A Computable Measure of Algorithmic Probability by Finite Approximations with an Application to Integer Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 24 1 Kolmogorov Complexity
6.441 Spring 2006 24-1 6.441 Transmission of Information May 18, 2006 Lecture 24 Lecturer: Madhu Sudan Scribe: Chung Chan 1 Kolmogorov complexity Shannon’s notion of compressibility is closely tied to a probability distribution. However, the probability distribution of the source is often unknown to the encoder. Sometimes, we interested in compressibility of specific sequence. e.g. How compressible is the Bible? We have the Lempel-Ziv universal compression algorithm that can compress any string without knowledge of the underlying probability except the assumption that the strings comes from a stochastic source. But is it the best compression possible for each deterministic bit string? This notion of compressibility/complexity of a deterministic bit string has been studied by Solomonoff in 1964, Kolmogorov in 1966, Chaitin in 1967 and Levin. Consider the following n-sequence 0100011011000001010011100101110111 ··· Although it may appear random, it is the enumeration of all binary strings. A natural way to compress it is to represent it by the procedure that generates it: enumerate all strings in binary, and stop at the n-th bit. The compression achieved in bits is |compression length| ≤ 2 log n + O(1) More generally, with the universal Turing machine, we can encode data to a computer program that generates it. The length of the smallest program that produces the bit string x is called the Kolmogorov complexity of x. Definition 1 (Kolmogorov complexity) For every language L, the Kolmogorov complexity of the bit string x with respect to L is KL (x) = min l(p) p:L(p)=x where p is a program represented as a bit string, L(p) is the output of the program with respect to the language L, and l(p) is the length of the program, or more precisely, the point at which the execution halts. -
Artificial Consciousness and the Consciousness-Attention Dissociation
Consciousness and Cognition 45 (2016) 210–225 Contents lists available at ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog Review article Artificial consciousness and the consciousness-attention dissociation ⇑ Harry Haroutioun Haladjian a, , Carlos Montemayor b a Laboratoire Psychologie de la Perception, CNRS (UMR 8242), Université Paris Descartes, Centre Biomédical des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France b San Francisco State University, Philosophy Department, 1600 Holloway Avenue, San Francisco, CA 94132 USA article info abstract Article history: Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to Received 6 July 2016 implement sophisticated forms of human intelligence in machines. This research attempts Accepted 12 August 2016 to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable Keywords: once we overcome short-term engineering challenges. We believe, however, that phenom- Artificial intelligence enal consciousness cannot be implemented in machines. This becomes clear when consid- Artificial consciousness ering emotions and examining the dissociation between consciousness and attention in Consciousness Visual attention humans. While we may be able to program ethical behavior based on rules and machine Phenomenology learning, we will never be able to reproduce emotions or empathy by programming such Emotions control systems—these will be merely simulations. Arguments in favor of this claim include Empathy considerations about evolution, the neuropsychological aspects of emotions, and the disso- ciation between attention and consciousness found in humans. -
Computability and Complexity
Computability and Complexity Lecture Notes Herbert Jaeger, Jacobs University Bremen Version history Jan 30, 2018: created as copy of CC lecture notes of Spring 2017 Feb 16, 2018: cleaned up font conversion hickups up to Section 5 Feb 23, 2018: cleaned up font conversion hickups up to Section 6 Mar 15, 2018: cleaned up font conversion hickups up to Section 7 Apr 5, 2018: cleaned up font conversion hickups up to the end of these lecture notes 1 1 Introduction 1.1 Motivation This lecture will introduce you to the theory of computation and the theory of computational complexity. The theory of computation offers full answers to the questions, • what problems can in principle be solved by computer programs? • what functions can in principle be computed by computer programs? • what formal languages can in principle be decided by computer programs? Full answers to these questions have been found in the last 70 years or so, and we will learn about them. (And it turns out that these questions are all the same question). The theory of computation is well-established, transparent, and basically simple (you might disagree at first). The theory of complexity offers many insights to questions like • for a given problem / function / language that has to be solved / computed / decided by a computer program, how long does the fastest program actually run? • how much memory space has to be used at least? • can you speed up computations by using different computer architectures or different programming approaches? The theory of complexity is historically younger than the theory of computation – the first surge of results came in the 60ties of last century. -
Inventing Computational Rhetoric
INVENTING COMPUTATIONAL RHETORIC By Michael W. Wojcik A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Digital Rhetoric and Professional Writing — Master of Arts 2013 ABSTRACT INVENTING COMPUTATIONAL RHETORIC by Michael W. Wojcik Many disciplines in the humanities are developing “computational” branches which make use of information technology to process large amounts of data algorithmically. The field of computational rhetoric is in its infancy, but we are already seeing interesting results from applying the ideas and goals of rhetoric to text processing and related areas. After considering what computational rhetoric might be, three approaches to inventing computational rhetorics are presented: a structural schema, a review of extant work, and a theoretical exploration. Copyright by MICHAEL W. WOJCIK 2013 For Malea iv ACKNOWLEDGEMENTS Above all else I must thank my beloved wife, Malea Powell, without whose prompting this thesis would have remained forever incomplete. I am also grateful for the presence in my life of my terrific stepdaughter, Audrey Swartz, and wonderful granddaughter Lucille. My thesis committee, Dean Rehberger, Bill Hart-Davidson, and John Monberg, pro- vided me with generous guidance and inspiration. Other faculty members at Michigan State who helped me explore relevant ideas include Rochelle Harris, Mike McLeod, Joyce Chai, Danielle Devoss, and Bump Halbritter. My previous academic program at Miami University did not result in a degree, but faculty there also contributed greatly to my the- oretical understanding, particularly Susan Morgan, Mary-Jean Corbett, Brit Harwood, J. Edgar Tidwell, Lori Merish, Vicki Smith, Alice Adams, Fran Dolan, and Keith Tuma. -
Shannon Entropy and Kolmogorov Complexity
Information and Computation: Shannon Entropy and Kolmogorov Complexity Satyadev Nandakumar Department of Computer Science. IIT Kanpur October 19, 2016 This measures the average uncertainty of X in terms of the number of bits. Shannon Entropy Definition Let X be a random variable taking finitely many values, and P be its probability distribution. The Shannon Entropy of X is X 1 H(X ) = p(i) log : 2 p(i) i2X Shannon Entropy Definition Let X be a random variable taking finitely many values, and P be its probability distribution. The Shannon Entropy of X is X 1 H(X ) = p(i) log : 2 p(i) i2X This measures the average uncertainty of X in terms of the number of bits. The Triad Figure: Claude Shannon Figure: A. N. Kolmogorov Figure: Alan Turing Just Electrical Engineering \Shannon's contribution to pure mathematics was denied immediate recognition. I can recall now that even at the International Mathematical Congress, Amsterdam, 1954, my American colleagues in probability seemed rather doubtful about my allegedly exaggerated interest in Shannon's work, as they believed it consisted more of techniques than of mathematics itself. However, Shannon did not provide rigorous mathematical justification of the complicated cases and left it all to his followers. Still his mathematical intuition is amazingly correct." A. N. Kolmogorov, as quoted in [Shi89]. Kolmogorov and Entropy Kolmogorov's later work was fundamentally influenced by Shannon's. 1 Foundations: Kolmogorov Complexity - using the theory of algorithms to give a combinatorial interpretation of Shannon Entropy. 2 Analogy: Kolmogorov-Sinai Entropy, the only finitely-observable isomorphism-invariant property of dynamical systems. -
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2019 Computability Theory This section is partly inspired by the material in \A Course in Mathematical Logic" by Bell and Machover, Chap 6, sections 1-10. Other references: \Introduction to the theory of computation" by Michael Sipser, and \Com- putability, Complexity, and Languages" by M. Davis and E. Weyuker. Our first goal is to give a formal definition for what it means for a function on N to be com- putable by an algorithm. Historically the first convincing such definition was given by Alan Turing in 1936, in his paper which introduced what we now call Turing machines. Slightly before Turing, Alonzo Church gave a definition based on his lambda calculus. About the same time G¨odel,Herbrand, and Kleene developed definitions based on recursion schemes. Fortunately all of these definitions are equivalent, and each of many other definitions pro- posed later are also equivalent to Turing's definition. This has lead to the general belief that these definitions have got it right, and this assertion is roughly what we now call \Church's Thesis". A natural definition of computable function f on N allows for the possibility that f(x) may not be defined for all x 2 N, because algorithms do not always halt. Thus we will use the symbol 1 to mean “undefined". Definition: A partial function is a function n f :(N [ f1g) ! N [ f1g; n ≥ 0 such that f(c1; :::; cn) = 1 if some ci = 1. In the context of computability theory, whenever we refer to a function on N, we mean a partial function in the above sense. -
Information Theory
Information Theory Professor John Daugman University of Cambridge Computer Science Tripos, Part II Michaelmas Term 2016/17 H(X,Y) I(X;Y) H(X|Y) H(Y|X) H(X) H(Y) 1 / 149 Outline of Lectures 1. Foundations: probability, uncertainty, information. 2. Entropies defined, and why they are measures of information. 3. Source coding theorem; prefix, variable-, and fixed-length codes. 4. Discrete channel properties, noise, and channel capacity. 5. Spectral properties of continuous-time signals and channels. 6. Continuous information; density; noisy channel coding theorem. 7. Signal coding and transmission schemes using Fourier theorems. 8. The quantised degrees-of-freedom in a continuous signal. 9. Gabor-Heisenberg-Weyl uncertainty relation. Optimal \Logons". 10. Data compression codes and protocols. 11. Kolmogorov complexity. Minimal description length. 12. Applications of information theory in other sciences. Reference book (*) Cover, T. & Thomas, J. Elements of Information Theory (second edition). Wiley-Interscience, 2006 2 / 149 Overview: what is information theory? Key idea: The movements and transformations of information, just like those of a fluid, are constrained by mathematical and physical laws. These laws have deep connections with: I probability theory, statistics, and combinatorics I thermodynamics (statistical physics) I spectral analysis, Fourier (and other) transforms I sampling theory, prediction, estimation theory I electrical engineering (bandwidth; signal-to-noise ratio) I complexity theory (minimal description length) I signal processing, representation, compressibility As such, information theory addresses and answers the two fundamental questions which limit all data encoding and communication systems: 1. What is the ultimate data compression? (answer: the entropy of the data, H, is its compression limit.) 2. -
Introduction to the Theory of Computation Computability, Complexity, and the Lambda Calculus Some Notes for CIS262
Introduction to the Theory of Computation Computability, Complexity, And the Lambda Calculus Some Notes for CIS262 Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier Please, do not reproduce without permission of the author April 28, 2020 2 Contents Contents 3 1 RAM Programs, Turing Machines 7 1.1 Partial Functions and RAM Programs . 10 1.2 Definition of a Turing Machine . 15 1.3 Computations of Turing Machines . 17 1.4 Equivalence of RAM programs And Turing Machines . 20 1.5 Listable Languages and Computable Languages . 21 1.6 A Simple Function Not Known to be Computable . 22 1.7 The Primitive Recursive Functions . 25 1.8 Primitive Recursive Predicates . 33 1.9 The Partial Computable Functions . 35 2 Universal RAM Programs and the Halting Problem 41 2.1 Pairing Functions . 41 2.2 Equivalence of Alphabets . 48 2.3 Coding of RAM Programs; The Halting Problem . 50 2.4 Universal RAM Programs . 54 2.5 Indexing of RAM Programs . 59 2.6 Kleene's T -Predicate . 60 2.7 A Non-Computable Function; Busy Beavers . 62 3 Elementary Recursive Function Theory 67 3.1 Acceptable Indexings . 67 3.2 Undecidable Problems . 70 3.3 Reducibility and Rice's Theorem . 73 3.4 Listable (Recursively Enumerable) Sets . 76 3.5 Reducibility and Complete Sets . 82 4 The Lambda-Calculus 87 4.1 Syntax of the Lambda-Calculus . 89 4.2 β-Reduction and β-Conversion; the Church{Rosser Theorem . 94 4.3 Some Useful Combinators . -
Programming with Recursion
Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1980 Programming With Recursion Dirk Siefkes Report Number: 80-331 Siefkes, Dirk, "Programming With Recursion" (1980). Department of Computer Science Technical Reports. Paper 260. https://docs.lib.purdue.edu/cstech/260 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. '. \ PI~Q(:[V\!'<lMTNr. 11'1'1'11 nr:CUI~SrON l1irk Siefke$* Tcchnische UniveTsit~t Berlin Inst. Soft\~are Theor. Informatik 1 Berlin 10, West Germany February, 1980 Purdue University Tech. Report CSD-TR 331 Abstract: Data structures defined as term algebras and programs built from recursive definitions complement each other. Computing in such surroundings guides us into Nriting simple programs Nith a clear semantics and performing a rigorous cost analysis on appropriate data structures. In this paper, we present a programming language so perceived, investigate some basic principles of cost analysis through it, and reflect on the meaning of programs and computing. -;;----- - -~~ Visiting at. the Computer Science Department of Purdue University with the help of a grant of the Stiftung Volksl.... agem.... erk. I am grateful for the support of both, ViV-Stiftung and Purdue. '1 1 CONTENTS O. Introduction I. 'llle formnlislIl REe Syntax and semantics of REC-programs; the formalisms REC(B) and RECS; recursive functions. REC l~ith VLI-r-t'iblcs. -2. Extensions and variations Abstract languages and compilers. REC over words as data structure; the formalisms REC\\'(q). REe for functions with variable I/O-dimension; the forma l:i sms VREC (B) . -
Paper 1 Jian Li Kolmold
KolmoLD: Data Modelling for the Modern Internet* Dmitry Borzov, Huawei Canada Tim Tingqiu Yuan, Huawei Mikhail Ignatovich, Huawei Canada Jian Li, Futurewei *work performed before May 2019 Challenges: Peak Traffic Composition 73% 26% Content: sizable, faned-out, static Streaming Services Everything else (Netflix, Hulu, Software File storage (Instant Messaging, YouTube, Spotify) distribution services VoIP, Social Media) [1] Source: Sandvine Global Internet Phenomena reports for 2009, 2010, 2011, 2012, 2013, 2015, 2016, October 2018 [1] https://qz.com/1001569/the-cdn-heavy-internet-in-rich-countries-will-be-unrecognizable-from-the-rest-of-the-worlds-in-five-years/ Technologies to define the revolution of the internet ChunkStream Founded in 2016 Video codec Founded in 2014 Content-addressable Based on a 2014 MIT Browser-targeted Runtime Content-addressable network protocol based research paper network protocol based on cryptohash naming on cryptohash naming scheme Implemented and supported by all major scheme Based on the Open source project cryptohash naming browsers, an IETF standard Founding company is a P2P project scheme YCombinator graduate YCombinator graduate with backing of high profile SV investors Our Proposal: A data model for interoperable protocols KolmoLD Content addressing through hashes has become a widely-used means of Addressable: connecting layer, inspired by connecting data in distributed the principles of Kolmogorov complexity systems, from the blockchains that theory run your favorite cryptocurrencies, to the commits that back your code, to Compossible: sending data as code, where the web’s content at large. code efficiency is theoretically bounded by Kolmogorov complexity Yet, whilst all of these tools rely on Computable: sandboxed computability by some common primitives, their treating data as code specific underlying data structures are not interoperable. -
Maximizing T-Complexity 1. Introduction
Fundamenta Informaticae XX (2015) 1–19 1 DOI 10.3233/FI-2012-0000 IOS Press Maximizing T-complexity Gregory Clark U.S. Department of Defense gsclark@ tycho. ncsc. mil Jason Teutsch Penn State University teutsch@ cse. psu. edu Abstract. We investigate Mark Titchener’s T-complexity, an algorithm which measures the infor- mation content of finite strings. After introducing the T-complexity algorithm, we turn our attention to a particular class of “simple” finite strings. By exploiting special properties of simple strings, we obtain a fast algorithm to compute the maximum T-complexity among strings of a given length, and our estimates of these maxima show that T-complexity differs asymptotically from Kolmogorov complexity. Finally, we examine how closely de Bruijn sequences resemble strings with high T- complexity. 1. Introduction How efficiently can we generate random-looking strings? Random strings play an important role in data compression since such strings, characterized by their lack of patterns, do not compress well. For prac- tical compression applications, compression must take place in a reasonable amount of time (typically linear or nearly linear time). The degree of success achieved with the classical compression algorithms of Lempel and Ziv [9, 21, 22] and Welch [19] depend on the complexity of the input string; the length of the compressed string gives a measure of the original string’s complexity. In the same monograph in which Lempel and Ziv introduced the first of these algorithms [9], they gave an example of a succinctly describable class of strings which yield optimally poor compression up to a logarithmic factor, namely the class of lexicographically least de Bruijn sequences for each length. -
1952 Washington UFO Sightings • Psychic Pets and Pet Psychics • the Skeptical Environmentalist Skeptical Inquirer the MAGAZINE for SCIENCE and REASON Volume 26,.No
1952 Washington UFO Sightings • Psychic Pets and Pet Psychics • The Skeptical Environmentalist Skeptical Inquirer THE MAGAZINE FOR SCIENCE AND REASON Volume 26,.No. 6 • November/December 2002 ppfjlffl-f]^;, rj-r ci-s'.n.: -/: •:.'.% hstisnorm-i nor mm . o THE COMMITTEE FOR THE SCIENTIFIC INVESTIGATION OF CLAIMS OF THE PARANORMAL AT THE CENTER FOR INQUIRY-INTERNATIONAL (ADJACENT TO THE STATE UNIVERSITY OF NEW YORK AT BUFFALO) • AN INTERNATIONAL ORGANIZATION Paul Kurtz, Chairman; professor emeritus of philosophy. State University of New York at Buffalo Barry Karr, Executive Director Joe Nickell, Senior Research Fellow Massimo Polidoro, Research Fellow Richard Wiseman, Research Fellow Lee Nisbet Special Projects Director FELLOWS James E. Alcock,* psychologist. York Univ., Consultants, New York. NY Irmgard Oepen, professor of medicine Toronto Susan Haack. Cooper Senior Scholar in Arts (retired), Marburg, Germany Jerry Andrus, magician and inventor, Albany, and Sciences, prof, of philosophy, University Loren Pankratz, psychologist, Oregon Health Oregon of Miami Sciences Univ. Marcia Angell, M.D., former editor-in-chief. C. E. M. Hansel, psychologist. Univ. of Wales John Paulos, mathematician, Temple Univ. New England Journal of Medicine Al Hibbs, scientist, Jet Propulsion Laboratory Steven Pinker, cognitive scientist, MIT Robert A. Baker, psychologist. Univ. of Douglas Hofstadter, professor of human Massimo Polidoro, science writer, author, Kentucky understanding and cognitive science, executive director CICAP, Italy Stephen Barrett, M.D., psychiatrist, author. Indiana Univ. Milton Rosenberg, psychologist, Univ. of consumer advocate, Allentown, Pa. Gerald Holton, Mallinckrodt Professor of Chicago Barry Beyerstein,* biopsychologist, Simon Physics and professor of history of science, Wallace Sampson, M.D., clinical professor of Harvard Univ. Fraser Univ., Vancouver, B.C., Canada medicine, Stanford Univ., editor, Scientific Ray Hyman.* psychologist, Univ.