Design and Fabrication of State of the Art Uncooled Thermopile Infrared Detectors with Cavity Coupled Absorption
Total Page:16
File Type:pdf, Size:1020Kb
Design and fabrication of state of the art uncooled thermopile infrared detectors with cavity coupled absorption A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA by Ryan P Shea IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Joseph Talghader, Adviser June 2013 c Ryan P Shea 2013 ALL RIGHTS RESERVED Acknowledgements I would first and foremost like to acknowledge the guidance of my research adviser Joseph Talghader. Secondly I would like to acknowledge my research partner Anand Gawarikar. I must also acknowledge the assistance of the other members of the Optical MEMS research group past and present: Jan Makowski, Nick Gabriel, Sangho Kim, Phil Armstrong, Merlin Mah, Wing Chan, Luke Taylor, Kyle Olson,and Andrew Brown. I would also like to acknowledge the staff of the University of Minnesota Nanofabrication Center and Characterization Facility especially Tony Whipple and Mark Fisher. i Dedicated to my wife and my mother. ii UNIVERSITY OF MINNESOTA Abstract Dr. Joseph Talghader, Adviser Department of Electrical Engineering Doctor of Philosophy by Ryan P Shea We present the design, fabrication, and characterization of uncooled thermopile infrared detectors with cavity coupled absorption in the long wave infrared with perfor- mance exceeding all published works. These detectors consist of a two die optical cavity which enhances absorption in the desired spectral range while rejecting unwanted noise off resonance. The electrical transduction mechanism is a thermopile consisting of four thermoelectric junctions of co-sputtered Bi2Te3 and Sb2Te3 having a room temperature unitless thermoelectric figure of merit of .43. Processing steps are described in detail for the fabrication of extremely thermally isolated structures necessary for highly sensitive detectors. Optical characterization of the devices reveals a responsivity of 4700 V/W, p thermal time constant of 58 ms, and specific detectivity of at least 3.0x109 cm Hz/W. Also presented are a theoretical proposal for a midwave infrared detector using semicon- ductor selective absorption to enhance detectivity beyond the blackbody radiation limit and a new method for the analysis of radiation thermal conduction in highly thermally isolated structures. Contents Acknowledgementsi Abstract iii List of Figures vii List of Tablesx Physical Constants xi Symbols xii Declaration of Authorship xiv 1 Introduction1 1.1 Introduction...................................1 1.2 State of the Art.................................4 1.3 Organization of Chapters...........................5 2 Inroduction to Thermoelectrics7 2.1 Introduction...................................7 2.2 The Seebeck Effect...............................7 2.2.1 Seebeck Coefficient...........................8 2.3 Thermoelectric Cooling............................9 2.4 Thermoelectric Materials........................... 11 2.5 Selection of Thermoelectric Materials..................... 13 2.6 Engineering of Thermoelectric Materials................... 14 2.7 Thermoelectric Materials for MEMS Devices................ 15 3 Thermal Detector Background and Design 17 3.1 Introduction................................... 17 3.2 Detector Response............................... 17 3.3 Noise in Thermal Infrared Detectors..................... 18 3.4 Detectivity................................... 19 3.5 Radiation Thermal Conductance Noise.................... 19 iv Contents v 3.6 Device Design.................................. 21 3.7 Device Layout.................................. 21 3.8 Device Simulation............................... 23 3.9 Optical Design................................. 23 3.10 Device Simulation Continued......................... 25 3.11 Conclusion................................... 26 4 MWIR Detection Using Semiconductor Spectrally Selective Absorp- tion 27 4.1 Introduction................................... 27 4.2 Theory...................................... 28 4.3 Optical Simulation............................... 30 4.4 Practical Device Design............................ 31 4.5 Spectral Selectivity using Plasmonic Structures............... 34 5 Analysis of radiation thermal conductance in microstructures. 36 5.1 Introduction................................... 36 5.2 Background................................... 37 5.3 Fabrication................................... 39 5.4 Experiment................................... 41 5.5 Conclusion................................... 46 6 Detector Fabrication 47 6.1 Introduction................................... 47 6.2 Standard Processes............................... 47 6.2.1 Solvent Clean.............................. 47 6.2.2 1805 Lithography............................ 48 6.2.3 1813 Lithography............................ 48 6.2.4 Lift Off Lithography.......................... 48 6.3 Detector Fabrication.............................. 49 6.3.1 Electrical Insulation.......................... 49 6.3.2 Aluminum Oxide Structural Layer.................. 50 6.3.3 Optical Film Deposition........................ 50 6.3.3.1 Ge damage from solvents.................. 51 6.3.3.2 Material Overhang...................... 52 6.3.4 Encapsulation.............................. 52 6.3.5 Interconnect Layer........................... 53 6.3.6 Bond Pad and Wire Layer....................... 54 6.3.7 Thermoelectric Film Deposition.................... 55 6.3.7.1 Thermoelectric Material Overhang............. 57 6.3.8 Encapsulation.............................. 58 6.3.9 Backside Hard Mask Deposition................... 58 6.3.10 BCl3 Plasma Etch........................... 59 6.3.11 Backside Hard Mask Patterning................... 60 6.3.12 Etch Release.............................. 61 6.4 Micropillar Fabrication............................. 62 6.4.1 SOI Fabrication............................. 62 Contents vi 6.4.2 Pillar etching.............................. 63 6.4.3 Micromirror Deposition........................ 63 6.5 Microaperature Fabrication.......................... 64 6.6 Device Assembly................................ 64 7 Characterization 67 7.1 Introduction................................... 67 7.2 Thermoelectric Characterization....................... 67 7.2.1 Temperature Coefficient of Resistance................ 67 7.2.2 Film Composition........................... 69 7.2.3 Carrier Concentration......................... 70 7.2.4 Intrinsic Stress............................. 71 7.2.5 Resistivity................................ 73 7.2.6 Contact Resistance........................... 74 7.2.7 Seebeck Coefficient........................... 74 7.3 Thermal Conductivity............................. 77 7.3.1 Figure of Merit............................. 77 7.4 Device Characterization............................ 78 7.4.1 Micropillar Reflectance......................... 78 7.4.2 Cavity Spacing............................. 79 7.4.3 Thermal Conductance......................... 79 7.4.4 Responsivity.............................. 81 7.4.5 Thermal Time Constant........................ 84 7.4.6 Noise Measurement........................... 85 7.4.7 Detectivity............................... 86 7.5 Conclusion................................... 86 8 Conclusion and Future Work 89 8.1 Summary of Results.............................. 89 8.2 Future Work.................................. 91 8.2.1 Al2O3 Thickness............................ 91 8.2.2 Thermoelectric Film Thickness.................... 91 8.2.3 Thermoelectric Film Performance................... 92 8.2.4 Three Die Cavity Coupling...................... 92 8.2.5 MWIR Spectrally Selective Absorption................ 93 8.2.6 Optimized Design........................... 95 Bibliography 97 List of Figures 1.1 Spectral radiance of a 300K blackbody.....................2 1.2 Simulated atmospheric infrared transmission spectrum............2 2.1 Schematic of a semiconductor demonstrating the Seebeck effect.......8 2.2 Band structure of an n-type semicondcuctor under thermal equalibrium..9 2.3 Band structure of an n-type semicondcutor with applied temperature dif- ference......................................9 2.4 Layout of a generic thermoelectric junction..................9 2.5 Seebeck coefficient vs carrier concentration.................. 12 2.6 Electrical conductivity vs carrier concentration................ 12 2.7 Thermoelectric power factor vs carrier concentration............. 13 2.8 Thermoelectric figure of merit for all temperatures.............. 14 3.1 Mask layout of the '1B' device design..................... 22 3.2 Cross section of the thermoelectric leg of the '1B' device design....... 22 3.3 Cross sectional schematic of the optical device design............ 24 3.4 Simulated absorption spectrum of the optical device design......... 24 4.1 Detectivity vs cutoff wavelength for a generic semiconductor infrared de- tector....................................... 30 4.2 Absorption and radiation limited detectivity for a single 500nm thick layer of PbSe...................................... 31 4.3 Absorption and radiation limited detectivity for the cavity coupled detector. 32 4.4 Detectivity vs wavelength of for the high detectivity and low thermal time constant device designs............................. 33 4.5 Absorption vs wavelength and structural layout for plasmonic selective absorption.................................... 35 5.1 Simulation of temperature response to input power of a generic thermal isolation structure with varying thermal conductance source........ 39 5.2 Simulation of thermal conductance