Realizability a Historical Essay

Total Page:16

File Type:pdf, Size:1020Kb

Realizability� a Historical Essay Realizability A Historical Essay Jaap van Oosten Department of Mathematics POBox TA Utrecht The Netherlands jvoostenmathuunl January Dedicated to Anne S Tro elstra at his th Birthday Intro duction The purp ose of this short pap er is to sketch the development of a few basic topics in the history of Realizability The numb er of topics is quite limited and reects very muchmyown p ersonal taste biases and prejudices Realizability has over the past years develop ed into a sub ject of such dimensions that a comprehensiveoverview would require a fat b o ok Mayb e someone some day ought to write such a b o ok But it will not b e easy Quite apart from the huge amount of literature to cover there is the task of creating unity where there is none For Realizability has many faces each of them turned towards dierent areas of Logic Mathematics and Computer Science and this proliferation shows no signs of diminishing in our days Likeavenomous carci noma Realizability stretches out its tentacles to ever more remote elds Linear Logic Complexity Theory and Rewrite Theory have already b een infected The theory of Subrecursive Hierarchies to o Everything connected to the calculus is heavily engaged Pro of Theory is suering Intuitionism is dead Just to name a few Did you think that at least the realm of classical logic would b e safe Recently Krivine came up with a Realizabilityinterpretation for ZF set theory Confronted with this mess I have acted like the classical imp ostor who walked into the hospital claiming to b e a surgeon and is now wielding the knives in the op erating theatre I to ok the nearest scalp el at hand and cut out everything that wouldnt t into either one of mytwo ma jor streams meta mathematics of intuitionistic arithmetical theories and top ostheoretic devel opments Research supp orted by PIONIER NWO the Netherlands Needless to say there is no question of even starting to list what I omitted Sometimes to my great regret although I realize that such hollow ap ologies just reverb erate in the vast emptiness I have created Therefore lets get physical and say something concrete ab out what is in this pap er According to me there are three landmark publications in Realizability These are Kleenes original pap er On the Interpretation of Intuitionistic Num b er Theory Tro elstras Metamathematical Investigations from Hylands The EectiveTop os from Of these three b oth and initiated a whole new strand of research I have therefore decided that the material I wished to present naturally divides into two periods viz and This is not to say that suddenly there were after no more purely syntactical presentations of Realizabilities quite on the contrary thanks to Computer Science syntax is back but I do feel that although many of these matters still need and deservetobeinvestigated and need all the elegance and exp ository skills we can muster no radically new vistas have emerged from this research Therefore in my accountofthe second p erio d I have concentrated on what I regard as more innovative research The second item in my list is of a dierent kind This monumental work brought together all existing results many of whichwere due to its author and ordered them in suchaway that the diligent student could see at once the similarities b etween them It charted the territory and in this wayachieved something of conceptual value the notion that all these systems interpretations and axiomatizations were manifestations of a pattern that they had in common What exactly this pattern is we still dont know But it is my feeling that the categorical analyses of later years owe a lot to this work It made when it app eared a daunting impression on some p eople And certainly it did so on me when I was his student But now I exp erience a sensation of dry austere b eauty in its relentless pursuit of order And let us not forget it set new standards of presentation and notation For although Kleenes rst pap er is a gem of readability regrettably Kleene later adopted a style of writing whichwas so cluttered with notation that it takes a strong man to ght himself through Ihave therefore decided to dedicate this pap er to Anne Tro elstra mymentor who has contributed so much to the sub ject matter in gratitude Acknowledgements I am grateful to Joan Moschovakis who had a careful lo ok at a preliminary version and drew my attention to a few embarrassing mistakes Id also like to thank Lars Birkedal Martin Hyland Pino Rosolini and Dana Scott for discussions and for providing lastminute bibliographical and background information Let the disapp ointed reader b e solaced by the availabilityofan excel lent pro oftheoretical survey on Realizability The rst years The origin of Realizability In his overview pap er Realizability a retrosp ectivesurvey Stephen Cole Kleene recounts how his idea for numerical realizability develop ed He wished to give some precise meaning to the intuition that there should b e a connection b etween Intuitionism and the theory of recursive functions b oth the ories stressing the imp ortance of extracting information eectively He started to think ab out this in In order to appreciate the originality of his thinking one should recall that the formal system of intuitionistic arithmetic HA did not exist at the time Well There is a system closely resembling HA in Godels pap er Kleene ap p ears to have b een at least initially unaware of this for although his pap er gives the reference the retrosp ectivesurvey stresses that Heyting Arithmetic do es not o ccur as a subsystem readily separated out from Heytings full sys tem of intuitionistic mathematics and quotes Kleenes own formalismwhich later app eared in as the thing he had in mind As an example of a precise connection b etween Intuitionism and the theory of recursive functions Kleene starts by conjecturing a weak form of Churchs Rule if a closed formula of the form xyx y isprovable in intuitionistic numb er theory then there must b e a general recursive function F such that for all n the formula n F n is true One arrives at this conjecture by unravelling the meaning that such a statementmust have for an intuitionist Conjecturing this at a time when Intuitionism was still clouded by Brouwers mysticism the formal system in question hardly established and the contentof the conjecture blatantly false for Peano Arithmetic was imaginative indeed But this was still far away from the actual development of Realizability Often one encounters the opinion that Realizabilitywas inspired by the so called BrouwerHeytingKolmogorovinterpretation a mantra which rather than b eing an interpretation is itself in need of one This was not the case Kleene starts by quoting Hilb ert and Bernays They in their Grundlagen der Mathematik explain the nitist p osition in Mathematics The relevant passage is the one ab out existential statements as incomplete communications which since it is philosophy can only b e appropriately understo o d in the original German Ein Existenzsatz ub er Ziern also ein Satz von der Form es gibt eine Zier n von der Eigenschaft An ist nit aufzufassen als ein Partialurteil dh als eine unvollstandige Mitteilung einer genauer b estimmten Aussage welche entweder in der direkten Angab e einer Zier von der Eigenschaft An o der der Angab e eines Verfahrens zur Gewinnung einer solchen Zier b esteht For some biographical details on Kleene and a p ersonal appreciation see the obituary by his friend Saunders Mac Lane An existential statement ab out numb ers ie a statement of the form there exists a Kleene then asks Can we generalize this idea to think of al l except trivially the simplest intuitionistic statements as incomplete communications He outlines in which sense every logical sentence is incomplete and what would constitute its completion For the implication case Kleene inter estingly says that rst he tried an inductive clause inspired by Heytings pro ofinterpretation but that it didnt work and so Heytings pro of interpretation failed to help me to my goal Since Kleene do esnt reveal what this rst try was we are free to conjecture It is just conceivable that he tried a realizer for A B is a partial recursive function which sends pro ofs of A to pro ofs of B Kleenes realizabilitywas at least conceptually a ma jor advance Its achieve ment is not so much a philosophical explanation of the intuitionistic connectives Tro elstra p says it cannot b e said to maketheintended meaning of the logical op erators more precise As a philosophical reduction of the inter pretation of the logical op erators it is also mo derately successful eg negative formulae are essentially interpreted by themselves In fact Kleene admits this explicitly in his pap er On the other hand by providing an interpretation which can b e read and checked by the classical mathematician he did put for ward an interpretation of the intuitionistic connectives in terms of the classical ones this in contrast to the socalled BHK or pro of interpretation which interprets the intuitionistic connectives in terms of themselves More imp ortantly realizability as it is designed to handle information ab out formulas rather than pro ofs already hints at the role Intuitionism would come to play in theoretical Computer Science some years later it foreshadows the view of intuitionistic formulas as datatypes and intuitionistic logic as the logic of information But the scop e of realizability is wider than just interpreting the logic Re alizability also provides mo dels for theories which are
Recommended publications
  • Brief Curriculum Vitae
    Brief Curriculum Vitae Name Vasilakopoulou Christina E-mail christie DOT vasi AT gmail EMPLOYMENT Jun 2019 – now University of Patras, Greece Researcher, Department of Mathematics PI of research grant “Duality and enrichment in operadic theory; interactions with Hopf structures and abstract machines modeling”, H.F.R.I. (ELIDEK) Oct 2017 – June 2019 University of Calfornia at Riverside (USA) Visiting Assistant Professor, Department of Mathematics Oct 2016 – Sep 2017 Université Libre de Bruxelles (Belgium) Postdoctoral Fellow, Department of Mathematics Oct 2015 – Jun 2016 Massachusetts Institute of Technology (USA) Postdoctoral Associate, Department of Mathematics May – Sep 2015 Athens University of Economics and Business (Greece) Postdoctoral Researcher, Department of Informatics Sep 2014 – Feb 2015 University of Hawaii at Manoa (USA) Postdoctoral Research Fellow, Department of Information and Computer Sciences EDUCATION 2010 – 2014 University of Cambridge (UK) – PhD in Category Theory Supervisors: Martin Hyland, Ignacio Lopez Franco Thesis title: “Generalization of algebraic operations via enrichment” 2009 – 2010 University of Cambridge (UK) – MASt in Mathematics 2005 – 2009 University of Patras (Greece) – Ptychion in Mathematics (B.Sc.) Direction: Pure Mathematics, Final mark: 9,26/10 “Excellent” PAPERS To appear Mitchell Buckley, Timmy Fieremans, Christina Vasilakopoulou and Joost Vercruysse, Oplax Hopf Algebras, Higher Structures 2021 Mitchell Buckley, Timmy Fieremans, Christina Vasilakopoulou and Joost Vercruysse, A Larson- Sweedler Theorem for Hopf V-categories, Advances in Mathematics 376 2021 Georgios Bakirtzis, Cody H. Fleming and Christina Vasilakopoulou, Categorical Semantics of Cyber-Physical Systems Theory, ACM Transactions on Cyber-Physical Systems (3) 5, 1–32 2020 Joe Moeller and Christina Vasilakopoulou, Monoidal Grothendieck Construction, Theory and Applications of Categories 35, no.
    [Show full text]
  • Some Reasons for Generalizing Domain Theory
    Under consideration for publication in Math. Struct. in Comp. Science Some Reasons for Generalizing Domain Theory Martin Hyland Received 9 October 2009 One natural way to generalize Domain Theory is to replace partially ordered sets by categories. This kind of generalization has recently found application in the study of concurrency. An outline is given of the elegant mathematical foundations which have been developed. This is specialized to give a construction of cartesian closed categories of domains, which throws light on standard presentations of Domain Theory. Introduction This paper is one of what I hope will be a series written in conscious homage to Kreisel’s paper (Kreisel 1971). That paper was prepared for the European Meeting of the ASL in Manchester 1969, was widely aired at the time and was finally published in the pro- ceedings in 1971. It is a survey of the state of Recursion Theory and its generalizations around 1970. At one level it is a remarkable attempt to influence the development of logic, providing concrete proposals and problems as well as more general reflections on future directions. At times, for example in connection with the theory of admissible sets, the discussion foreshadows developments whose significance was only later fully appreciated. At other points, for example in connection with axiomatics, an approach is promoted which has been explored extensively but has in my view been less successful. (It is of course a positive feature that suggestions can even now be regarded as contentious.) However one can read the paper on another level as providing a case study of the value of generalization in a specific area of mathematics.
    [Show full text]
  • From Brouwer's Thesis to the Fan Functional
    From Brouwer's Thesis to the Fan Functional Ulrich Berger Swansea University University of Birmingham Theoretical Computer Science Seminar February 21, 2020 1 / 36 Overview 1. Introduction 2. Brouwer's thesis 3. Abstract bar induction 4. Vacuous truth 5. Proving uniform continuity 6. Extracting the fan functional 2 / 36 Introduction What are the logical roots of intriguing algorithms/computing principles? I Primitive recursion comes from induction on N. I General recursion comes from wellfounded induction. I The extended Euklidean algorithm comes from a classical proof that Z is a principal ideal ring. I Normalization by evaluation (for the typed lambda-calculus) comes from the Tait/Girard proof of strong normalization, respectively a completeness proof for intuitionistic logic. I ... Where does Tait's fan functional come from? 3 / 36 The fan functional The fan functional computes for every continuous function on Cantor space with values in N its least modulus of uniform continuity: FAN :(f0; 1gN ! N) ! N FAN(F ) = µn 8α; β (α =n β ! F α = F β) Def where α =n β = 8k 2 N (k < n ! α k = β k). So, clearly, this must come from: Fan theorem: Every continuous function on Cantor space with values in N is uniformly continuous. The real question is what are the right logical and mathematical principles and what is the right formal system for a proof of this theorem in order to extract the fan functional, more precisely, a purely functional program that computes it? 4 / 36 Brief history of the fan functional Tait introduced the Fan functional in 1963 and showed that it is recursively continuous but not computable by Kleene's schemata S1-S9, thus shattering Kleene's hope that S1-S9 is a universal notion of computation in higher types.
    [Show full text]
  • Wellfounded Trees and Dependent Polynomial Functors
    Wellfounded Trees and Dependent Polynomial Functors Nicola Gambino? and Martin Hyland Department of Pure Mathematics and Mathematical Statistics University of Cambridge {N.Gambino,M.Hyland}@dpmms.cam.ac.uk Abstract. We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by in- vestigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed cat- egories. 1 Introduction Types of wellfounded trees, or W-types, are one of the most important com- ponents of Martin-L¨of’s dependent type theories. First, they allow us to define a wide class of inductive types [5, 15]. Secondly, they play an essential role in the interpretation of constructive set theories in dependent type theories [3]. Finally, from the proof-theoretic point of view, they represent the paradigmatic example of a generalised inductive definition and contribute considerably to the proof-theoretic strength of dependent type theories [8]. In [16] a categorical counterpart of the notion of W-type was introduced. In a locally cartesian closed category, W-types are defined as the initial algebras for endofunctors of a special kind, to which we shall refer here as polynomial functors. The purpose of this paper is to study polynomial endofunctors and W-types more closely. In particular, we set out to explore some of the consequences of the assumption that a locally cartesian closed category has W-types, i.e. that every polynomial endofunctor has an initial algebra.
    [Show full text]
  • The Continuum Hypothesis in Algebraic Set Theory
    The Continuum Hypothesis in Algebraic Set Theory T. P. Kusalik Department of Mathematics and Statistics McGill University Montreal,Quebec December 31, 2008 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science ©T. Kusalik. 2008 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-53761-9 Our file Notre reference ISBN: 978-0-494-53761-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Curriculum Vitae
    10221 Phar Lap Dr Cupertino 95014 H 408 219 6912 T 408 725 0460 B [email protected] Í http://vcvpaiva.github.io/ Valeria de Paiva http://www.cs.bham.ac.uk/~vdp Profile: Mathematician with strong industrial and academic background, and over 100 publications. Project leader with a rare ability to get people from different technical backgrounds communicating and working together. Education 1990 PhD, Pure Mathematics, University of Cambridge, Cambridge, UK. Thesis: The Dialectica Categories, supervisor: Prof M. J. E. Hyland 1985 Part III Mathematical Tripos (MSc), University of Cambridge, Cambridge, UK. Lucy Cavendish College 1984 MSc, Algebra, Pontifical Catholic University (PUC), Rio de Janeiro, Brazil. Thesis: The Hurwitz-Radon Transformations, supervisor: Dr D. Randall 1982 BSc, Pure Mathematics, Pontifical Catholic University (PUC), Rio de Janeiro, Brazil. Work Experience Mar Principal Research Scientist, Samsung Research America, Mountain View, CA. 2019–Jan Research, design and deployment of conversational systems, related to smart devices in the 2020 connected home. I also serve a a connection to the academic community. Sep Senior Research Scientist, Nuance Communications, Sunnyvale, CA. 2012–Dec Research, design and deployment of conversational systems. My first project was on a "living 2018 room" assistant such as Amazon’s Alexa. The most recent project was on a car concierge. In the NAIL lab I am the bridge between the Natural Language processing (NLP) experts and the knowledge representation (KR) experts. April Senior Research Scientist, Rearden Commerce, Foster City, CA. 2011–2012 Design and deployment of sentiment analysis tools. { Sentiment analysis mechanisms, especially geared towards to reviews of hotels, using logical knowledge representation and ontologies, as well as statistical natural language processing modules.
    [Show full text]
  • The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
    The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads Martin Hyland2 Dept of Pure Mathematics and Mathematical Statistics University of Cambridge Cambridge, ENGLAND John Power1 ,3 Laboratory for the Foundations of Computer Science University of Edinburgh Edinburgh, SCOTLAND Abstract Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence. A generation later, the definition of monad began to appear extensively in theoretical computer science in order to model computational effects, without reference to universal algebra. But since then, the relevance of universal algebra to computational effects has been recognised, leading to renewed prominence of the notion of Lawvere theory, now in a computational setting. This development has formed a major part of Gordon Plotkin’s mature work, and we study its history here, in particular asking why Lawvere theories were eclipsed by monads in the 1960’s, and how the renewed interest in them in a computer science setting might develop in future. Keywords: Universal algebra, Lawvere theory, monad, computational effect. 1 Introduction There have been two main category theoretic formulations of universal algebra. The earlier was by Bill Lawvere in his doctoral thesis in 1963 [23]. Nowadays, his central construct is usually called a Lawvere theory, more prosaically a single-sorted finite product theory [2,3]. It is a more flexible version of the universal algebraist’s notion 1 This work is supported by EPSRC grant GR/586372/01: A Theory of Effects for Programming Languages.
    [Show full text]
  • Valeria De Paiva
    10221 Phar Lap Dr Cupertino 95014 H 408 219 6912 T 408 725 0460 B [email protected] Í http://vcvpaiva.github.io/ Valeria de Paiva http://www.cs.bham.ac.uk/~vdp Profile: Mathematician with strong industrial and academic background, and over forty publications. Project leader with a rare ability to get people from different technical backgrounds communicating and working together. Education 1990 PhD, Pure Mathematics, University of Cambridge, Cambridge, UK. Thesis: The Dialectica Categories, supervisor: Prof M. J. E. Hyland 1985 Part III Mathematical Tripos (MSc), University of Cambridge, Cambridge, UK. Lucy Cavendish College 1984 MSc, Algebra, Pontifical Catholic University (PUC), Rio de Janeiro, Brazil. Thesis: The Hurwitz-Radon Transformations, supervisor: Dr D. Randall 1982 BSc, Pure Mathematics, Pontifical Catholic University (PUC), Rio de Janeiro, Brazil. Work Experience Sep Senior Research Scientist, Nuance Communications, Sunnyvale, CA. 2012–now Research, design and deployment of conversational systems. My first project here was on "living room" assistants such as Amazon’s Alexa. A new project is on a car concierge. April Senior Research Scientist, Rearden Commerce, Foster City, CA. 2011–2012 Design and deployment of sentiment analysis tools. { Sentiment analysis mechanisms, especially geared towards to reviews of hotels, using logical knowledge representation and ontologies, as well as statistical natural language processing modules. May Search Analyst, Cuil, Inc., Menlo Park, CA. 2008–2010 Design and deployment of mechanisms for testing quality of search results. { Effectively coordinated team of ranking, data mining and front-end engineers to achieve quality testing tasks. { Pre-screening of results when new data or algorithms are released.
    [Show full text]
  • Basic Category Theory
    Basic Category Theory TOMLEINSTER University of Edinburgh arXiv:1612.09375v1 [math.CT] 30 Dec 2016 First published as Basic Category Theory, Cambridge Studies in Advanced Mathematics, Vol. 143, Cambridge University Press, Cambridge, 2014. ISBN 978-1-107-04424-1 (hardback). Information on this title: http://www.cambridge.org/9781107044241 c Tom Leinster 2014 This arXiv version is published under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence (CC BY-NC-SA 4.0). Licence information: https://creativecommons.org/licenses/by-nc-sa/4.0 c Tom Leinster 2014, 2016 Preface to the arXiv version This book was first published by Cambridge University Press in 2014, and is now being published on the arXiv by mutual agreement. CUP has consistently supported the mathematical community by allowing authors to make free ver- sions of their books available online. Readers may, in turn, wish to support CUP by buying the printed version, available at http://www.cambridge.org/ 9781107044241. This electronic version is not only free; it is also freely editable. For in- stance, if you would like to teach a course using this book but some of the examples are unsuitable for your class, you can remove them or add your own. Similarly, if there is notation that you dislike, you can easily change it; or if you want to reformat the text for reading on a particular device, that is easy too. In legal terms, this text is released under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International licence (CC BY-NC-SA 4.0). The licence terms are available at the Creative Commons website, https:// creativecommons.org/licenses/by-nc-sa/4.0.
    [Show full text]
  • Proquest Dissertations
    u Ottawa L'Universite canadienne Canada's university FACULTE DES ETUDES SUPERIEURES nm FACULTY OF GRADUATE AND ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES L'Universitt eanodienne Canada's university Benoit Valiron AUTEUR DE LA THESE / AUTHOR OF THESIS Ph.D. (Mathematics) GRADE/DEGREE Department of Mathematics and Statistics FACULTE, ECOLE, DEPARTEMENT / FACULTY, SCHOOL, DEPARTMENT Semantics for a Higher-Order Functional Programming Language for Quantum Computation TITRE DE LA THESE / TITLE OF THESIS Peter Selinger DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR EXAMINATEURS (EXAMINATRICES) DE LA THESE/THESIS EXAMINERS Richard Blute Douglas Howe Pieter Hofstra Prakash Panangaden Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies Semantics for a Higher-Order Functional Programming Language for Quantum Computation. Benoit Valiron Thesis Submitted to the Faculty of Graduate and Postdoctoral Studies In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics1 Department of Mathematics and Statistics Faculty of Science University of Ottawa © Benoit Valiron, Ottawa, Canada, 2008 1The Ph.D. program is a joint program with Carleton University, administered by the Ottawa-Carleton Institute of Mathematics and Statistics Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington
    [Show full text]
  • PREFACE 1 . Framework
    Theory and Applications of Categories comma Vol period .. 1 7 comma 2006 comma pp period .. 1 endash 9 period nnoindentPREFACETheory and Applications of Categories , Vol . nquad 17 , 2006 , pp . nquad 1 −− 9 . VALERIA DE PAIVA AND VAUGHAN PRATT n centerline fPREFACE g TheoryThis special and Applications volume of Theory of Categories and Applications , Vol . .. 1 7of , Categories 2006 , pp . .. open 1 { 9 parenthesis . TAC closing parenthesis .. addresses the theme .. quotedblleft Chu .. Spaces : .. Theory andPREFACE Applications period quotedblright .. The .. idea for the volume grew out .. of n centerlinethe .. workshopfVALERIA .. of that DE .. PAIVAVALERIA name .. AND organized DEVAUGHAN PAIVA by the PRATT .. AND volumeg VAUGHAN quoteright s PRATT.. editors .. in .. association .. with the conferenceThis special Logic involume Computer of Theory .... Science and .... Applications open parenthesis of LiCS Categories quoteright 2000 ( TAC closing ) parenthesis addresses the.... held theme at .... Santa Barbara in 2000 period ....This\ We Chu special Spaces volume : of Theory Theory and and Applications Applications . "nquad Theof idea Categories for the volumenquad grew( TAC out ) nquad of theaddresses the themeworkshopconceivednquad the s of` cope ` that Chu of thenquad name volumeSpaces as organized not : beingnquad l by imitedTheory the to the volume and material Applications ' s presented editors at the. in'' nquad associationThe nquad withidea for the volume grew out nquad o f thetheworkshopnquad itworkshop self but extendingnquad beyondo f that it ton embracequad name a widernquad rangeorganized of topics related by to the Chunquad volume ' s nquad e d i t o r s nquad in nquad association nquad with the conferencespaces and Dialectica Logic in constructions Computer period Science ( LiCS ' 2000 ) held at Santa Barbara in 2000 .
    [Show full text]
  • Wellfounded Trees and Dependent Polynomial Functors
    This is a repository copy of Wellfounded Trees and Dependent Polynomial Functors. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/113158/ Version: Accepted Version Proceedings Paper: Gambino, N orcid.org/0000-0002-4257-3590 and Hyland, M (2004) Wellfounded Trees and Dependent Polynomial Functors. In: Lecture Notes in Computer Science. TYPES 2003: International Workshop on Types for Proofs and Programs, 30 Apr - 04 May 2003, Torino, Italy. Springer Nature , pp. 210-225. ISBN 978-3-540-22164-7 https://doi.org/10.1007/978-3-540-24849-1_14 © Springer-Verlag Berlin Heidelberg 2004. This is an author produced version of a conference paper published in Lecture Notes in Computer Science. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Wellfounded Trees and Dependent Polynomial Functors Nicola Gambino⋆ and Martin Hyland Department of Pure Mathematics and Mathematical Statistics University of Cambridge {N.Gambino,M.Hyland}@dpmms.cam.ac.uk Abstract.
    [Show full text]