Heat-Curable Resin Composition

Total Page:16

File Type:pdf, Size:1020Kb

Heat-Curable Resin Composition (19) TZZ¥_¥ _T (11) EP 3 135 722 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.03.2017 Bulletin 2017/09 C08K 5/3415 (2006.01) C08G 73/12 (2006.01) C08L 79/08 (2006.01) C08L 79/04 (2006.01) (2006.01) (21) Application number: 16185322.1 C08L 63/00 (22) Date of filing: 23.08.2016 (84) Designated Contracting States: (71) Applicant: Shin-Etsu Chemical Co., Ltd. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Chiyoda-ku, GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Tokyo 100-0004 (JP) PL PT RO RS SE SI SK SM TR Designated Extension States: (72) Inventors: BA ME • KUSHIHARA, Naoyuki Designated Validation States: Annaka-shi, Gunma 379-0224 (JP) MA MD • SUMITA, Kazuaki Annaka-shi,, Gunma 379-0224 (JP) (30) Priority: 24.08.2015 JP 2015164546 (74) Representative: Zacco GmbH Bayerstrasse 83 80335 München (DE) (54) HEAT-CURABLE RESIN COMPOSITION (57) Provided is a heat-curable resin composition for (A) a heat-curable resin; and use in electric and electronics industry which is suitable (B) a bismaleimide compound in liquid form at 25°C, and as an underfill and for performing potting, and is superior exhibits a viscosity of 1 mPa·s to 850 Pa·s when meas- in fluidity, moisture resistance reliability and adhesive- ured at 25°C in accordance with a method described in ness at a high temperature. The heat-curable resin com- JIS Z8803:2011. position of the invention contains EP 3 135 722 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 135 722 A1 Description [Technical field] 5 [0001] The present invention relates to a heat-curable resin composition containing a heat-curable resin and a liquid bismaleimide compound. [Background art] 10 [0002] In recent years, electronic devices such as mobile phones, smartphones, ultrathin liquid crystal or plasma TVs and light laptop computers have been downsized in a growing manner. Electronic parts used in these electronic devices have, for example, been highly densely integrated or even packaged in a growing manner as well. Further, it is required that a resin material used in these electronic parts be low-expansion one for the sake of a thermal stress that occurs at the time of manufacture and use. Furthermore, since these electronic parts will generate larger amounts of heat as they 15 become highly integrated, it is required that the resin material also have a heat resistance. [0003] Conventionally, cyanic ester resins are superior in heat resistance and are known as heat-curable resins with low electric permittivities and low dielectric losses. However, while a cured product employing a novolac-type cyanic ester resin described in Patent document 1 is superior in terms of thermal expansion, the cured product has a high water absorption rate and may exhibit a reduced heat resistance after moisture absorption. 20 [0004] As a resin composition capable of forming a cured product superior in mechanical strength, adhesion strength to an adherend, film-forming property, heat resistance and pressure resistance, Patent document 2 discloses a resin composition containing a polyamideimide resin (VYLOMAX HR16NN by Toyobo Co., Ltd.), diphenylethane bismaleimide (BMI-70 by K-I Chemical Industry Co., LTD.) and an allylphenol resin (MEH-8000H by Showa Kasei Kogyo Co., Ltd.). Since this resin composition employs a thermoplastic high-molecular-weight polyamideimide resin, the resin composition 25 has a poor low-temperature meltability, and has a poor compatibility with a maleimide compound. Therefore, phase separation may occur at the time of curing a contacting film of such resin composition, which makes it difficult to obtain an uniform coating film. Further, since there is used a high-boiling solvent such as NMP or the like, there exists a problem that the solvent will remain at B-stage. [0005] In addition, as a resin composition exhibiting a favorable adhesion and capable of forming a cured product 30 superior in moisture resistance, Patent document 3 discloses an epoxy resin composition for semiconductor encapsu- lation which contains an epoxy resin, an imidazole compound and a maleimide compound. However, since this resin composition has a high elasticity, cracks may occur in the cured product thereof when subjected to a stress such as a large temperature change in, for example, a temperature cycling test. 35 [Prior art documents] [Patent documents] [0006] 40 [Patent document 1] JP-A-H11-124433 [Patent document 2] JP-A-2004-168894 [Patent document 3] Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 2014-521754 45 [Summary of the invention] [Problem to be solved by the invention] 50 [0007] Therefore, it is an object of the present invention to provide a heat-curable resin composition for use in electric and electronics industry which has a superior fluidity, a low viscosity, a superior moisture resistance reliability due to its low water absorption rate, a low elasticity; and is thus suitable as an underfill and for performing potting. [Means to solve the problem] 55 [0008] The inventors of the present invention diligently conducted a series of studies to solve the abovementioned problems, and completed the invention as follows. That is, the inventors found that the above objectives could be achieved by a heat-curable resin composition containing the following heat-curable resin and liquid bismaleimide compound. 2 EP 3 135 722 A1 [0009] Specifically, the present invention is to provide the following heat-curable resin composition. [1] A heat-curable resin composition containing: 5 (A) a heat-curable resin; and (B) a bismaleimide compound in liquid form at 25°C, wherein the heat-curable resin composition exhibits a viscosity of 1 mPa·s to 850 Pa·s when measured at 25°C in accordance with a method described in JIS Z8803:2011. 10 [2] The heat-curable resin composition according to [1], wherein the heat-curable resin (A) includes a heat-curable resin component (A1) and a curing agent (A2). [3] The heat-curable resin composition according to [2], wherein the heat-curable resin component (A1) is at least one selected from an epoxy resin, a phenolic resin, an unsaturated imide resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, an oxetane resin, an amino resin, an unsaturated polyester resin, an allyl resin, a dicyclopen- 15 tadiene resin, a silicone resin, a triazine resin and a melamine resin. [4] The heat-curable resin composition according to [3], wherein the heat-curable resin component (A1) is an epoxy resin or a cyanate resin, and the curing agent (A2) is a curing agent for either an epoxy resin or a cyanate resin. [5] The heat-curable resin composition according to any one of [1] to [4], wherein the bismaleimide compound (B) in liquid form at 25°C is a compound represented by the following formula (1): 20 25 30 wherein R1 represents at least one kind of divalent organic group selected from the group consisting of a linear or branched alkylene group having 1 to 40 carbon atoms; a divalent cyclic hydrocarbon group that has 3 to 20 carbon atoms and may also have a hetero atom(s); -O-; -NH-; -S- ; and -SO 2-. [6] The heat-curable resin composition according to [5], wherein the bismaleimide compound represented by the 35 formula (1) is at least one kind of bismaleimide compound selected from the group consisting of bismaleimide compounds represented by the following formulae (1-1), (1-2) and (1-3): 40 45 50 55 3 EP 3 135 722 A1 wherein n represents 1 to 10, and m represents 8 to 40 5 10 15 wherein n represents 1 to 10, and m represents 8 to 40 20 25 wherein n represents 1 to 10, and m represents 8 to 40 30 [Effects of the invention] [0010] The heat-curable resin composition of the present invention does not employ a solvent, but has a superior workability and exhibits an unimpaired resin reliability even under a high-humidity/temperature condition and a high- 35 temperature condition. [Mode for carrying out the invention] [0011] The present invention is described in detail hereunder. 40 (A) Heat-curable resin [0012] A heat-curable resin (A) of the present invention includes a heat-curable resin component (A1) and a curing agent (A2). 45 (A1) Heat-curable resin component [0013] Examples of such heat-curable resin component (A1) include an epoxy resin, a phenolic resin, an unsaturated imide resin, a cyanate resin, an isocyanate resin, a benzoxazine resin, an oxetane resin, an amino resin, an unsaturated 50 polyester resin, an allyl resin, a dicyclopentadiene resin, a silicone resin, a triazine resin and a melamine resin. Each of these resins may be used singularly, or two or more of them may be used in combination. Among the above resins, preferred are an epoxy resin and a cyanate resin in terms of moldability of the composition and electrical insulation property of the cured product thereof. [0014] Examples of the above epoxy resin include a bisphenol A-type epoxy resin; a bisphenol F-type epoxy resin; a 55 bisphenol S-type epoxy resin; a phenol novolac type epoxy resin; a cresol novolac type epoxy resin; a bisphenol A novolac-type epoxy resin; a bisphenol F novolac-type epoxy resin; a stilbene type epoxy resin; a triazine skeleton- containing epoxy resin; an fluorene skeleton-containing epoxy resin; a triphenol alkane type epoxy resin; a biphenyl type epoxy resin; a xylylene type epoxy resin; a biphenyl aralkyl type epoxy resin; a naphthalene type epoxy resin; a dicy- 4 EP 3 135 722 A1 clopentadiene type epoxy resin; an alicyclic epoxy resin; an aminophenol type epoxy resin; a hydrogenated bisphenol type epoxy resin; an alcohol ether type epoxy resin; multifunctional phenols; diglycidyl ether compounds of polycyclic aromatics such as anthracene; and a phosphorus-containing epoxy resin obtained by introducing an phosphorus com- pound into any of these epoxy materials.
Recommended publications
  • Process for Producing Fused-Ring Aromatic Compound, and Conjugated Polymer
    (19) TZZ ¥__T (11) EP 2 774 931 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 10.09.2014 Bulletin 2014/37 C07F 19/00 (2006.01) C07F 7/08 (2006.01) C07F 7/22 (2006.01) C07F 7/30 (2006.01) (2006.01) (2014.01) (21) Application number: 12844675.4 C08G 61/12 H01L 31/04 (22) Date of filing: 02.11.2012 (86) International application number: PCT/JP2012/078517 (87) International publication number: WO 2013/065836 (10.05.2013 Gazette 2013/19) (84) Designated Contracting States: • KAWAI, Jyunya AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Yokohama-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Kanagawa 227-8502 (JP) PL PT RO RS SE SI SK SM TR •SATO,Wataru Yokohama-shi (30) Priority: 02.11.2011 JP 2011241498 Kanagawa 227-8502 (JP) 29.11.2011 JP 2011260973 • SATAKE, Kenichi Yokohama-shi (71) Applicant: Mitsubishi Chemical Corporation Kanagawa 227-8502 (JP) Chiyoda-ku • FURUYA, Mitsunori Tokyo 100-8251 (JP) Yokohama-shi Kanagawa 227-8502 (JP) (72) Inventors: • FUJITA, Rieko (74) Representative: HOFFMANN EITLE Yokohama-shi Patent- und Rechtsanwälte Kanagawa 227-8502 (JP) Arabellastrasse 4 81925 München (DE) (54) PROCESS FOR PRODUCING FUSED-RING AROMATIC COMPOUND, AND CONJUGATED POLYMER (57) The invention addresses a problem of purifying having n active groups (wherein n is an integer of 1 or a monomer to be a precursor according to a simpler and more and 4 or less), which comprises bringing a compo- milder method so as to obtain a polymer having a higher sition containing the condensed polycyclic aromatic com- molecular weight.
    [Show full text]
  • Environmentsensitive Fluorescent Probe: a Benzophosphole Oxide with an Electrondonating Substituent
    Angewandte Chemie International Edition:DOI:10.1002/anie.201500229 Phosphorus Heterocycles German Edition:DOI:10.1002/ange.201500229 Environment-SensitiveFluorescent Probe:ABenzophosphole Oxide with an Electron-Donating Substituent** Eriko Yamaguchi, Chenguang Wang,Aiko Fukazawa,* Masayasu Taki, Yoshikatsu Sato, Taeko Sasaki, Minako Ueda, Narie Sasaki, Tetsuya Higashiyama,* and Shigehiro Yamaguchi* Abstract: Electron-donating aryl groups were attached to phosphine oxide and sulfide derivatives exhibit desirably high electron-accepting benzophosphole skeletons.Among several thermal and chemical stability.Taking advantage of these derivatives thus prepared, one benzophosphole oxide was features,phosphole-based materials have been widely applied particularly interesting,asitretained high fluorescence quan- in organic electronics,[1g,h] including organic light-emitting tum yields even in polar and protic solvents.This phosphole- diodes[3,4] and photovoltaics.[5] However,biological applica- based compound exhibited adrastic color change of its tions have not yet been explored exhaustively.Inthis context, fluorescence spectrum as afunction of the solvent polarity, we would like to disclose here the successful development of while the absorption spectra remained virtually unchanged. highly fluorescent phosphole derivatives,and demonstrate Capitalizing on these features,this phosphole-based compound their potential as fluorescent bioimaging probes. was used to stain adipocytes,inwhich the polarity of Thecombination of an electron-accepting p-skeleton
    [Show full text]
  • Synthesis and Applications in Fluorescence Imaging
    Phosphole P Oxide Containing π Electron Materials: Synthesis and ─ Applications─ in Fluorescence─ Imaging Shigehiro Yamaguchi, 1,2* Aiko Fukazawa, 2 and Masayasu Taki 1 1* Institute of Transformative Bio ─ Molecules (WPI ─ ITbM), Nagoya University 2* Furo, Chikusa, Nagoya 464 ─ 8602, Japan Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya 464 ─ 8602, Japan (Received September 8, 2017; E ─ mail: [email protected]) Abstract: Phosphole P ─ oxide is a useful building block for π ─ conjugated materials due to its nonaromatic and electron ─ accepting character. We have synthesized a series of ring ─ fused derivatives of phosphole P ─ oxide based on the intramolecular nucleophilic cyclization of appropriate alkyne precursors or radical phosphany- lations. Some of the thus obtained compounds exhibited intriguing uorescence properties and were applied to uorescence imaging. A donor ─ acceptor ─ type benzo[b]phosphole P ─ oxide with a (diphenylamino)phenyl group exhibited large solvatochromism in its uorescence spectra, and could hence be used as a staining agent for lipid droplets. C ─ Naphox and PB430, which consist of fully ring ─ fused π ─ conjugated ladder ─ type scaf- folds, exhibited outstanding photostability and their absorption and emission properties were suitable for super ─ resolution STED imaging. Moreover, using PB430 ─ conjugated antibodies, we carried out a 3 ─ D recon- struction of the STED images and developed
    [Show full text]
  • Program 1..154
    The 97th Annual Meeting of CSJ Program Chair: INOUE, Haruo(15:30~15:55) Room S1 1S1- 15 Medium and Long-Term Program Lecture Artificial Photosynthesis of Ammonia(RIES, Hokkaido Univ.)○MISAWA, Hiroaki (15:30~15:55) Fourth Building, Section B J11 Chair: INOUE, Haruo(15:55~16:20) 1S1- 16 Medium and Long-Term Program Lecture Mechanism of water-splitting by photosystem II using the energy of visible light(Grad. Sustainable and Functional Redox Chemistry Sch. Nat. Sci. Technol., Okayama Univ.)○SHEN, Jian-ren(15:55~ ) Thursday, March 16, AM 16:20 (9:30 ~9:35 ) Chair: TAMIAKI, Hitoshi(16:20~16:45) 1S1- 01 Special Program Lecture Opening Remarks(Sch. Mater. & 1S1- 17 Medium and Long-Term Program Lecture Excited State Chem. Tech., Tokyo Tech.)○INAGI, Shinsuke(09:30~09:35) Molecular Dynamics of Natural and Artificial Photosynthesis(Sch. Sci. Tech., Kwansei Gakuin Univ.)○HASHIMOTO, Hideki(16:20~16:45) Chair: ATOBE, Mahito(9:35 ~10:50) 1S1- 02 Special Program Lecture Polymer Redox Chemistry toward Chair: ISHITANI, Osamu(16:45~17:10) Functional Materials(Sch. Mater. & Chem. Tech., Tokyo Tech.)○INAGI, 1S1- 18 Medium and Long-Term Program Lecture Recent pro- Shinsuke(09:35~09:50) gress on artificial photosynthesis system based on semiconductor photocata- 1S1- 03 Special Program Lecture Organic Redox Chemistry Enables lysts(Grad. Sch. Eng., Kyoto Univ.)○ABE, Ryu(16:45~17:10) Automated Solution-Phase Synthesis of Oligosaccharides(Grad. Sch. Eng., Tottori Univ.)○NOKAMI, Toshiki(09:50~10:10) (17:10~17:20) 1S1- 04 Special Program Lecture Redox Regulation of Functional 1S1- 19 Medium and Long-Term Program Lecture Closing re- Dyes and Their Applications to Optoelectronic Devices(Fac.
    [Show full text]
  • Sloane Evariste
    ANNÉE 2016 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale SDLM présentée par Sloane Evariste Préparée à l’unité de recherche (UMR 6226-CNRS) Institut des Sciences Chimiques de Rennes – Université de Rennes 1 UFR Sciences et Propriété de la Matière (SPM) Systèmes π-conjugués Thèse rapportée par : Annie-Claude Gaumont et assemblages Professeure Université de Caen / rapporteure supramoléculaires Sandrine Perruchas Chargée de recherche Ecole Polytechnique organophosphorés : Palaiseau / rapporteure synthèse et propriétés et soutenue à Rennes physico-chimiques. le 04 Octobre 2016 devant le jury composé de : Nathalie Audebrand Professeure Université de Rennes 1 / examinatrice Aude Demessence Chargée de recherche Université de Lyon 1 / examinatrice Christophe Lescop Chargé de recherche INSA Rennes / directeur de thèse Muriel Hissler Professeure Université de Rennes 1 / co-directrice de thèse ABREVIATIONS OLED : Diode électroluminescente organique (pour Organic Light-Emitting Diode) OFET : Transistor organique à effet de champs OPV : Cellules solaires organiques HO : Haute Occupée, pour l’orbitale moléculaire la plus haute occupée BV : Basse Vacante, pour l’orbitale moléculaire la plus basse vacante EQE : Rendement quantique externe (pour External Quantum Efficiency) CIE : Commission Internationale de l’Eclairage UV : Ultra-Violet λem : Longueur d’onde maximale d’émission Φ : Rendement quantique d’émission ε : Coefficient d’extinction molaire λmax : Longueur d’onde maximale d’absorption λseuil : Longueur d’onde seuil d’absorption Epa : Potentiel d’oxydation Epc : Potentiel de réduction THF : Tétrahydrofurane DCM/CH2Cl2 : Dichlorométhane Cp* : Pentaméthylcyclopentadiényl RMN : Résonance Magnétique Nucléaire δ : Déplacement chimique ppm : Parties par million s : Singulet d : Doublet t : Triplet m : Multiplet dd : Doublet de doublets td : Triplet de doublets u.a.
    [Show full text]
  • Oliveira Et Al-2018-Chemistryopen
    DOI:10.1002/open.201700135 Green and Red Fluorescent Dyes for Translational Applications in Imaging and Sensing Analytes:ADual- Color Flag Elisabete Oliveira,[a, b] Emilia BØrtolo,[c] Cristina NfflÇez,[d] Viviane Pilla,[e] HugoM.Santos,[a, b] Javier Fernµndez-Lodeiro,[a, b] Adrian Fernµndez-Lodeiro,[a, b] Jamila Djafari,[a, b] JosØ Luis Capelo,[a, b] and CarlosLodeiro*[a, b] ChemistryOpen 2018, 7,9–52 9 2018 The Authors. PublishedbyWiley-VCH Verlag GmbH &Co. KGaA, Weinheim Red and green are two of the most-preferred colors from the the fieldsofbio-, chemo- and nanoscience. The review focuses entire chromatic spectrum,and red and green dyes are widely on fluorescent dyes containing chromophores such as fluores- used in biochemistry,immunohistochemistry,immune-staining, cein, rhodamine, cyanine,boron–dipyrromethene (BODIPY), 7- and nanochemistry applications. Selectivedyes with green and nitobenz-2-oxa-1,3-diazole-4-yl,naphthalimide, acridine red excitable chromophores can be used in biological environ- orange, perylene diimides, coumarins, rosamine, Nile red, ments,such as tissues and cells, and can be irradiated with naphthalene diimide, distyrylpyridinium, benzophosphole P- visible light withoutcell damage. This critical review,covering oxide, benzoresorufins, and tetrapyrrolicmacrocycles. Metal aperiod of five years, provides an overview of the most-rele- complexes and nanomaterials with thesedyes are also vant results on the use of red and green fluorescent dyes in discussed. 1. Introduction histochemistry,immunostaining, and nanochemistry.For
    [Show full text]
  • Some Ring Expansions and Related Reactions of the Phosphole System
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Retrospective theses 1970 Some ring expansions and related reactions of the phosphole system Srivanavit, Chit http://knowledgecommons.lakeheadu.ca/handle/2453/2208 Downloaded from Lakehead University, KnowledgeCommons SOME RING EXPANSION A N D RELATED REACTIONS O F THE PHOSPHOLE SYSTEM BY CHIT SRIVANAVIT A THESIS SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Lakehead University Thunder Bay, Ontario, Canada JULY, 1970 ProQuest Number: 10611572 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Pro ProQuest 10611572 Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 ■D-/ 035 fA-St. 1771 ‘Sly - c,/ CKct. Srlvo.'n.o.vi't _ )9T2. Cana.cL-ia.ru TKeseS on Micro-fiCm_No ...I0867i- ismix 1 ABSTRACT The chemistry of simple phosphole derivatives is comprehensively reviewed to the early part of 1970. Using 1,2,5-triphenylphosphole and some of its derivatives as starting materials, several ring expansion and related reactions of the phosphole system have been i studied.
    [Show full text]
  • Synthesis, Structure and Reactivity of Phosphorus and Arsenic Heterocycles
    Synthesis, Structure and Reactivity of Phosphorus and Arsenic Heterocycles Darren Michael Charles Ould A thesis submitted to Cardiff University in candidature for the degree of Doctor of Philosophy March 2020 I. Acknowledgements To begin with, I would like to extend my thanks and gratitude to my supervisor Dr Rebecca Melen for firstly giving me the opportunity to undertake my PhD in her group and secondly for allowing me to present at a number of conferences both domestically and internationally. Travelling to Canada in the summers of both 2018 and 2019 as part of an exchange program and to present at the Canadian Chemistry Conference and Exhibition 2019 will undoubtedly go down as highlights of my PhD. Thanks must be given to the Melen group both past and present. In particular though to Dr Adam Ruddy, Dr Yashar Soltani and Jamie Carden for their help and suggestions, as well as providing a great working atmosphere. My further thanks to Dr Lewis Wilkins for his help and suggestions, but moreover for teaching me the basics of single crystal X-ray crystallography as well as solving a number of my early structures (compounds 6a, 7, 15a–c, 16a–c, 17 and 18). I am grateful for the hard work to the students I have supervised during the course of my PhD, Matthew de Vere-Tucker, Kayla Trafford, Emily Tansley, Dorothea Engl and especially Alex Rigby who helped me develop the initial diazaphosphole and diazarsole work, as well as helping me crystallise a number of complexes (6a, 7, 15a–c, 16a–c and 17).
    [Show full text]
  • Publication List
    Publication List (1) Covalent self-labeling of tagged proteins with chemical fluorescent dyes in BY-2 cells and Arabidopsis seedlings R. J. Iwatate, A. Yoshinari, N. Yagi, M. Grzybowski, H. Ogasawara, M. Kamiya, T. Komatsu, M. Taki, S. Yamaguchi, W. B. Frommer, M. Nakamura The Plant Cell, 2020, 32, 3081–3094. (2) Phosphole-oxide-based Fluorescent Probe for Super-resolution Stimulated Emission Depletion (STED) Live Imaging of the Lysosome Membrane C. Wang, M. Taki,* K. Kajiwara, J. Wang, S.Yamaguchi* ACS Mater. Lett., 2020, 2, 705–711. (3) Effects of Amino Group Substitution on the Photophysical Properties and Stability of Near-Infrared Fluorescent P-Rhodamines M. Grzybowski, M. Taki,* K. Kajiwara, S. Yamaguchi* Chem. Eur. J., 2020, 7912–7917. Selected as “Hot Paper” (4) A photostable fluorescent marker for the super-resolution live imaging of the dynamic structure of the mitochondrial cristae C. Wang, M. Taki,* Y. Sato, Y. Tamura, H. Yaginuma, Y. Okada, S. Yamaguchi* Proc. Natl. Acad. Sci. USA, 2019, 116, 15817–15822. Highlighted in “In This Issue” (5) The Effect of Branching on the One‐ and Two‐Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging S. Griesbeck, E. Michail, F. Rauch, H. Ogasawara, C. Wang, Y. Sato, R. M. Edkins, Z. Zhang, M. Taki, C. Lambert,* S. Yamaguchi,* T. B. Marder* Chem. Eur. J., 2019, 25, 13164–13175. (6) Tuning the p-Bridge of Quadrupolar Triarylborane Chromophores for One- and Two-Photon Excited Fluorescence Imaging of Lysosomes in Live Cells S. Griesbeck, M. Evripidis, C. Wang, H.
    [Show full text]
  • Authors: Yong Ho Lee, Bill Morandi (2020) Title: Tr
    This document is the accepted manuscript version of the following article: Authors: Yong Ho Lee, Bill Morandi (2020) Title: Transition metal-mediated metathesis between P–C and M–C bonds: Beyond a side reaction Journal: Coordination Chemistry Reviews Publisher doi: 10.1016/j.ccr.2018.12.001 This manuscript version is made available under the CC-BY-NC-ND 4.0 license Originally uploaded to URL: https://morandi.ethz.ch/publications.html on /02/28/2020 Title: Transition metal-mediated metathesis between P–C and M–C bonds: Beyond a side reaction Contents 1. Introduction 2. Brief overview: early studies 2.1. P–aryl/P–aryl exchange: a side reaction 3. Elementary steps for phosphine activation 3.1. Direct oxidative addition of neutral P–C bonds 3.2. P–C bond formation through formation of phosphonium intermediates via reductive elimination 3.3. P–C bond cleavage through oxidative addition of phosphonium intermediates 4. Current research trends 4.1. P–aryl/P–aryl exchange: beyond a side reaction 5. Summary and outlook Acknowledgements References Abstract Phosphine ligands often play an important role in controlling reactivity and selectivity in transition metal catalyzed reactions. However, one common drawback of the phosphine ligands is the undesired occurrence of an interchange between P bound aryl and M bound aryl or alkyl groups in the catalytic cycle. This results in the formation of undesirable coupling products as well as changes in catalyst structure through the replacement of the phosphine ligand. This review discusses approaches to 1 understand this metathesis reaction between P–C and M–C and its productive application in catalytic reactions.
    [Show full text]
  • NBO 2015 – 2008 References Compiled by Ariel Andrea on 8/31/2018
    NBO 2015 – 2008 references Compiled by Ariel Andrea on 8/31/2018 Abbat, S.; Dhaked, D.; Arfeen, M.; Bharatam, P. V. Mechanism of the Paal-Knorr reaction: the importance of water mediated hemialcohol pathway RSC Advances, (5): 88353-88366. 2015. 10.1039/c5ra16246g Abdel-Azeim, S.; Jedidi, A.; Eppinger, J.; Cavallo, L. Mechanistic insights into the reductive dehydroxylation pathway for the biosynthesis of isoprenoids promoted by the IspH enzyme Chemical Science, (6): 5643-5651. 2015. 10.1039/c5sc01693b Abdel-Ghani, N. T.; Mansour, A. M.; El-Ghar, M. F. A.; El-Borady, O. M.; Shorafa, H. Co(II), Ni(II) and Cu(II) complexes of azo-aminopyrazole ligand: Spectroscopic, crystal structure and quantum chemical calculations Inorganica Chimica Acta, (435): 187-193. 2015. 10.1016/j.ica.2015.06.021 Abdulsattar, M. A. Molecular approach to hexagonal and cubic diamond nanocrystals Carbon Letters, (16): 192-197. 2015. 10.5714/cl.2015.16.3.192 Abdulsattar, M. A.; Almaroof, S. M. Electronic and spectroscopic properties of GeC superlattice nanocrystals: A first-principle study using diamondoid structures Superlattices and Microstructures, (79): 63-71. 2015. 10.1016/j.spmi.2014.12.011 Abedini, M.; Izadyar, M.; Nakhaipour, A. Different Aspects of Single Wall Carbon Nanotube Functionalization by Aniline Adsorption; Quantum Mechanics/Molecular Mechanics Study Journal of Nano Research, (32): 1-U21. 2015. 10.4028/www.scientific.net/JNanoR.32.1 Abyar, F.; Farrokhpour, H.; Tabrizchi, M. Gas phase ionization energies of some important unsaturated steroids Structural Chemistry, (26): 71-86. 2015. 10.1007/s11224-014-0469-4 Adhikari, D. A computational study to unravel the selectivity in an iron-catalysed 3+2 cycloaddition of aziridine and heterocumulenes RSC Advances, (5): 95379-95384.
    [Show full text]
  • Conjugated Phospholes and Their Incorporation Into Devices; a Component with a Great Deal of Potential Matthew P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Rennes 1 π-Conjugated Phospholes and their Incorporation into Devices; A Component with a Great Deal of Potential Matthew P. Duffy, Wylliam Delaunay, Pierre-Antoine Bouit, Muriel Hissler To cite this version: Matthew P. Duffy, Wylliam Delaunay, Pierre-Antoine Bouit, Muriel Hissler. π-Conjugated Phospholes and their Incorporation into Devices; A Component with a Great Deal of Po- tential. Chemical Society Reviews, Royal Society of Chemistry, 2016, 45, pp.5296-5310. <10.1039/C6CS00257A>. <hal-01321238> HAL Id: hal-01321238 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01321238 Submitted on 25 May 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. π-Conjugated Phospholes and their Incorporation into Devices; A Component with a Great Deal of Potential a a a a* M.P. Duffy, W. Delaunay, P-A. Bouit, and M. Hissler This review serves as a brief introduction to phospholes and discusses their unique favorable properties for applications in organic electronic materials. Over the past several years, π-conjugated phospholes have been slowly making their way into devices.
    [Show full text]