Inharmonic Speech: a Tool for the Study of Speech Perception and Separation∗

Total Page:16

File Type:pdf, Size:1020Kb

Inharmonic Speech: a Tool for the Study of Speech Perception and Separation∗ Inharmonic Speech: A Tool for the Study of Speech Perception and Separation∗ Josh H. McDermott Daniel P. W. Ellis Hideki Kawahara Center for Neural Science Dept. Elec. Eng. Faculty of Systems Engineering New York University, USA Columbia University, USA Wakayama University, Japan [email protected] [email protected] [email protected] Abstract sources – to separate the sound energy produced by a tar- get source from that produced by other sources [2]. Sounds created by a periodic process have a Fourier rep- Human sound segregation relies in part on acoustic resentation with harmonic structure – i.e., components grouping cues – sound properties that are characteristic at multiples of a fundamental frequency. Harmonic fre- of individual natural sound sources such as speech [3, 4], quency relations are a prominent feature of speech and and that can be used to infer groupings of sound energy many other natural sounds. Harmonicity is closely re- from a mixture of sources. Harmonic frequency relations lated to the perception of pitch and is believed to provide are believed to be among the most powerful of such cues. an important acoustic grouping cue underlying sound Harmonicity is the frequency-domain analogue of the pe- segregation. Here we introduce a method to manipulate riodicity that characterizes many natural sounds, includ- the harmonicity of otherwise natural-sounding speech to- ing voiced speech. Periodicity produces frequency com- kens, providing stimuli with which to study the role of ponents that are multiples of the fundamental frequency harmonicity in speech perception. Our algorithm utilizes (f0), a relationship known as harmonicity. Frequency elements of the STRAIGHT framework for speech ma- components that are harmonically related are generally nipulation and synthesis, in which a recorded speech ut- heard as a single sound with a common pitch, and mistun- terance is decomposed into voiced and unvoiced vocal ing a single component of a harmonic series by as little excitation and vocal tract filtering. Unlike the conven- as 1% causes it to be heard as a distinct sound [5]. More- tional STRAIGHT method, we model voiced excitation over, two concurrent tones with different f0s are typically as a combination of time-varying sinusoids. By individ- heard as two distinct sources [6]. ually modifying the frequency of each sinusoid, we in- Machine systems that attempt to replicate human seg- troduce inharmonic excitation without changing other as- regation abilities also make use of harmonicity. Com- pects of the speech signal. The resulting signal remains putational auditory scene analysis (CASA) systems typi- highly intelligible, and can be used to assess the role of cally compute a measure of periodicity and f within lo- harmonicity in the perception of prosody or in the segre- 0 cal time-frequency cells and then group cells in part based gation of speech from mixtures of talkers. on the consistency of the f estimates. CASA systems in Index Terms: speech synthesis, harmonicity, sound seg- 0 fact rely more strongly on harmonicity than common on- regation set, the other main bottom up grouping cue believed to underlie human segregation [7, 8]. 1. Introduction Despite the widespread assumption that harmonicity Human speech recognition is remarkable for its robust- is critical to sound segregation, its role in the segrega- ness to background noise. Our ability to recognize tion of real-world sounds such as speech remains largely speech from mixtures with other sound sources sets hu- untested. Given the potential importance of spectrotem- mans apart from state-of-the-art speech recognition sys- poral sparsity in the segregation of natural sounds [9, 10], tems [1], which typically perform well in quiet but are it is conceivable that the most important role of harmonic- adversely affected by the presence of additional sound ity could simply be to produce discrete frequency compo- sources. The robustness of human recognition to com- nents, the sparsity of which reduces masking and could peting sounds reflects our ability to segregate individual facilitate common onset and other grouping cues. More- over, psychoacoustic experiments with artificial stimuli This∗ work was supported in part by the National Science Foun- have raised questions about whether harmonicity is in fact dation (NSF) via grant IIS-1117015, by Grants-in-Aid for Scientific critical for segregation. Mistuned frequency components Research 22650042 from JSPS, and by the Howard Hughes Medical of complex tones can be detected even when the frequen- Institute. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily cies of all components are increased by a fixed amount, or reflect the views of the sponsors. when the complex is “stretched” such that adjacent com- ponents are no longer separated by a fixed number of Hz (for the unvoiced, random component of excitation). The [11]. Although such tones are inharmonic (lacking a fun- original STRAIGHT framework synthesizes voiced ex- damental frequency common to all the components they citation with a sequence of pulses, with each pulse be- contain), component mistuning detection thresholds are ing the minimum phase impulse response of the esti- comparable to those for harmonic tones. This result sug- mated vocal tract filter at that time point. Fractional pitch gests that various forms of spectral regularity, rather than control is implemented with a linear phase shifter. The harmonicity per se, could be most critical to segregation. voiced and unvoiced components are combined using a The strongest test of harmonicity’s importance in seg- sigmoid function (defined by the boundary frequency be- regation would arguably be to compare the segregation of tween the voiced and unvoiced components, and a transi- real-world sounds to that of inharmonic equivalents that tion slope) [16]. are matched in other respects. However, speech in par- ticular is nontrivial to manipulate in this manner, as it 2.2. Sinusoidal Modeling of Voiced Excitation consists of an interaction of periodic and noise excitation To permit the manipulation of harmonicity, the pulse- with vocal tract filtering to which humans are exquisitely based voicing synthesis of the original STRAIGHT pro- sensitive. We devised a method to generate inharmonic cedure was replaced by a sum of multiple sinusoids. Our versions of recorded speech utterances that selectively al- implementation extends a previous instantiation of sinu- ters the periodic component of excitation. We used the soidal excitation modeling in STRAIGHT [17]. framework of STRAIGHT, a powerful tool for represent- Let A(t, f) represent the amplitude at a time- ing and manipulating speech [12, 13]. frequency location (t, f) of the spectral envelope esti- mated using the STRAIGHT procedure. The determin- 2. Methods istic (voiced) component s(t) of the sinusoidal synthesis procedure can be defined by the following equation: Spectral envelopes (used to model vocal tract filtering) were extracted by STRAIGHT from recorded speech N(t) t X Z and were used to set the amplitudes of constituent time- s(t) = A(t, fn(t)) cos 2π fn(τ)dτ +ϕn (1) varying sinusoids (used to model speech excitation). n=1 0 Conventionally, these sinusoidal components would mir- where fn(t) represents the time-varying frequency of the ror the harmonics of the pitch contour. However, model- n-th constituent sinusoid and ϕn represents its initial ing the excitation in this way allows the frequency rela- phase (set to zero for the experiments described here). tions between sinusoids to be manipulated independently The total number of harmonic components N(t) at time of the spectral envelope or the prosodic contour, introduc- t is adaptively adjusted to keep the highest component ing inharmonicity into an otherwise normal speech sig- frequency below the Nyquist frequency. nal. This section outlines the original STRAIGHT proce- Instead of directly implementing Equation 1, as in dure and its extension to enable inharmonic excitation. [17], we approximate it here using a time-varying fil- ter and a fixed frame-rate overlap-add procedure (3 ms 2.1. Original STRAIGHT Framework frame rate and 50% overlap between adjacent Hanning- windowed frames). A linear phase FIR filter, derived Spectral envelope estimation in STRAIGHT consists of from A(t, f), is applied to each frame using a 1024 sam- a two-stage procedure to eliminate interference from pe- ple (64 ms) FFT buffer. This is essentially a cross synthe- riodic speech excitation [13]. In the first stage, tempo- sis VOCODER framework, whose minimal restrictions ral interference is eliminated by averaging power spectra on the input signal make it straightforward to vary the calculated at two time points separated by half a pitch excitation. To synthesize speech, s(t) is added to the un- period. In the second stage, spectral interference is elimi- voiced speech component estimated as in conventional nated by spectral smoothing using an f -adaptive rectan- 0 STRAIGHT. gular smoother, followed by post-processing to preserve harmonic component levels based on consistent sampling 2.3. Inharmonicity Manipulations theory. These frequency domain procedures are imple- mented with cepstral liftering. More details are provided Following manipulations from prior psychoacoustics in [14]. studies [11, 18], we altered the frequencies of speech har- Excitation estimation in STRAIGHT also relies on a monics in three ways. temporally stable
Recommended publications
  • A Comparison of Viola Strings with Harmonic Frequency Analysis
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research, Creative Activity, and Performance - School of Music Music, School of 5-2011 A Comparison of Viola Strings with Harmonic Frequency Analysis Jonathan Paul Crosmer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/musicstudent Part of the Music Commons Crosmer, Jonathan Paul, "A Comparison of Viola Strings with Harmonic Frequency Analysis" (2011). Student Research, Creative Activity, and Performance - School of Music. 33. https://digitalcommons.unl.edu/musicstudent/33 This Article is brought to you for free and open access by the Music, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research, Creative Activity, and Performance - School of Music by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS by Jonathan P. Crosmer A DOCTORAL DOCUMENT Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Musical Arts Major: Music Under the Supervision of Professor Clark E. Potter Lincoln, Nebraska May, 2011 A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS Jonathan P. Crosmer, D.M.A. University of Nebraska, 2011 Adviser: Clark E. Potter Many brands of viola strings are available today. Different materials used result in varying timbres. This study compares 12 popular brands of strings. Each set of strings was tested and recorded on four violas. We allowed two weeks after installation for each string set to settle, and we were careful to control as many factors as possible in the recording process.
    [Show full text]
  • Musical Acoustics - Wikipedia, the Free Encyclopedia 11/07/13 17:28 Musical Acoustics from Wikipedia, the Free Encyclopedia
    Musical acoustics - Wikipedia, the free encyclopedia 11/07/13 17:28 Musical acoustics From Wikipedia, the free encyclopedia Musical acoustics or music acoustics is the branch of acoustics concerned with researching and describing the physics of music – how sounds employed as music work. Examples of areas of study are the function of musical instruments, the human voice (the physics of speech and singing), computer analysis of melody, and in the clinical use of music in music therapy. Contents 1 Methods and fields of study 2 Physical aspects 3 Subjective aspects 4 Pitch ranges of musical instruments 5 Harmonics, partials, and overtones 6 Harmonics and non-linearities 7 Harmony 8 Scales 9 See also 10 External links Methods and fields of study Frequency range of music Frequency analysis Computer analysis of musical structure Synthesis of musical sounds Music cognition, based on physics (also known as psychoacoustics) Physical aspects Whenever two different pitches are played at the same time, their sound waves interact with each other – the highs and lows in the air pressure reinforce each other to produce a different sound wave. As a result, any given sound wave which is more complicated than a sine wave can be modelled by many different sine waves of the appropriate frequencies and amplitudes (a frequency spectrum). In humans the hearing apparatus (composed of the ears and brain) can usually isolate these tones and hear them distinctly. When two or more tones are played at once, a variation of air pressure at the ear "contains" the pitches of each, and the ear and/or brain isolate and decode them into distinct tones.
    [Show full text]
  • Musical Acoustics Timbre / Tone Quality I
    Musical Acoustics Lecture 13 Timbre / Tone quality I Musical Acoustics, C. Bertulani 1 Waves: review distance x (m) At a given time t: y = A sin(2πx/λ) A time t (s) -A At a given position x: y = A sin(2πt/T) Musical Acoustics, C. Bertulani 2 Perfect Tuning Fork: Pure Tone • As the tuning fork vibrates, a succession of compressions and rarefactions spread out from the fork • A harmonic (sinusoidal) curve can be used to represent the longitudinal wave • Crests correspond to compressions and troughs to rarefactions • only one single harmonic (pure tone) is needed to describe the wave Musical Acoustics, C. Bertulani 3 Phase δ $ x ' % x ( y = Asin& 2π ) y = Asin' 2π + δ* % λ( & λ ) Musical Acoustics, C. Bertulani 4 € € Adding waves: Beats Superposition of 2 waves with slightly different frequency The amplitude changes as a function of time, so the intensity of sound changes as a function of time. The beat frequency (number of intensity maxima/minima per second): fbeat = |fa-fb| Musical Acoustics, C. Bertulani 5 The perceived frequency is the average of the two frequencies: f + f f = 1 2 perceived 2 The beat frequency (rate of the throbbing) is the difference€ of the two frequencies: fbeats = f1 − f 2 € Musical Acoustics, C. Bertulani 6 Factors Affecting Timbre 1. Amplitudes of harmonics 2. Transients (A sudden and brief fluctuation in a sound. The sound of a crack on a record, for example.) 3. Inharmonicities 4. Formants 5. Vibrato 6. Chorus Effect Two or more sounds are said to be in unison when they are at the same pitch, although often an OCTAVE may exist between them.
    [Show full text]
  • Harmonic Template Neurons in Primate Auditory Cortex Underlying Complex Sound Processing
    Harmonic template neurons in primate auditory cortex underlying complex sound processing Lei Fenga,1 and Xiaoqin Wanga,2 aLaboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Edited by Dale Purves, Duke University, Durham, NC, and approved December 7, 2016 (received for review May 10, 2016) Harmonicity is a fundamental element of music, speech, and animal role in harmonic integration in processing complex sounds. Pa- vocalizations. How the auditory system extracts harmonic structures tients with unilateral temporal lobe excision showed poorer embedded in complex sounds and uses them to form a coherent performance in a missing fundamental pitch perception task than unitary entity is not fully understood. Despite the prevalence of normal listeners but performed as normal in the task when the f0 sounds rich in harmonic structures in our everyday hearing envi- was presented (21). Auditory cortex lesions could impair complex ronment, it has remained largely unknown what neural mechanisms sound discrimination, such as animal vocalizations, and vowel-like are used by the primate auditory cortex to extract these biologically sounds without affecting responses to relative simple stimuli, like important acoustic structures. In this study, we discovered a unique pure tones (22–24). class of harmonic template neurons in the core region of auditory Primate auditory cortex is subdivided into a “core” region, cortex of a highly vocal New World primate, the common marmoset consisting of A1 and the neighboring primary-like rostral (R) and (Callithrix jacchus), across the entire hearing frequency range. Mar- rostral–temporal areas, surrounded by a belt region, which contains mosets have a rich vocal repertoire and a similar hearing range to multiple distinct secondary fields (Fig.
    [Show full text]
  • Lecture 38 Quantum Theory of Light
    Lecture 38 Quantum Theory of Light 38.1 Quantum Theory of Light 38.1.1 Historical Background Quantum theory is a major intellectual achievement of the twentieth century, even though we are still discovering new knowledge in it. Several major experimental findings led to the revelation of quantum theory or quantum mechanics of nature. In nature, we know that many things are not infinitely divisible. Matter is not infinitely divisible as vindicated by the atomic theory of John Dalton (1766-1844) [221]. So fluid is not infinitely divisible: as when water is divided into smaller pieces, we will eventually arrive at water molecule, H2O, which is the fundamental building block of water. In turns out that electromagnetic energy is not infinitely divisible either. The electromag- netic radiation out of a heated cavity would obey a very different spectrum if electromagnetic energy is infinitely divisible. In order to fit experimental observation of radiation from a heated electromagnetic cavity, Max Planck (1900s) [222] proposed that electromagnetic en- ergy comes in packets or is quantized. Each packet of energy or a quantum of energy E is associated with the frequency of electromagnetic wave, namely E = ~! = ~2πf = hf (38.1.1) where ~ is now known as the Planck constant and ~ = h=2π = 6:626 × 10−34 J·s (Joule- second). Since ~ is very small, this packet of energy is very small unless ! is large. So it is no surprise that the quantization of electromagnetic field is first associated with light, a very high frequency electromagnetic radiation. A red-light photon at a wavelength of 700 −19 nm corresponds to an energy of approximately 2 eV ≈ 3 × 10 J ≈ 75 kBT , where kBT denotes the thermal energy.
    [Show full text]
  • Psychoacoustic Foundations of Contextual Harmonic Stability in Jazz Piano Voicings
    Journal of Jazz Studies vol. 7, no. 2, pp. 156–191 (Fall 2011) Psychoacoustic Foundations Of Contextual Harmonic Stability In Jazz Piano Voicings James McGowan Considerable harmonic variation of both chord types and specific voicings is available to the jazz pianist, even when playing stable, tonic-functioned chords. Of course non-tonic chords also accommodate extensive harmonic variety, but they generally cannot provide structural stability beyond the musical surface. Many instances of tonic chords, however, also provide little or no sense of structural repose when found in the middle of a phrase or subjected to some other kind of “dissonance.” The inclusion of the word “stable” is therefore important, because while many sources are implicitly aware of the fundamental differences between stable and unstable chords, little significant work explicitly accounts for an impro- vising pianist’s harmonic options as associated specifically with harmonic stability— or harmonic “consonance”—in tonal jazz. The ramifications are profound, as the very question of what constitutes a stable tonic sonority in jazz suggests that underlying precepts of tonality function differ- ently in improvised jazz and common-practice music. While some jazz pedagogical publications attempt to account for the diverse chord types and specific voicings employed as tonic chords, these sources have not provided a distinct conceptual framework that explains what criteria link these harmonic options. Some music theorists, meanwhile, have provided valuable analytical models to account for the sense of resolution to stable harmonic entities. These models, however, are largely designed for “classical” music and are problematic in that they tend to explain pervasive non-triadic harmonies as aberrant in some way.1 1 Representative sources that address “classical” models of jazz harmony include Steve Larson, Analyzing Jazz: A Schenkerian Approach, Harmonologia: studies in music theory, no.
    [Show full text]
  • Thomas Young and Eighteenth-Century Tempi Peter Pesic St
    Performance Practice Review Volume 18 | Number 1 Article 2 Thomas Young and Eighteenth-Century Tempi Peter Pesic St. John's College, Santa Fe, New Mexico Follow this and additional works at: http://scholarship.claremont.edu/ppr Pesic, Peter (2013) "Thomas Young and Eighteenth-Century Tempi," Performance Practice Review: Vol. 18: No. 1, Article 2. DOI: 10.5642/perfpr.201318.01.02 Available at: http://scholarship.claremont.edu/ppr/vol18/iss1/2 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Performance Practice Review by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Thomas Young and Eighteenth-Century Tempi Dedicated to the memory of Ralph Berkowitz (1910–2011), a great pianist, teacher, and master of tempo. The uthora would like to thank the John Simon Guggenheim Memorial Foundation for its support as well as Alexei Pesic for kindly photographing a rare copy of Crotch’s Specimens of Various Styles of Music. This article is available in Performance Practice Review: http://scholarship.claremont.edu/ppr/vol18/iss1/2 Thomas Young and Eighteenth-Century Tempi Peter Pesic In trying to determine musical tempi, we often lack exact and authoritative sources, especially from the eighteenth century, before composers began to indicate metronome markings. Accordingly, any independent accounts are of great value, such as were collected in Ralph Kirkpatrick’s pioneering article (1938) and most recently sur- veyed in this journal by Beverly Jerold (2012).1 This paper brings forward a new source in the writings of the English polymath Thomas Young (1773–1829), which has been overlooked by musicologists because its author’s best-known work was in other fields.
    [Show full text]
  • The Acoustics of the Violin
    THE ACOUSTICS OF THE VIOLIN. BY ERIC JOHNSON This Thesis is presented in part fulfilment of the degree of Doctor of Philosophy at the University of Salford. Department of Applied Acoustics University of Salford Salford, Lancashire. 30 September, 1981. i THE ACOUSTICS OF THE VIOLIN. i TABLE OF CONTENTS Chapter 1: The Violin. page 1 Introduction 1 A Brief History of the Violin 2 Building the Violin 5 The Best Violins and What Makes Them Different 11 References 15 Chapter 2: Experimental and Theoretical Methods. 16 Measuring the Frequency Response 16 Holography 24 The Green's Function Technique 34 References 40 Chapter, 3: Dynamics of the Bowed String. 41 The Bowed String 41 The Wolf- Note 53 References 58 Chapter 4: An Overview of Violin Design. 59 The Violin's. Design 59 The Bridge as a Transmission Element 69 The Function of the Soundpost and Bassbar 73 Modelling the Helmholtz and Front Plate Modes 76 Other Air Modes in, the Violin Cavity 79 References 84 Chapter 5: Modelling the Response of the Violin. 85 The Model 85 Evaluating the Model 93 Investigating Violin Design 99 References 106 Chapter 6: Mass- Production Applications 107 Manufacturing Techniques 107 References 116 I Y., a THE ACOUSTICS OF THE VIOLIN. ii ACKNOWLEDGEMENTS Ina work., such as this it is diff icult' to thank all those who came playedla part in its evolution. Ideas and help from so many directiöiis thät söme, whos'e aid was"appreciated, have no doubt been left out ii myätküowledgements Those who played the most cdnspicuous role in the writing of thesis are listed below but the list is by _this no means complete.
    [Show full text]
  • Inharmonicity of Sounds from Electric Guitars
    Inharmonicity of Sounds from Electric Guitars: Physical Flaw or Musical Asset? Hugo Fastl, Florian Völk AG Technische Akustik, MMK, Technische Universität München, Germany [email protected] ABSTRACT II. EXPERIMENTS Because of bending waves, strings of electric guitars produce (slightly) A. Inharmonicity of guitar strings inharmonic spectra. One aim of the study was to find out - also in view of synthesized musical instruments - whether sounds of electric The deviation of the sound signals produced by a plucked guitars should preferably produce strictly harmonic or slightly string from being exactly harmonically is dependent on the inharmonic spectra. Inharmonicities of typical sounds from electric inharmonicity of the string, which itself is dependent on the guitars were analyzed and studied in psychoacoustic experiments. stiffness of the string. The latter is dependent primarily on Strictly harmonic as well as slightly inharmonic spectra were realized physical parameters of the considered string-material. If the and evaluated with respect to audibility of beats, possible differences inharmonicity is given, it is possible to compute the frequency in pitch height, and overall preference. Strictly harmonic as well as of the nth component for a string, which would have the fun- slightly inharmonic spectra produce essentially the same pitch height. damental frequency without stiffness (cf. Fletcher and Rossing Depending on the magnitude of the inharmonicity, beats are clearly 1998) the following way: audible. Low, wound strings (e.g. E2, A2) usually produce larger inharmonicities than high strings (e.g. E4), and hence beats of low 1 for 1; [1] notes are easily detected. The inharmonicity increases with the diameter of the respective string's kernel.
    [Show full text]
  • Nuclear Resonance Vibrational Spectroscopy: a Modern Tool to Pinpoint Site-Specific Cooperative Processes
    crystals Review Nuclear Resonance Vibrational Spectroscopy: A Modern Tool to Pinpoint Site-Specific Cooperative Processes Hongxin Wang 1,* , Artur Braun 2,* , Stephen P. Cramer 1 , Leland B. Gee 3 and Yoshitaka Yoda 4 1 SETI Institute, Mountain View, CA 94043, USA; [email protected] 2 Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland 3 LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; [email protected] 4 Precision Spectroscopy Division, SPring-8/JASRI, Sayo 679-5198, Japan; [email protected] * Correspondence: authors: [email protected] (H.W.); [email protected] (A.B.) Abstract: Nuclear resonant vibrational spectroscopy (NRVS) is a synchrotron radiation (SR)-based nu- clear inelastic scattering spectroscopy that measures the phonons (i.e., vibrational modes) associated with the nuclear transition. It has distinct advantages over traditional vibration spectroscopy and has wide applications in physics, chemistry, bioinorganic chemistry, materials sciences, and geology, as well as many other research areas. In this article, we present a scientific and figurative description of this yet modern tool for the potential users in various research fields in the future. In addition to short discussions on its development history, principles, and other theoretical issues, the focus of this article is on the experimental aspects, such as the instruments, the practical measurement issues, the data process, and a few examples of its applications. The article concludes with introduction to non-57Fe NRVS and an outlook on the impact from the future upgrade of SR rings. Citation: Wang, H.; Braun, A.; Cramer, S.P.; Gee, L.B.; Yoda, Y.
    [Show full text]
  • Correlation Between the Frequencies of Harmonic Partials Generated from Selected Fundamentals and Pitches of Supplied Tones
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1962 Correlation between the frequencies of harmonic partials generated from selected fundamentals and pitches of supplied tones Chester Orlan Strom The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Strom, Chester Orlan, "Correlation between the frequencies of harmonic partials generated from selected fundamentals and pitches of supplied tones" (1962). Graduate Student Theses, Dissertations, & Professional Papers. 1913. https://scholarworks.umt.edu/etd/1913 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. CORRELATION BETWEEN THE FREQUENCIES OF HARMONIC PARTIALS GENERATED FROM SELECTED FUNDAMENTALS AND PITCHES OF SUPPLIED TONES by CHESTER ORLAN STROM BoMo Montana State University, 1960 Presented in partial fulfillment of the requirements for the degree of Master of Music MONTANA STATE UNIVERSITY 1962 Approved by: Chairman, Board of Examine Dean, Graduate School JUL 3 1 1902 Date UMI Number: EP35290 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Psychoacoustics: a Brief Historical Overview
    Psychoacoustics: A Brief Historical Overview William A. Yost From Pythagoras to Helmholtz to Fletcher to Green and Swets, a centu- ries-long historical overview of psychoacoustics. Postal: Speech and Hearing Science 1 Arizona State University What is psychoacoustics? Psychoacous- PO Box 870102 tics is the psychophysical study of acous- Tempe, Arizona 85287 tics. OK, psychophysics is the study of USA the relationship between sensory per- ception (psychology) and physical vari- Email: ables (physics), e.g., how does perceived [email protected] loudness (perception) relate to sound pressure level (physical variable)? “Psy- chophysics” was coined by Gustav Fech- ner (Figure 1) in his book Elemente der Psychophysik (1860; Elements of Psycho- physics).2 Fechner’s treatise covered at least three topics: psychophysical meth- ods, psychophysical relationships, and panpsychism (the notion that the mind is a universal aspect of all things and, as Figure 1. Gustav Fechner (1801-1887), “Father of Psychophysics.” such, panpsychism rejects the Cartesian dualism of mind and body). Today psychoacoustics is usually broadly described as auditory perception or just hearing, although the latter term also includes the biological aspects of hearing (physiological acoustics). Psychoacoustics includes research involving humans and nonhuman animals, but this review just covers human psychoacoustics. With- in the Acoustical Society of America (ASA), the largest Technical Committee is Physiological and Psychological Acoustics (P&P), and Psychological Acoustics is psychoacoustics. 1 Trying to summarize the history of psychoacoustics in about 5,000 words is a challenge. I had to make difficult decisions about what to cover and omit. My history stops around 1990. I do not cover in any depth speech, music, animal bioacoustics, physiological acoustics, and architectural acoustic topics because these may be future Acoustics Today historical overviews.
    [Show full text]