Seriation • Relative dating method involving arranging archaeological materials into a presumed chronological sequence based on cultural and stylistic change • As long as items are gathered from the same cultural tradition, archaeologists assume that stylistic change occurs relatively gradually over time • By tracing similarities and differences in styles and by measuring the relative popularity of these differing styles, one can reconstruct a relative sequence (battleship curve) Seriation ? ? James Deetz seriation studies in New England graveyards Death’s head Cherub Willow and urn ‘battleship curves’ Problems? • Heirlooms • Archaism (‘retro’ looks) (actually a serious issue) Absolute dates Pompeii 24 August A.D.
    [Show full text]
  • An Introduction to the R Package Seriation
    Getting Things in Order: An Introduction to the R Package seriation Michael Hahsler Kurt Hornik Southern Methodist University Wirtschaftsuniversität Wien Christian Buchta Wirtschaftsuniversität Wien Abstract Seriation, i.e., finding a suitable linear order for a set of objects given data and a loss or merit function, is a basic problem in data analysis. Caused by the problem’s combinatorial nature, it is hard to solve for all but very small sets. Nevertheless, both exact solution methods and heuristics are available. In this paper we present the package seriation which provides an infrastructure for seriation with R. The infrastructure comprises data structures to represent linear orders as permutation vectors, a wide array of seriation methods using a consistent interface, a method to calculate the value of various loss and merit functions, and several visualization techniques which build on seriation. To illustrate how easily the package can be applied for a variety of applications, a comprehensive collection of examples is presented. Keywords: combinatorial data analysis, seriation, permutation, R. 1. Introduction A basic problem in data analysis, called seriation or sometimes sequencing, is to arrange all objects in a set in a linear order given available data and some loss or merit function in order to reveal structural information. Together with cluster analysis and variable selection, seriation is an important problem in the field of combinatorial data analysis (Arabie and Hubert 1996). Solving problems in combinatorial data analysis requires the solution of discrete optimization problems which, in the most general case, involves evaluating all feasible solutions. Due to the combinatorial nature, the number of possible solutions grows with problem size (number of objects, n) by the order O(n!).
    [Show full text]
  • Measuring Cultural Relatedness Using Multiple Seriation Ordering Algorithms
    Binghamton University The Open Repository @ Binghamton (The ORB) Anthropology Faculty Scholarship Anthropology 4-2016 Measuring Cultural Relatedness Using Multiple Seriation Ordering Algorithms Mark E. Madsen University of Washington - Seattle Campus Carl P. Lipo Binghamton University--SUNY, [email protected] Follow this and additional works at: https://orb.binghamton.edu/anthropology_fac Part of the Anthropology Commons Recommended Citation Madsen, Mark E. and Lipo, Carl P., "Measuring Cultural Relatedness Using Multiple Seriation Ordering Algorithms" (2016). Anthropology Faculty Scholarship. 15. https://orb.binghamton.edu/anthropology_fac/15 This Conference Proceeding is brought to you for free and open access by the Anthropology at The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in Anthropology Faculty Scholarship by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please contact [email protected]. Measuring Cultural Relatedness Using Multiple Seriation Ordering Algorithms Mark E. Madsen and Carl P. Lipo Manuscript version: 2016-03-17: 3f6f16a– draft for Electronic Symposium, “Evolutionary Archaeologies: New Approaches, Methods, And Empirical Sufficiency” at the Society for American Archaeology conference, April 2016 Abstract Seriation is a long-standing archaeological method for relative dating that has proven effective in probing regional-scale patterns of inheritance, social net- works, and cultural contact in their full spatiotemporal context. The orderings pro- duced by seriation are produced by the continuity of class distributions and uni- modality of class frequencies, properties that are related to social learning and trans- mission models studied by evolutionary archaeologists. Linking seriation to social learning and transmission enables one to consider ordering principles beyond the classic unimodal curve.
    [Show full text]
  • A Science Curriculum for Preschool Children Based on a Model Designed to Release Human Potential
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1973 A science curriculum for preschool children based on a model designed to release human potential. Gerard Patrick Baruch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Baruch, Gerard Patrick, "A science curriculum for preschool children based on a model designed to release human potential." (1973). Doctoral Dissertations 1896 - February 2014. 2786. https://scholarworks.umass.edu/dissertations_1/2786 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. © 1973 GERARD PATRICK BARUCH ALL RIGHTS RESERVED m A SCIENCE CURRICULUM FOR PRESCHOOL CHILDREN BASED ON A MODEL DESIGNED TO RELEASE HUMAN POTENTIAL A Dissertation Presented By Gerard Patrick Baruch Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION August , 1 973 Major Subject: Education - Human Potential ) A SCIENCE CURRICULUM FOR PRESCHOOL CHILDREN BASED ON A MODEL DESIGNED TO RELEASE HUMAN POTENTIAL A Dissertation Presented By Gerard Patrick Baruch Approved as to style and content by: an (Chairman of Committee) (Head ofHDepartment . Daehler (Member) {T, AcL* Dr. Donald T. Streets (Miember) a . Dr. Leverne Thelen (Member) ff. August, 1973 DEDICATION To my wife, Sylvia, and daughter, Lucita, for their patience, encouragement, and good disposition. TABLE OF CONTENTS Chapter Page I.
    [Show full text]